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The set of pure quantum states is described as an abstract space with a geometry determined by transition
probabilities. We describe all possible structures for three-dimensional transition probability spaces with less
than ten states, as well as some even larger spaces of a certain symmetric type. It is shown that the
orthoclosed subspaces of a transition probability space form an atomistic orthomodular poset.

1. INTRODUCTION

In an axiomatic study of quantum mechanics, Mielnik
introduced the concept of transition probability space.?
The set of all pure states of a quantum mechanical sys-
tem is viewed as an abstract space with a geometry de-
termined by transition probabilities. In general, the
states of a transition probability space need not be
realizable in a Hilbert space., The existence of a repre-
sentation of pure states by unit vectors in a Hilbert
space restricts the geometric structure of the state
space. Mielnik provides numerical criteria under
which a transition probability space can be embedded
in a Hilbert space. His condition for embedding involves
only two-dimensional subspaces holding up to ten states.
As Mielnik points out, the two-dimensional subspaces
are especially important due to their relation to the
superposition principle. Nevertheless, it is also of
interest to study the structure of three-dimensional
transition probability spaces. We were led to study
finite three-dimensional transition probability spaces
in our effort to gain insight into the structure defined
by the axioms. There are many more structures possi-
ble for a three-dimensional transition probability space
than for a two-dimensional one. In the present paper,
we describe all possible structures for three-dimen-
sional transition probability spaces holding less than
ten states, We also prove a number of general theorems
about transition probability spaces, using the three-
dimensional examples as illustrations.

The axiomatic concept of transition probability is
abstracted from the Hilbert space model of quantum
theory. In this model, the transition probability be-
tween two pure states represented by unit vectors ¢ and
¢ in Hilbert space is | (@, )2

There is a one-to-one correspondence between pure
states and projection operators with one-dimensional
range. We may therefore identify the set of pure states
with the set S of all one-dimensional projection opera-
tors. If x is the projection operator whose range is the
one-dimensional subspace spanned by the unit vector y,
then x¢ =(y, ¢)¥. The absolute square of the inner pro-
duct of two unit vectors can be rewritten as the trace
of the product of the corresponding projection operators.
Thus, the transition probability p{x,y) between the pure
states x and y is given by p(x,y)=trxy. This function
satisfies 0< p(x,y) <1 and p(x,y)=p(y,x). Furthermore,
plx,y)=1if and only if x=y. Another less trivial prop-
erty is described in Sec. 2, and is used to define a
transition probability space.
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The plan of the remainder of the paper is as follows.
Section 3 contains some general theorems needed for
the construction of the examples as well as for the
analysis of the subspace structure. Section 4 is devoted
to a detailed analysis of all transition probability spaces

of dimension three with less than ten states. In Sec. 5,
we use these examples in the course of our analysis of

the structure of the partially ordered set of all sub-
spaces of a transition probability space. If we restrict
our attention to the orthoclosed subspaces, we obtain
an atomistic orthomodular poset. In the final section,
we analyze the structure of a certain class of sym-
metric three-dimensional transition probability spaces.

The axioms for transition probability do not by them-
selves constitute a complete framework for quantum
mechanics. Rather they represent a common core of a
number of different axiomatic structures. By studying
these axioms in isolation from others, we obtain a better
idea of what they imply.

2. AXIOMS

In the sequel, we consider a mapping p: SXS—[0,1],
where S is an abstract set whose elements are called
(pure) states. A subset B of S is a basis if every state
x in S satisfies

2 plx,y)=1.

yEB
When the basis is an infinite set, the sum over all states
in the basis here is to be understood as the least upper
bound for sums over all finite subsets of the basis. For
short, we often write p(x,B) for the sum of p(x,y) as
y ranges over B, Heuristically, we may regard a basis
as a sample space for an experiment, the states in a
basis being the results or outcomes possible for that
experiment.

The mapping p is symmetric if p(x,y)=p(y,x) for all
states x and y in S. If p is symmetric, then any two
bases B, and B, have the same cardinality, #(B,)= #(B,).
We can define the dimension of S to be the cardinality
of any basis, provided that at least one basis exists.
That all bases hold the same number of states was
known to Landsberg? in 1947, and was reproved by
Mielnik.! When S is a finite set, the proof is just that

B)= 2 4 plx,v)=#(B,).

*€ By yEBz

States x and y are orthogonal if p(x,y)= 0. A set of
states is pairwise orthogonal if each distinct pair of
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states in the set are orthogonal. A pairwise orthogonal
set of states is maximal if it is not a proper subset of
any larger pairwise orthogonal set of states. By Zorn’s
lemma, every pairwise orthogonal set of states can be
extended to a maximally pairwise orthogonal set of
states.

The mapping p is said to satisfy the sepavation axiom
if we have p(x,y)=1 if and only if x=1y. If-the separa-
tion axiom holds, then any basis for S must be a maxi-
mally pairwise orthogonal set of states. If p is sym-
metric and satisfies the separation axiom, then orthog-
onality is a symmetric and irreflexive relation.

A symmetric function p satisfying the separation
axiom is a {ransition probability if every maximally
pairwise orthogonal subset of S is a basis. A transition
probability space (S,p) consists of a set S and a transi-
tion probability p on S.

It is an immediate consequence of the definition that
each state of a transition probability space belongs to
at least one basis., We obtain a trivial example of a
transition probability space by taking S to be any set,
and setting p(x,y) equal to unity for x=y, and zero for
x#v. In this case, the whole space is the one and only
basis.

The concept of transition probability can be used to
characterize completeness for inner product spaces.
An inner product space V is complete if and only if
plx,vy)=trxy is a transition probability on the set S of
all one-dimensional projection operators on V., This
follows immediately from Gudder’s theorem? that an in-
ner product space is complete if every maximal ortho-
normal set satisfies the Parseval identity.

In any transition probability space one can introduce
a natural topology by defining a metric d(x,y) equal to
the least upper bound for |p(x,z) ~p(y, z)| as z varies
over all states. By the separation axiom, we always
have 1 - p(x,y) < d(x,y). The transition probability p is
jointly continuous in this metric space topology. In
general, a transition probability space need not be a
complete metric space.

In the Hilbert space model of quantum mechanics, we
have*

dx,y)= }u)b trix = y)z=|llx = yll.

Hence d(x,y) is the largest eigenvalue of the operator
x — . Since xyx=p(x,y)x, we have (x —y)*=[1 - plx,y)]

(x —y), so this largest eigenvalue is d(x,y)= V1 - p(x, ).

This formula implies that the quantity v1 - p(x,y) satis-
fies a triangle inequality in the Hilbert space model of
quantum mechanics. This triangle inedquality is one of
Mielnik’s embedding criteria. We may also describe
d(x,y) as the minimum distance between unit vectors in
the ranges of the projection operators x and y.

3. GENERAL CONSIDERATIONS
A subset T of a transition probability space (S, p) is
a subspace if we obtain a transition probability on T by

restricting p to TX7T. Symmetry and separation are
automatically true in 7. Thus, a subset T is a subspace
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if and only if every maximally pairwise orthogonal sub-
set of T is a basis for 7.

Any pairwise orthogonal subset of a transition prob-
ability space is a subspace. In particular, the empty
set and all singletons are subspaces.

The orthocomplement A' of a subset A of a transi-
tion probability space is the set of all states which are
orthogonal to every state in A. In general, 4 and A*
are disjoint, The orthocomplement of the union of two
sets is the intersection of their orthocomplements. If
ACB, then B*C A,

In general, the orthocomplement of a subset need not
be a subspace. The simplest example of this phenome-
non occurs in a three-dimensional space with eight
states to be discussed later.

Nevertheless, the orthocomplement of a subspace is
a subspace. To see this, we consider first the special
case of a pairwise orthogonal set A. If B is a maximal-
ly pairwise orthogonal subset in A, then AUB is a
basis for the whole space. If x is a state in A', then 1
=p(x,AYUB)=p(x,B). Thus B is a basis for A', and
hence A* is a subspace. To prove more generally that
the orthocomplement of any subspace T is a subspace,
we need only show that B' = T* for any basis B of T. For
this, we note that if y is orthogonal to B, then BU {y}
is pairwise orthogonal, so p(x,B)+ p(x,y) <1 for any
state x. If x belongs to T, then p(x,B)=1, so plx,y)=0
and y & T¢. Thus B*C T*. The opposite inclusion also
holds, because BC T.

Any subset A of a transition probability space satisfies
AC A", A subset A is orthoclosed it A=A, The
orthorcomplement of any subset is orthoclosed. The
empty set and the whole space are orthoclosed sub-
spaces. In general, we can easily find the orthoclosed
subspaces since every orthoclosed subspace is the or-
thocomplement of a pairwise orthogonal subset. In fact,
if T is an orthoclosed subspace, then T is the orthocom-
plement of any basis for T*.

If B is a pairwise orthogonal subset of a transition
probability space, then B' is the greatest subspace
having B as a basis. Indeed, B" is a subspace, and B
is a basis for B* since B*" B =¢. If B is a basis for
another subspace T, then B'=T', and TC T% = B*,

As an application of this, we note that each singleton
is an orthoclosed subspace: Any singleton {x} is pair-
wise orthogonal, and since {x} is a basis for {x}**, we
have p(x,y)=1, and hence x=vy, for all y in {x}**. Thus

{ot={a.

To determine whether a given subset of a transition
probability space is a subspace, it suffices to know the
orthogonality relation on the transition probability
space. A subset T of a transition probability space is a
subspace if and only if B*= T* for every maximally pair-
wise orthogonal subset B in 7. We have already proved
this condition is necessary. It is also sufficient. If B*
= T* for each maximally pairwise orthogonal subset B
in T, then TC B*, Since B is a basis for B**, we have
plx,B)=1 for every state x in T, that is, B is also a
basis for T. Hence T is a subspace.
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Each subspace T of a transition probability space is
itself a transition probability space, and thus has a de-
finite dimension, and dim7+ dimT*=dimS. In fact, any

basis for T and any basis for T* are disjoint, and their
union is a basis for S. Any basis for a subspace T is

also a basis for T!, so T and T** have the same dimen-
sion. If orthoclosed subspaces T, and T, have the

same {inite dimension and satisfy T,C T,, then T, =T,.
Here any basis B for 7, is also a basis for T,, so T
=B'=T;, and T, =T,.

If (S,,p,) and (S,, p,) are transition probability spaces,
then we can define a transition probability p on the dis-
joint union of S, and S, by setting p(x,y)=0if xS, and
yES,, or xS, and y e S, and p{x,y)=p,(x,y) if both x
and y belong to §; where {=1,2.

A transition probability space is irreducidble if it is
not the union of two nonempty orthogonal subsets. If a
transition probability space is the union of two orthog-
onal subsets T, and T,, then T, and 7T, are orthoclosed
subspaces, and T,=T,. Therefore, it does not matter
whether we frame the definition of irreducibility in
terms of orthogonal subsets or in terms of orthogonal
subspaces.

The study of transition probability spaces reduces to
the study of the irreducible ones. Every transition
probability space is the union of a set of mutually or-
thogonal irreducible subspaces.

We have described above a method for constructing
transition probability spaces as disjoint unions. A
modification of this method can be used to construct ir-
reducible transition probability spaces. If (S;,p,) and
(S;, p;) are transition probability spaces of the same
dimension d = 2, then the disjoint union of S, and S, can
be made into an irreducible d-dimensional transition
probability space by setting p(x,y)=1/d when x< S, and
yeS,, or xc S, and ye S;, and p=p, when x and y be-
long to the same S;, where ¢=1 or 2. For this construc-
tion, it does not matter if the spaces (S;,p,) and (S,, p,)
fail to be irreducible. Thus, for example, we could take
them to be pairwise orthogonal. By repeating this con-
struction over and over, we can construct arbitrarily
large irreducible transition probability spaces of any
finite dimension d = 2.

While there is no upper limit on the size of an ir-
reducible transition probability space of a given dimen-
sion, there does exist a lower limit. There are at least
2d states in any irreducible transition probability space
of dimension d > 2, In proving this, we may assume
without loss of generality that the number of states is
finite, so there are a finite number of bases, B,, B,,
...,B,. For each integer n=1,...,b, letI =B,
[ie«eN B and U =B V---UB . Each state x in [ ~I,,
is orthogonal to every state in U, because both belong
to at least one of the bases B,, . .., B, . Hence 1=pl(x,
B, })=px,U,,~U,), and summing over all such states
x, we find #(Z ~I,,) is equal to p({,~1,;, U, ~U). On
the other hand, since I ~I,, is pairwise orthogonal,
p ~I_,,v)<1 for all y, and summing over all states
yin U, ~U,, we find the inequality #(I, ~1,,) < #(U .,
~U,), that is,

#L) + #U,) < #(I, )+ #(U_,,).
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For n=1, we have I, =U,=B, so #1,)+ #U,)=2d.
Hence 2d < #(I,) + #(U ) holds for all », and in particular
for n=>5. Since the whole space S is irreducible, and
since d= 2, no state can belong to every basis, that is,
I,=¢. On the other hand, every state belongs to some
basis, so U,=S. Thus 2d < #$).

A mapping 2: S, ™ S, from a transition probability
space (S,,p,) to a transition probability space (S,,p,)
is a homomorphism it p,(x,y) = p,(r(x), h(y)) for all
states x and y in S;. By the separation axiom, it follows
that every homomorphism is one-to-one. The image of
any subspace T of S, under % is a subspace h{T] of S,
with the same dimension as 7. In particular, k[S,] is a
subspace of S, and therefore dimS, < dimS,. In general,
the image of an orthoclosed subspace need not be ortho-
closed. If 7 is an onto homomorphism, then %! is also
a homomorphism. We may therefore define an isomor-
phism between transition probability spaces as an onto
homomorphism. Isomorphisms do preserve orthoclosed
subspaces. A symmetry of a transition probability space
is an isomorphism of the space with itself.

There can be only one state in a one-dimensional
transition probability space, and since p(x,x)=1, all
one-dimensional transition probability spaces are
isomorphic.

Two-dimensional transition probability spaces were
studied by Mielnik.! Each state x in a two-dimensional
transition probability space is orthogonal to exactly one
other state x’ because {x}' is one-dimensional. Thus,
each state belongs to exactly one basis, and distinct
bases are disjoint. It follows that a two-dimensional
transition probability space must have an even number
of states. If there are only two states, the space is
pairwise orthogonal. If there are four or more states,
then the space is irreducible. The mapping which takes
x into x’ is a symmetry, and x” =x.

Transition probability spaces (S,, p,) and (S,,p,) are
similar if there is an invertible mapping f: S; — S, such
that states x and y in S, are orthogonal if and only if
their images f{x) and f(y) are orthogonal states in S,.
Two-dimensional transition probability spaces with the
same number of states need not be isomorphic, but they
are similar,

Since the number of states in an irreducible two-
dimensional transition probability space is an even num-
ber greater than or equal to four, and since an irreduci-
ble three-dimensional transition probability space must
have at least six states, it follows that there are no ir-
reducible transition probability spaces with 2,3, or 5
states.

4. THREE-DIMENSIONAL SPACES

Two states in a transition probability space are ad-
jacent if they are neither equal nor orthogonal. The
valence of a state x is the number of states adjacent to
X,

In an irreducible transition probability space, no state
can have valence zero, unless it is the only state in the
space. On account of the separation axiom, no state in
any transition probability space can have valence one.
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Thus, in an irreducible transition probability of dimen-
sion 4= 2, all states have valence two or more.

In a transition probability space holding a total of N
states, there are exactly N -v —1 states orthogonal to
a state x of valence v. Since each state belongs to at
least one basis; no state can have valence exceeding N
—d. In a three-dimensional transition probability space,
{x}* is two-dimensional, so N -» -1 must be even. That
is, in a three-dimensional space with an even number of
states, each state has odd valence, and vice versa.
Moreover, there is a one-to-one correspondence be-
tween bases B of the whole space holding x and bases
for {x}', because the other two states in B form one of
the $(N —v ~ 1) bases for {x}'. Therefore, a state of
valence v in a three-dimensional space belongs to exact-
ly 5(N—v —1) bases.

The minimum number of states in an irreducible
three-dimensional transition probability space is six.
In such a space with six states, each state has valence
three, and thus belongs to a single basis. The whole
space is therefore the union of two disjoint bases. All
such spaces are similar. The transition probabilities
can be represented by a 6 X6 matrix,

1 0 0 a-b 1-¢ b+c--a-q
0 1 0 l-a ¢c-d a+d-c
0 0 1 b d 1-b-d
a-»b l-a b 1 0 0
1-¢ c—d d 0 1 0
bte-a a+d-c 1-b-d 0 0 1 _j

where a, b, ¢, d must satisfy 0<b<g<1, 0<d<c<1,
b+d<1, a<b+c, and ¢ < a+d. These inequalities can
be satisfied, for example, by setting b=d=3%and a=c

win

If x is a state in a transition probability space, and if
B is a basis not holding x, then x is adjacent to at
least two distinct states in B. Indeed, if only one state
y in B were adjacent to x, we would have 1=p(x, B)
=plx,y), so that x=y, which is absurd.

Given two distinct bases B, and B,, there is at least
one state in B, not in B,, and this state must be adjacent
to at least two states in B,. So there are at least two
states in B, not in B;. For three-dimensional transition
probability spaces, this implies that two distinct bases
can have at most one state in common.

The union of three distinct bases B,, B, and B; in a
transition probability space of dimension 4 holds at
least d + 4 states. Indeed, if all states common to B,
and B, belong to B,, then since B, and B, each hold two
states not in B,, we are done in this case. On the other
hand, if there is a state x common to B, and B; not in
B,, then B, holds at least two states adjacent to x, and
these states are not in the union of B, and B;. Since the
union of B, and B, itself holds at least d -+ 2 states, we
are done again.

Three bases form a friangle if no state is common to
all three, yet each pair of them holds a state in com-
mon. No triangles can exist in a three-dimensional
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transition probability space because the union of three
bases in such a space must hold at least seven states.

Three bases are linked if two are disjoint, and the
third holds one state in common with each of the first
two. In a three-dimensional transition probability space,
no fourth basis is contained in the union of three linked
bases because it would form a triangle with at least two
of the three linked bases.

In a seven-state three-dimensional transition prob-
ability space, there must be at least three bases. Their
union holds all seven states. If the space is irreducible,
no state can be common to all three bases. Hence the
three bases are linked, and there can be no fourth basis.
It follows that all seven-state three-dimensional ir-
reducible transition probability spaces are similar. We
can number the states so that the three bases are
{1,2,3}, {3,4,5}, and {5,86,7}.

The transition probabilities for a seven-state three-
dimensional irreducible transition probability space can
be represented by a 7x 7 matrix,

i 1 0 0 a l-ac-d a+b—cH

0 1 0 1-a a 1l-c¢c c-a

0 0 1 0 0 b 1-b

a 1-a O 1 0 1-» b

l-a a 0 0 1 0 0 ’
c-b 1-¢ b 1-b O 1 0
:z+b-c c-a 1-b b 0 0 1 J

where a,b, and ¢ are positive numbers less than 1 satis-
fying a<c, b<c, andc<a+b.

The states of a seven-state three-dimensional ir-
reducible transition probability space do not all have
the same valence. Two of them have valence two, and
five have valence four.

A bivalent state is a state of valence two. A square
subspace is a two-dimensional subspace holding four
states.

A bivalent state x in a transition probability space
belongs to exactly one square subspace. Moreover, this
subspace is orthoclosed. Indeed, if u is one of the states
adjacent to x, and if B is a basis holding «, then x is not
in B; so B must also hold the other state » adjacent to
x. Thus » and v are orthogonal. Since the state x is
orthogonal to all states except « and v, it is orthogonal
to {u,v}*, that is, x belongs to the two-dimensional
orthoclosed subspace le{u,v}“. In a two-dimensional
space, each state is adjacent to all other states, save
one, But x is adjacent only to « and v, so @, is a square.
The states » and v belong to any square subspace @,
holding x, so &, C @;*. Since the orthoclosed subspaces
¢, and @' are both two-dimensional, &,= ;" and so
@,C @,. Finally, since @, and @, both hold four states,
Ql = Qz .

The only irreducible transition probability spaces
holding two adjacent bivalent states are squares. In fact,
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if x and y are adjacent bivalent states, then both belong
to an orthoclosed square subspace . If there were a
state z not in @, then z is orthogonal to x, so there is

a basis holding both x and z. Since y is not in this basis,
it is adjacent to two states in this basis. Since y is
bivalent, these two states must be x and the state x* in
@ orthogonal to x. Since z and x’ both belong to this
basis, they are orthogonal. Similarly, z is orthogonal
to the state y’ in @ orthogonal to y. Hence z is orthog-
onal to every state in @. That is, the whole space is
the union of @ and ¢'. Since the whole space is irreduc-
ible, then @'=¢.

As a corollary, it follows that the set of bivalent
states in an irreducible transition probability space of
dimension d = 3 is pairwise orthogonal. So there can be
at most d bivalent states in such a space. If there
actually are d bivalent states, they form a basis B.
Suppose there are N states in all, Each of the N -d
states not in B is adjacent to at least two states in B,
Hence the sum of the valences of the states in B is at
least 2(N —d). Since this sum is exactly 24, then N <24.
But an irreducible space must hold at least 24 states,
s0 N=2d. For d=3, this would imply N=6, but for
such a space we know all states have valence three. The
upshot is that a three-dimensional irreducible transi-
tion probability space can hold at most two bivalent
states.

g 1 0 0 a l-a b-c 1-d c+d—bﬂ
0 1 0 l1-a a 1-b d-e bt+e~d
0 0 1 0 0 c e l-c-e
a 1-a 0 1 0 f-¢c l-g c+g~f
l1-a a 0 0 1 1-f g-e e+f-g
b-c 1-5 c f-c 1-f 1 0 0
1-d d-e e 1-g g-e 0 1 0

E-Fd—b bte-d l-c-e c+g-f e+f-g O 0 1 |

The seven-state three-dimensional irreducible spaces
described above serve to illustrate these results, Here
the two bivalent states 3 and 5 belong to the orthoclosed
square subspaces {3,4,6,7} and {1,2,4, 5} respectively.
We may picture the whole space as two squares joined
at a corner.

There are two dissimilar structures possible for a
three-dimensional irreducible transition probability
space with eight states. The states in such a space can
only have valence three or five, so no state belongs to
three distinct bases. There must be at least three
bases, and at least two, say B, and B,, must overlap.
If the three states not in B, Y B, lie on a third basis,
then there is no fourth basis, because triangles are
prohibited. The only other possibility is that a third
basis has a state in common with B, or B,, Since trian-
gles are prohibited and no state belongs to three bases,
this third basis intersects only one of the first two, say
B,. These three bases account for only seven states.
There must be a fourth basis to hold the remaining
state. The other two states in the fourth basis must
be held in common with the first and third bases, re-
spectively. The ban on triangles rules out any further
bases. We are left with four bases, each one intersect-
ing two others, and disjoint from the remaining one.

Both these types of space exist. For the first type,
the most general transition probability matrix is

For the second type, the most general transition probability matrix is

[ 1 0 0 a l-a a 0 o ]
0 1 0 1l-qa a l-a-b b 1-»%
0 0 1 0 0 p 10 b
a l-a 0 1 0 1-p 0 1l-a-b
l-a a 0 0 1 b 0 a
a l-a-b b 1-b 0 0 0 1-a
0 b 1-b b 0 0 1 0
0 1-% b l1l-a-b a 1-a 0 1 J

In the first type of space, one state has valence three,
and seven have valence five, while in the second type,
four states have valence three and four have valence
five.
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| There are five dissimilar types of three-dimensional
irreducible transition probability spaces with nine

states. We shall describe them only briefly. The sim-
plest type has exactly three bases, which are mutually
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disjoint, say {1,2,3}, {4,5,6}, and {7,8,9}. All nine
states in this case have valence six.

In the remaining types, each basis intersects at least
one other basis. The states may have valence 2,4, or 6.
At most one bivalent state can occur, and it occurs in
only one type of space. This type has four bases, three
of which meet in the one bivalent state, and a fourth
basis which intersects just one of the first three bases.
For example, we may take these bases to be {1,2, 5},
{3,4,5}, {5,6,7}, and {7,8,9}. In addition to the one
bivalent state, there is one state with valence four, and
seven with valence six.

In analyzing the remaining three types, the concept
of linked bases is useful. Given any three linked bases
in a nine-state three-dimensional transition probability
space, the two states not in their union are orthogonal,
as one can easily show by an explicit calculation.

One finds there are two more types of irreducible
spaces with four bases. For the one type, we can take
these bases to be {1,2,3}, {3,4,5}, {5,6,7}, and {7,8,9}.
In the other type, we may take them as {1,2,3}, {4,5,6},
{7,8,9], and {3,5,7}. In each of these types of space,
there are three states with valence four, and six with
valence six.

Finally, there is one type of space in which all nine
states have valence four. Each state therefore belongs
to two distinct bases. This type of space has six bases,
which can be taken as {1,2,3}, {4,5,6}, {7,8,9}, {1,4,7},
{2,5,8}, and {3,6,9}.

5. ORTHOCLOSED SUBSPACES

The subspaces of a transition probability space are
partially ordered by inclusion. In general, neither the
union nor the intersection of two subspaces is a sub-
space. Moreover, even if the subspaces are orthoclosed,
their union and intersection need not be subspaces.
Since singletons are orthoclosed subspaces, any pair
of adjacent states provides an example of this phenome-
non in the case of unions. For intersections, the sim-
plest counterexample is provided by the eight-state
three-dimensional irreducible space with four bases. If
we number the states as in the preceding section, the
four bases are {1,2,3}, {3,4,5}, {5,6,7}, and {7,8,1}.
The intersection of the orthoclosed square subspaces
{11+={2,3,7,8} and {5}*={3,4,6,7}, for example, is the
set {3, 7}, which is orthoclosed, but not a subspace. As
a matter of fact, the partially ordered set of all ortho-
closed subspaces in this case is not a lattice. The two
square subspaces {2,3,7,8} and {3,4,6,7}, for example,
have no greatest lower bound since they hoth cover the
two singletons {3} and {7}.

Nevertheless, if two subspaces T, and T, in a transi-
tion probability space are orthogonal, then their union
is a subspace. In fact, if B is a maximally pairwise
orthogonal subset of T,V T,, then BN T, and BN T, are
bases for T, and T,, respectively, so that

B'= (BN TN (BN T, = TEN Ts= (T, U T,)*.

Hence T, Y 7, is a subspace.

If a subspace T, in a transition probability space is
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contained in another subspace T,, then TiM 7, is a sub-
space. For, if B is a maximally pairwise orthogonal
subset of 73N 7T,, and if B, is a basis for T,, then

=B (TN T,) =B N BN T,=(BUB,)'N T,,

and hence BY B, is a basis for T,. If x is a state in 7%
M T,, then 1=p(x,BY B,)=p(x,B), so B is a basis for
TiN T,.

If subspaces T, and T, of a transition probability
space satisty T, C T, and T, T, = ¢, then T;=T}. To
see this, we note that if B is a basis for T,, then B!
=T}, and therefore B*" T,=¢. Then B is a basis for
Tz, and Ti———Bl: T;.

The above results can be simplified if we consider
orthoclosed subspaces. The union of two orthogonal or-
thoclosed subspaces T, and 7, is a subspace, but need
not be orthoclosed. However, (T,Y T,)* is an ortho-
closed subspace, and it is the least upper bound for T,
and T, in the poset of orthoclosed subspaces. If 7, C T,
and T; " T,= ¢ for orthoclosed subspaces, then T,=7,.

An orthocomplemented poset is a partially ordered
set (P, <) with a least element 0 and a greatest element
1, and equipped with an operation taking each element
a < P into another element ¢* < P, such that 0 is the only
lower bound for g and a*, every element a ¢ P satisfies
a't=a, and if a<b, then b* < a*.

Elements ¢ and b in an orthocomplemented poset are
orthogonal if a <b*. An orthocomplemented poset if or-
thomodular if every pair of orthogonal elements has a
least upper bound, and if ¢ <b and a*Ab=0 imply a=b.

We may summarize the above results by saying that
the set of all orthoclosed subspaces of a transition prob-
ability space form an orthomodular poset. That the
transition probability axioms imply orthomodularity
was discovered another way by K. Bugajska.®

An element b in a poset covers an element a if a < b
and there is no element between ¢ and 4. In a poset with
a least element, an afom is an element covering this
least element. A poset is atomistic if every element b
is the least upper bound of the set of atoms a such that
a<hb.

The poset of orthoclosed subspaces of a transition
probability space is atomistic since every subspace is
the union of all singletons contained in it.

Since orthomodularity is just one of several generali-
zations of the modular law in lattice theory, it is natural
to ask if any other generalization of modularity holds for
the orthoclosed subspace poset of a transition probability
space. A poset is upper semimodular if whenever two
distinet elements both cover some common element,
then some element covers both of them.® Lower semi-
modularity is defined dually. Neither upper nor lower
semimodularity need hold in the poset of orthoclosed
subspaces of a transition probability space. The sim-
plest counterexample is provided by the six-state three-
dimensional irreducible transition probability space.
This space has two disjoint bases. If we pick one state
in each basis, then their singletons are two atoms not
covered by any common orthoclosed subspace, so upper
semimodularity fails. Lower semimodularity also fails
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here. Even the MacLane exchange axiom,” known to
quantum theorists as the Jauch—Piron covering axiom,?
fails here.

There does exist another covering axiom which holds
in any atomistic orthomodular poset. If an element ¢
covers an element b in an atomistic orthomodular poset,
then there exists an atom a < b* such that ¢c=a Vv b and
b=a'nc.

6. SPACES WITH SYMMETRY

The most interesting examples of transition probabil-
ity spaces are those which possess a high degree of
symmetry. Various symmetry requirements could be
imposed. Von Neumann proposed three such axioms in
his 1937 manuscript on continuous geometries with a
transition probability.® While von Neumann’s system
differs from the axioms considered here, it is not hard
to translate his requirements into reasonable equivalents
for transition probability spaces. Recall that a sym-
metry of a transition probability space is an isomor-
phism of the space with itself. Each such symmetry
induces an automorphism of the poset of orthoclosed
subspaces. Von Neumann’s first axiom is that all auto-
morphisms of the orthoclosed subspace poset are in-
duced by symmetries of the transition probability space.
His second axiom says that if T, and T, are orthoclosed
subspaces satisfying dimT, <dim7,, then there is a
symmetry h such that i(T,) C T,. Hisfinal axiom says
that in the special case that dimT,=dimT,, then & can
be chosen so that 2(7)= T for every orthoclosed sub-
space T orthogonal to both T, and 7,.

A somewhat weaker requirement was proposed by
Mielnik! under the name “superposition principle. "
Mielnik’s requirement is that all orthoclosed two-dimen-
sional subspaces are isomorphic.

Here we consider an even weaker requirement, name-
1y that all states have the same valence v. In the case
of a three-dimensional irreducible transition probability
space with N states, this requirement implies that each
state belongs to exactly m =2(N - v - 1) bases. The
total number of bases times the number of states on
each basis equals the total number of states times the
number of bases to which each state belongs. Hence the
total number of bases in such a space is b=3Nm. Since
b is an integer, either N is divisible by 3, or else m is
divisible by 3. Each basis holds three states. The N-3
states not on a given basis are each adjacent to at least
two states in that basis. Hence the sum of the valences
of the three states in the basis is at least 2(¥ - 3).
Since this sum is in fact 3v; then 2(N-3) <3y, or m
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< §(N+3). In particular, if N is not divisible by three,
then m = 3, and the space must hold at least 16 states.

Thus the simplest examples of irreducible three-
dimensional transition probability spaces with states of
equal valence are those described by the parameters
(N, m) below:

N=6,

N=9,

m=1,
m=1or 2,
N=12, m=1 or 2,
N=15, m=1,2, or 3.

The spaces with N=6 and N=9 were already described
in Sec. 4. The cases with m =1 are spaces with N/3
disjoint bases. They can be constructed using the dis-
joint union technique described in Sec. 3. In fact the
disjoint union technique applied to spaces of type (N,
my} and (N,, m,) yields another space of type (N, m) pro-
vided m, =m,=m and N=N, + N,.

It is not difficult to construct an example of an ir-
reducible space with N=12 and m =2. Its eight bases
fall into two groups of four each. Each group of four
bases are mutually disjoint, and each basis in the one
group intersects all but one of the other group. We can
number the states from 1 to 12 so that these bases are
{1,2,3}, {4,5,6}, {7,8,9}, and {10,11,12} for the one
group, and {1,4,7}, {2,5,10}, {3,8,11}, and {6,9,12} for
the other group. The transition probability matrix for
this space contains three arbitrary parameters,
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Conditions are given under which the metric part of a solution of the source-free Einstein~Maxwell
equations may be interpreted as the metric part of a solution with sources. Examples are given of space-times
which admit this dual interpretation and also of space-times admitting one interpretation only.

1. INTRODUCTION

The field equations of Einstein—~Maxwell theory in the
presence of sources may, with a suitable choice of units,
be written in the form?

R,,-%g, R=~E,, - pi,u, (1.1)
szFuaF“v+}nga5F°‘B, (1.2)
FHV;0+Fvo;u+Fuu.;u:0’ (1.3)
Fevege (1.4)

where E , is the electromagnetic energy tensor, F,,
the electromagnetic field tensor, J* the four-current,
P, the invariant rest-mass density, and «, is the four-
velocity. The presence of the term pg, u, in Eq. (1.1
ensures that the right hand side of the equation has
vanishing divergence in agreement with the left hand
side of the equation, Few attempts to solve this set of
equations have been made and in some investigations?®®
into the inclusion of a source term in Einstein—Maxwell
theory the equations are simplified by the assumption
po=0, so that Eq. (1.1) takes the form

R, =~E,, (1.5)
since E,, is trace-free. This assumption implies not
only that the Ricci scalar is zero, but also that £, has
vanishing divergence, as in the source-free case. Since
E*v, = F"J’, the physical consequence of this assump-
tion is that the Lorentz force vanishes, i.e.,

PP =0.

In the special theory of relativity, this condition im-
plies that the electric and magnetic fields are mutually
perpendicular.

(1.6)

In this investigation, we also adopt as the field equa-
tions of Einstein—Maxwell theory in the presence of
sources, Egs. (1.2)—(1.5), which imply condition (1.6).
We show that it is pogsible for some space-times to
satisfy the source-free Einstein—Maxwell equations,
i.e., Egs. (1.2)—(1.5) with J* =0, and also satisfy the
Einstein—Maxwell equations (1.2)—(1.5) for fields with
sources under condition (1.86). In other words, while
the Ricci tensor uniquely determines the electromagnetic
energy tensor E,,, the latter does not necessarily
uniquely determine whether the field tensor F,, satis-
fies Eqs. (1.4) with J*=0 or Egs. (1.4) and (1.6) with
J4#0, Examples are given of space—times which satisfy
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both sets of equations and also of space—times which
can satisfy one set of equations but not the other.

2. NOTATION AND EQUATIONS

Our approach is via the spin-coefficient formalism of
Newman and Penrose.? A tetrad system of null vectors,
(1*,n*, m*, m*), where [*, n* are real and m*, m* are
conjugate complex vectors, is defined by the relations

Int=-mmb=1,
with all other contractions zero. The spin coefficients

are defined by

oy — e — By Y .
k=1"m"l,,, , o=m*m",, , p=mm’l,,, T=n'm"l, ,

L2 v R TRyRY) _ 1 w_ v woov
a=zlm*n"l,,, -m*m'm,;,), B=z(m"n"l,,, -~m*m'm,, ),
LY . —Lgu, v [t
y=z(n"n"l,,, - n*m*m,,,), e=3z(1*n"l,,, -1*m"m,,,),
gV — MV U T 37 — gy
v=ntn'm,,,, rA=m"n'm,,,, L=m"n'm T=1"""m

vip? vie*

Four intrinsic derivatives are defined by
Do=0,,1*, Abp=0,,n*, 5¢=0,m*, bo=9,,m*,

and give the following commutation relations (integrabil-
ity conditions):

(AD - DAY =(y+ VDo + (e +€)Ad = (T+ 5P - (T+ 1) ¢,
(8D ~D8)p=(a+ B=-TD¢+ kAd — 08¢ — (p+e —¢)00,
(6A -~ A8)p=—-VDp+(T—a—PAd+ X3P+ (k—Y+7)oo,
(65 ~88)p= (1 -1IDS+ (p-p)Agp +(a - PS5 - (a - B)o,
(2.1)
The three Maxwell scalars are defined by
®o=F, I*m*, ¢,=F, m"n’, (2.2)
¢, =5F,, (1% n* + m*m*),
and Egs. (1.2) and (1.5) may be written in the form
b= ¢A<¥;B,

where & ,, are the complex tetrad components of the
Ricci tensor and A, B take the values 0,1,2.

(2.3)

The Maxwell Eqs. (1.3) and (1.4) in tetrad form are
D(Z)L - 5¢)0: (7T—- ZQ)¢0+ 2p¢)1 - K¢2 +%10’
b, — Ap, = = v+ 2ud, + (7= 2B)¢, + 51,

(2.4)
6¢)1 -8, = (b - 27)¢0+ 27¢, - 0, + %117
D¢)2 - 5¢>1: - A¢o+ 277¢1 + (p - 25)‘252 -+ %71’
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where the I, are the current scalars defined by

L=J*1,, L=J*m,, I,=Jd*m,, L=dJ"n,. (2.5)
Note that I,,I, are real, whereas I, is complex.
Condition (1. 6) leads to the following equations,
(&3 + $), = ol = b1, =0,
($2+ &)1 ~ Bl = bl =0, (2.6)

(¢1 - ¢1)71 + §oly — @l =0,
together with the complex conjugate of the third equa-

tion. Equations (2.4) and (2. 6) have been given pre-
viously by Tariq® and Zund.?

3. THE NONNULL CASE

For a nonnull electromagnetic field the tetrad can be
chosen such that ¢,=¢,=0, ¢,=¢#0. In this case [¥,
n* are the principal null vectors of the electromagnetic
field. Equations (2.3), (2.4) and (2. 6) become

@, =90, (3.1)
Dé=2p¢ + 3, A¢>=—2u¢>—%_lz, 3.2)
Sp=27¢+3L, BSd=-2m1p—%1,,

and )
(6 +P),=0, (p+d)M,=0, (6—-0),=0. (3.3)

The invariant J,J* expressed in tetrad components is
J, I =2(1,, - L1), (3.4)
and Eqs. (3.3) imply that

(1) if ¢ is real then I,=1,=0, I, #0 so that
J* is spacelike,

(ii) if ¢ is imaginary then I, =0 and at least one of

1,,1, is nonzero, In this case J* can be timelike (I 1,> 0),
spacelike (/,J,<0), or null,

(iii) if ¢ is a complex then no current exists.
When ¢ is real, Egs. (3.2) take the form

Do=2p¢, Ap=-2u¢, 3.5)

Sp=(1-mo, Fop=(T-n9,
with

p=p, H=H, (3.6)
and the tetrad components I, are given by

IL=,=0, IL=-2(T+7)¢, 3.7
so that 7+ 7#0 for nonzero current,

When ¢ is imaginary, Eqgs. (3.2) take the form

Do=(p+pl¢p, Ap=-(u+ o,

5 =276, 5p=279, 3.8)
with

T+7=0, (3.9)
and the tetrad components I, are given by

Li=-2(p~p)p, L=-2(u-i)p, I,=0. (3.10)

In this case, for a nonnull current, p#p and u+ i,
whereas, for a null current, only one of p#p and u# i
must hold,
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Now suppose we have a solution of the Einstein—
Maxwell equations for a source-free electromagnetic
field, i.e., Egs. (3.1) and (3. 2) with I, =0 in the latter
equation. Is it possible that the same space—time is a
solution of Egs. (3.1) and (3.2) with I, #0? The value
of @ and the values of the spin coefficients will be the
same in each case, so the question becomes: Is it pos-
sible to find two different functions ¢, each with the
same modulus, one satisfying (3.2) with 7, =0 and the
other satisfying (3.2) with I, #0? The Eqs. (3.5)—(3.10)
give a prescription for finding such solutions. If a solu-
tion of the source-free nonnull Einstein-Maxwell equa-
tions is such that both the principal null congruences of
the electromagnetic field have zero twist, i.e., Eq.
(3.6) holds, and also T+ 7+0, then the space-time is
also a solution of the Egs. (1.2)—(1.6) provided that
Eqs. (3.5) satisfy the integrability conditions (2.1). In
this case the current J* is spacelike, its tetrad com-
ponents being given by Eq. (3.7). Similarly, if 7+ 7=0
and at least one of p, ¢ are not real, then Eqs. (1.2)—
(1.6) are satisfied by the space—time, provided that
Egq. (3.8) satisfy the integrability conditions. In this
case the current can be timelike spacelike or null,

Note that if a solution of the Einstein—Maxwell equa-
tions for nonnull electromagnetic fields admits this dual
interpretation, then, in its source-free interpretation,
the Maxwell scalar ¢ must be strictly complex, i.e.,
both its real and imaginary parts are nonzero. If this
were not so, Eq. (3.2) with 7, =0 would impose upon the
spin coefficients precisely those conditions which would
render I, =0 in the dual interpretation. Hence we have
the following theorem.

Theorvem 1: A necessary condition for a solution of the
source-free Finstein—Maxwell equations for nonnull
electromagnetic fields to admit interpretation as a solu-
tion of Eqs. (1.2)—(1.6) is that, in the source-free
interpretation, the Maxwell scalar ¢ be strictly com-
plex whereas, in the source-present interpretation, the
corresponding scalar ¢ be either real or pure imaginary.

In applying the prescription to known solutions of the
source-free nonnull Einstein—Maxwell equations we
find that many cannot admit the dual interpretation
since they have zero twist, i.e., Eq. (3.6) holds, but
they also have 7=7=0, so that Eq. (3.7) gives zero
current,  Among the solutions in this category are

(i) the Reissner-Nordstrom solution,

(ii) the twist-free Petrov type I solution found by
Tariq and Tupper,® 7 namely,

ds®=2dudr - u"rm dy? —utmy i dz?,
where m=1(V3-1), n=-4(V3+1),
(iii) the conformally flat Bertrotti—Robinson® solution,

(iv) the nonnull Petrov type N solution found by
McLenaghan and Leroy,®

(v) the Petrov type D solution with metric
ds? =" du® + 2 du dy — v(dy* + d2?).

In fact, we have been unable to find any solution satis-
fying Eqgs. (3.5)—(3.7), i.e., one which gives rise to
a spacelike current in its dual interpretation. However,
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we now give an example of a source-free solution which
can be also interpreted as a solution with timelike cur-
rent. This solution, which is of Petrov type I, was
found by Tariq and Tupper” in a special form and later
generalized!®'1!; the metric is
ds®=(dt -2zdo)? -~ ¥ de¢?
~ 302 2(dr? + dz2®), (3.11)

where g is a constant parameter. The principal null
congruences [*, n* of the electromagnetic field are not
aligned with those of the gravitational field. The non-
zero spin coefficients are

p=a%, k=i, o0=d exp(~2Y2iatl),

(3.12)

A=exp(2V2iat), o =~B=azr-'expltV2ial).

The squared modulus of the Maxwell scalar is
dd=2a° (3.13)

Considered as a source-free solution, we find that

¢ =+ 2qgexp[2i(In2 - b)], (3.14)

where b is an arbitrary constant, and the nonzero com-
ponents of the Maxwell tensor are

F,=27"'cos2(In2y» ~ b),

F,,=4ayrcos2(In2y - b), (3.15)

Fy,=2sin2(In2y - b),

From the expressions (3.12) we see that Eq. (3,9)
is satisfied and Eq. (3.10) gives a nonzero timelike cur-
rent. Equations (3. 8) become

Dp=Ap=06p=0¢=0, (3.186)

and so the integrability conditions are satisfied trivial-
ly. For the source-present solution, Eqs. (3.13) and
(3.18) give

==+ \ffaz', (3.17)

since ¢ is imaginary. It follows that the only nonzero
component of F_ is

F34:¥4, (318)

i.e., a constant magnetic field in the » direction. The
tetrad components I, are

L=+4V2d%, 1,=0, I,=+4V2aq,
which leads to

J# =+ 8025 (3.19)

Thus the space—time with metric (3.11), which satis-
fies the source-free Einstein—Maxwell equations with
electromagnetic field given (3.15), may also be inter-
preted as a solution of the Einstein—Maxwell equations
with sources with electromagnetic field and four -cur-
rent given by Eqgs. (3.18) and (3.19), i.e., the expres-
sions (3.15) and (3.18) each give rise to the same
electromagnetic energy tensor.

The Kerr—Newman solution'® appears to satisfy the
necessary conditions for the dual interpretation as a
solution with time-like current, since, with respect to
the tetrad usually employed,!?'!% the spin coefficients
satisfy 7+ 7=0, p#p, u+ 1. However, in this case,
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only I* is a principal null vector of the electromagnetic
field; the Maxwell scalars ¢,, ¢, are both nonzero. We
can set ¢, to zero by a tetrad rotation of the form

I, mt T

nE = nt 4+ Tm* + Tm* + TTZ“,

and, as a result, the new spin coefficients 7 and 7 no
longer satisfy the necessary condition 7+ 7=0. Hence,
the Kerr—Newman solution does not admit the dual
interpretation.

4, THE NULL CASE

For a null electromagnetic field we may choose [* as
the repeated principal null direction of the electromagne-
tic field, In this case, we have ¢,=¢, =0, ¢,=¢#0
so that Eq. (2.3) becomes

Gy =00, 4.1)
and Eqs. (2.4) and (2.6) lead to
k=1,=0, I,=20¢, 0¢®+0¢?=0, (4.2)

66= (=280 + 3L, Do=(p-20p+3I,.

From these equations we see that the four-current can
be null or spacelike only. Note that the current is null,
i.e., {;,=0, if and only if 0=0, which is the generalized
Mariot—Robinson theorem due to Zund.?® As a con-
sequence of this theorem we have the following theorem.

Theorem 2: If any solution of the source-free
Einstein—Maxwell equations for null electromagnetic
fields can also be interpreted as a solution of Eqs.
(1.2)—(1.86), then the four-current arising in the second
interpretation is necessarily null.

We now have the following prescription for testing
whether or not a solution of the source-free Einstein—
Maxwell equations for null electromagnetic fields can
also be interpreted as a solution of Eqs. (1.2)—(1.6)
with a null four-current. The quantity ¢ and the spin
coefficients are known. Look for a new function ¢, with
the same modulus as the original ¢, which again satis-
fies the equation D¢ = (p - 2¢)¢, but for which the
expression 6¢ — (7 —2p)¢ is a nonzero real function. If
such a ¢ can be found, then the solution admits the dual
interpretation.

Some specific examples of space-times admitting this
dual interpretation will now be given. First, we con-
sider the Petrov type N plane-wave solutions of the
Einstein—Maxwell equations for null electromagnetic
fields. The general metric of these solutions can be

written in the form"™
ds?=2(V7+ W+ W)du® + 2dudy -2dzdz, (4.3)

where V="V{u,z), W= W(u, z) are arbitrary functions.
With respect to the null tetrad,

#=(0,1,0,0), n=(1,-VP-w-W,0,0),
m* =(0,0,0, =1), m*=(0,0,-1,0),

the only spin coefficient is v=~V V- W _, and we find

0=V ,V ;. (4.4)

Since 8¢ =0 we can take ¢ =V ,exp[iflu)], where flu) is
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an arbitrary real function of u. We require a new ¢,
satisfying (4.4) and D =0, such that 6¢=-¢ =31, a
real function. We have been unable to prove or disprove
the existence of a suitable ¢ for the dual interpretation
in the case of arbitrary V(«, z), but we have found a ¢
with the necessary properties in some special cases.

In particular, when
Viu, z) = qlu)z?", (4.5)

where g(«) is an arbitrary function and » an arbitrary
real number, a suitable ¢ does exist. In this case,

O P = dnPg?(u) 2122t
and the required new expression for ¢ is

¢ =2n2"2"V

i.e.,

¢ =4nPqu)z"z". {4.6)
This gives the following expression for I,,

I==2¢ ;=-8nq(u)| 2|2 4.7

which is real, as required. The four-current has the
form

Jb = = 8n3q(u)lz|2‘"'”62“.

In both interpretations the nonzero components of the
electromagnetic field are given by

Fy,=¢, F14:$~

Note that the conformally flat solution of the Einstein—
Maxwell equations for null electromagnetic fields is a
special case of the type N plane-wave solutions dis-
cussed above. The metric has the form!*1®

ds®=2¢*(u)zzdu®+ 2dudy — 2dzdz,

which corresponds to the metric (4. 3) with V=¢g(u)z

and W=0. Thus, the conformally flat solution is a mem-
ber of the class of solutions characterized by (4. 5)

with »=73 and so admits the dual interpretation. In this
case, the original Maxwell scalar, which is a function

of u only, is replaced by

=gz /2212,
and the resulting four-current is
J¥= - qlu)| z|16%.

As a second example, we consider the Petrov type D
solution with metric

ds?=[2mu)/v]du® -2 dudy - 297 dz dz. (4.8)
With respect to the null tetrad,
1*=(0,1,0,0), n*=(1, -m/r,0,0),
m*=1(0,0,0, -1/%), m*=(0,0, -1/,0),
the nonzero spin coefficients are
p:—l/'r, u:—m/rz, Y= —m/27°.
The nonzero Weyl scalar is ¢, =m/%* and
¢ =m/r, (4.9)

which shows that > 0; we put 7 =%%(u). It follows from
the Bianchi identities that, for the source-free solution,
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¢ must be of the form

¢ =k(uw)rt explifiu)],

where f(u) is an arbitrary function of u. We require a
new ¢ satisfying (4.9) and D¢ = — (1/7)¢ such that 6¢
=-(1/7)¢ ; =3I, real. These conditions are satisfied
by

¢ =k(ur'z /2212,

which gives I,= — 3k»"2| z| !
is

, so that the four-current

J¥ = —3ky?| 2|15, .

Finally, we turn our attention to the inverse problem
to that considered so far, namely, given a solution of
Egs. (1.2)—(1.6) with J* #0, can the solution also be
interpreted as a source-free solution. This amounts to
finding a function ¢ satisfying the equation 5¢ — (7 -28)¢
=0 and having the same modulus as the original ¢ which
satisfied the equation 6¢ — (7 - 28)¢ =31,. We now give
an example of a solution with sources which cannot have
this dual interpretation.

Consider the solution of the Eqs. (1.2)—(1.6) for null
electromagnetic field with null current found by
Vaidya.'® This has metric

ds?=[1 - 2m(u)/v]du? + 2 du dr
- P(d &P + sin? 8 dyP).
With respect to the null tetrad

(4.10)

1=(0, 1, 0, 0), n*=[1, —5(1=2m/¥), 0, 0],
m*=(0, 0, 1/Y 2r, i/V 2rsinb),
mt=1(0,0, 1/V2y, —i/V2rsins,

the nonzero spin coefficients are

p==1/r, p=-(1/29)(1 -2m/+),

y=m/2, a=-PB=-(1/2V27)cots,
and the nonzero Weyl scalar is §, = —m/#*, so that the
solution is of Petrov type D. We find that

6F=-m/7, (4.11)

so that #: < 0; we write m = — k?(u). The Maxwell scalar
¢ must satisfy (4.11) and also

Do=-(1/7)¢,
(4.12)
86 + (1/Vy)cot8¢ = 31,.
This is satisfied by
¢ =k(u)r?,
which gives
I="2k(u)r" cotb,
ie.,
J* = V2k(u)r cot 66,“.

Now we look for a new ¢ satisfying Eqs. (4.11), (4.12)
and

8¢+ (1/V2#)cot6 ¢ =0. (4.13)
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From Egs. (4.11) and (4.12) we have
o=k rtexp[iflu, 6, )].

Substituting this into Egs. (4.13) and equating real and
imaginary parts we find
8 _o U _
26 =" 39 =cot?d,
which are incompatible. Hence, no function ¢ satisfying
Egs. (4.11), (4.12) and (4.13) can be found, so that the
metric (4.10) cannot be interpreted as a solution of the
source-free Einstein—Maxwell equations.

5. KILLING VECTORS

We now turn to the question of whether or not the
symmetiries of the metric field of a dual-interpretation
solution are inherited by the electromagnetic field, i.e.,
does

LguV:0=>L Fuv:O
4 .
i i

in each of the two interpretations? The problem of the
inheritance of symmetries for the case of nonnull elec-
tromagnetic fields has been discussed at length by
Michalski and Wainwright. I’ Here we give only the re-
sults for the dual interpretation solutions found in Secs.
3 and 4.

The space~time (3.11) admits a four -parameter group
of motions of Bianchi type I. The four Killing vectors
are

g4 =(1,0,0,0), £ =(0,0,0, 1),

£2=(24, 0,1, 0), =0, r», z, - ).
In the source-free interpretation, the first three Killing
vectors, &Y (i=1, 2, 3), but not £, are symmetries of
the electromagnetic field, i.e., for F,, given by Eq.
(3.15) we have!®7

[ F,,=0, [F,#0.

& 4y
However in the source-present interpretation, with F
given by Eq. (3.18), all four Killing vectors are sym-
metries of F,,. In this case, the four-current J*, given
by Eq. (3.19), is parallel to the time-~like Killing vector
£r.

In the case of the type N plane-wave solutions with

metric (4.3), there are always at least two Killing vec-
tors, namely

£#=(0, 1,0, 0), t4=(0, 0, z, —2).

In the source-free case only the first of these is a sym-
metry of the electromagnetic field, whereas in the
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source-present case both £} and £ satisfy
L Fuv: 0.
¢

The four -current, which is null, is again parallel to one
of the Killing vectors, namely &f.

The similarity in the behavior of the electromagnetic
fields with respect to the Killing vectors for the two
solutions given above does not occur in the case of solu-
tion(4. 8). This solution admits three Killing vectors,
namely,

‘Ei‘:(oy 0, 0, 1),
gg:(O, 0, 1, 0)’
£4=(0,0, 2z, —2).

In the source-free interpretation £,* and £,* are sym-
metries of the electromagnetic field whereas £,* is not.
In the source-present interpretation, these properties
are reversed, i.e., £f is a symmetry of F, 6 whereas
£,*, &, are not. Furthermore, the four-current in this
interpretation is not parallel to any of the Killing
vectors.
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An effective-potential approach to stationary scattering

theory for long-range potentials
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It is shown that previously derived integral equations for two-body scattering with long-range potentials
(equations which replace the Lippmann-Schwinger equations) can be reduced to a form which is solvable
by iterative methods. The method is applicable to potentials V(r) which behave asymptotically as r ~¢,

1/2 <a <1, and in particular to Coulomb-like potentials.

1. INTRODUCTION

It has been recently pointed out!s? that although the
standard approach to stationary nonrelativistic theory
based on Lippmann—Schwinger equations breaks down
when long-range forces are present, it can be general-
ized to include the long-range case. The idea behind
the generalization relies on the possibility of introducing
an operator Z which compensates for the anomalous
asymptotic behavior of the interacting wavefunction in
relation to that of the free wavefunction (an anomaly that
is peculiar to the long-range case).

Since only asymptotic behavior is of importance in the
construction of the “asymptotically compensating” opera-
tor Z, there is a whole family of operators which can
play this role. In the present note we indicate how this
nonuniqueness can be exploited to advantage to obtain
integral equations for the scattering wavefunctions which
can be solved by perturbational methods and yield the
on-energy-shell 7 matrix. In order to simplify the dis-
cussion and notation, we limit ourselves to the case of
two-body interactions with a spherically symmetric
potential (cf. Theorem 1 for an exact statement of tech-
nical conditions), V(»)~0(»-%), where 1/2< a <1, 1t is
hoped, however, that since the underlying general
theory? stays valid in the multichannel case, the present
approach is also of relevance in that context.

In Sec. 4 we show that there are operators Z acting
in L% R®) such that (note that we adopt the convention in
which @, corresponds to ¢t ~+ 1),

Qf ¥, =s-limexp(iH t) Z exp(- iHH)V¥,,

tox

(1.1)

for a dense set of vectors ¥, in the ranges R, of Q,.
They act on the incoming and outgoing spherical waves
®3,,, at energy E=Fk? (we choose units of reduced mass
M so that 2M =1) via an asymptotically compensating
term ¢,(r,%),

(22}, Mrix/r) =5, (r+ ¢, (v, k), /%) (1.2)

which makes the behavior of Z&}, as » —~ » essentially
the same as in the short range case, i.e., that of a free

spherical wave

&4y () =V2/70 §, (o) Y72/ 7) (1.3)
modified by a phase shift 5,(k).
From (1.1) we derive! that
ze3,,=%,,,+ (H,~- E+i0) H, - E)Z&%, , (1.4)
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where one should note that in contradistinction to pre-
viously considered'=?® asymptotically compensating
operators Z which modify the free wave ¢,, , the one in
(1.2) modifies the behavior of the full wavefunctions
$%,.- This choice was motivated by the desire to recast
(1.4) in the form of a Lippmann—Schwinger equation

(Z(bzlm)(r):d)klm(r)
+ fmz Goy(r, 1/ E)V, o, (27 RN Z 23, )(x") dr’

(1.5)

in terms of the advanced and retarded free Green func-
tions Gg,(r,r’, E) and an effective potential Vv, .., [cf.

(3. 8)], which would give rise to a convergent perturba-
tion series. This goal is achieved in Sec. 3 by a
judicious choice of ¢,(»,k) in relation to the long-range
part of V(»). (Our particular choice of ¢,(r,k) turns out
to be independent of [.) This result is similar in nature
to that recently obtained by different methods for the
“solution-type” Lippmann~Schwinger equations in long-
range scattering by Zorbas.* However, the Zorbas
equations are impracticable since they are not soluable
by iterative methods.

2. INTEGRAL EQUATIONS FOR THE
DISTORTED WAVEFUNCTIONS

The free spherical waves can be written in the form

10 = LR ymie ) 2.1)
where u,(»,k) are solutions of the equation
3% Ii+1
(o2 + 1) b =, 0, (2.2)

which for »& =« behave asymptotically in the following
manner:

u, (v k) =V2/msinlkr —11/2)+ O(1/k7). (2.3).
Any wavepacket ¥(r) € L*(R®) can be unambiguously
represented by an element of L?([0,«))
fimB)=1.1.m. fo” (v, k) dr [ Y@ @) dw, (2.4)
where the w-integration is carried out over the unit
sphere {rl»=1}, In fact, from the element of L2([0,=))
given by

fin)=11i.m. f:u,(r,k)f,m(k)dk (2.5)
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one can recover the wavepacket,

o 1
Y(r)=lim. 2 2 ﬁ,;ﬁﬂ /7).

1=0 m=-1

(2.6)

If we assume the interaction to be given by a piece-
wise continuous, spherically-symmetric potential

Vir) =Vl + V. (r),

Vs(r)=00"%¢) as r~0+, 2.7
V. (r)=0("%) as y =,

with e >0 and 3 < @ <1, then ¥,(r)=(2,¥)(r) can be

represented by

) 1 +(r)
¥, (r)=1.i.m, 2 2 4n

1=0 m==1 ¥

/v, (2.8)

where
fi=lim. f ) ut(r, k) f (k) dr,
0

ui(r, k)

o 2.9)

@ (r)= Yrr/v)=(Q2,,)().
The operator Z can be defined in terms of the
asymptotically compensating term ¢,(r,%) by

o 1

(ze)r)=1lim. 2 2 (ﬁf'}i’)— YTr/7),

1=0 m=-1

(2.10)

(Z,fE ) =11im, fmuf(ya— ¢>,(?’9k),k)},m(k)dk.
0

Naturally, the functions ¢,(»,%) must be chosen so that
(1.1) holds or equivalently that

lim || (Z9, - D exp(~iHt)¥ || =0 (2.11)

te g

for a suitably chosen dense set /), of functions ¥ ¢ L3(R®).

By combining the fact that

exp(—iH,t) f,,,) (k)= exp(- ik%) £, (k) (2.12)

with relations (2. 6) and (2. 9) we see that the existence
of such a set /), would certainly be established if we

show the existence of dense sets /), C L*([0,)) for all
1=0,1,*-cand m=-1, ~1+1,...,l such that for any
fel

im?

s-lim [~ {(Zud)(r, k) —u, (v, k)} exp(~ ik*1) f (k) dk =0
0

t koo

(2.13)
in the L([0,«)) topology. We shall discuss in Sec. 4 the

feasibility of choices for the functions ¢,(r,%) in
(ZuS v, ) =utlyr+ ¢,(r, k), k),

for which dense sets 0~,m of functions f (k) satisfying
(2.13) exist. The argument is based on the work of
Matveev and Skriganov.®

(2.14)

From (1.1) we infer (cf. Appendix) that

©

e, =s-lim L (2.15)

——>—2Zd Efv,,
ceoe Jow Ho—hxie = FTATE

Consequently, by noting that
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+ e Hy =X

Hy—Azie  H,—Axie (2.16)
and setting ¥ =Q*W¥,, we arrive at
® 1
Z¥,=¥+s-lim (Hy-NZza, EFY,.  (2.17)

€0+ o0 Ho—)\ii&f

The above equation in Hilbert space, in turn, implies
(1. 4) for the eigenfunction expansions of H, and H. In
terms of u,(r,k) and ui(»,k) the relation (1.4) is
equivalent to

(Zu) v k) =u,(r, k)

+ fo TG, EYHE - ENZut) o k) dy

(2.18)
where H{" is the differential operator
B — (_%J(l;”)_ (2.19)
The free Green’s function is given by
G, (7, v B =u, (v oM () F 8= DV, (rsuk)],  (2.20)
where
y=minlyr,¥'), »,=max(r,#),
(2.21)

u, (r, B) = Ver d,,, »(k7),
and J,(x) is the Bessel function of order v,

The on-energy-shell 7 matrix also contains the Z
operator.!'? In fact, by substituting in the formula

T=(1/2m) Q¥ Q_ - D)= (1/2m)(QF - ¥, (2.22)

for the T operator the expressions (2.15)—(2.16) we get

o

7=1 s-lim oy (H,-NZRUA B (2.23)

€0+ - (Ho - 7\)
Expressing the integration with respect to the spectral
functions E¥ of H in terms of the wavefunctions {2.9) and
taking the ¢ — 0 + under the integral sign, one obtains
for ¥/, ¥l

@ | Oy =2 ["dr k)T, 1, m)f,,(k), (2.24)
1ym 0

where

T(k,l,m):f:u,(y,k)(H,‘f’—E)(Zu;)(r,k)dr. (2.25)

The relation (2.24) shows that the T(k,l,m) play the
role of on-energy-shell 7 matrix components at energy
%? and angular momentum I, . The method presented
in the next section provides an iterative procedure for
the computation of the term

(HE - BY(Zup)()

appearing in (2.25), and therefore also a method for the
computation of (2.25).

(2.26)

3. DERIVATION OF THE EFFECTIVE SHORT RANGE
POTENTIAL

The operator Z has been defined by its action on the
partial-wave eigenfunctions of the Hamiltonian H= -~ A
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+ V() {[where V(#)=0(r"%) as y —~=, ;< @ <1] in terms
of the asymptotically compensating term ¢,(r,%). The
term ¢,(r,%) can be chosen to satisfy two important
criteria:

(1) The wave operators Q¥ can be obtained as strong
limits of exp(iH.t)Z exp(—iHt) [Eq. (1.1)]

(2) The Lippmann—Schwinger equation (2.18) can be
solved by iteration since a short range (but energy de-

pendent) effective potential V,, ey Satisfying

(H =N Zu)) (v, k)= = Vo (Ze))(r, ) 8.1)

can be defined which yields an effective Hilbert-Schmidt

kernel for the solution of (2.18).
In this section we justify the second assertion. The

first is dealt with in Sec. 4.

To derive V, ., we simply calculate (2.26) and im-
pose an obvious condition on ¢ ,(7,k).

Let g(v) be a C? function satisfying

glr)=0, r<R, (3.2)

gr)=1, »=2R,
The value of R will be chosen appropriately later. We
define V¢ and V, appearing in (2.7) in terms of

V. (") =gr)V(r),

Vo) =[1-g»)V(»},

where V, is long range and goes asymptotically like
¥ %, 1< as<1l; V is short range and less singular for
y—~0-+than »*, and V=V, + V,. One has that

(H BB (2Zu) (7, k)

(3.3)

r+1) _

02 N
= <_W+ > k2> uflr + ¢,(r, k), k). (3.4)
By using the relation
2
<'%+l(lx+z1) -k + V(x)) ut(x,k)=0 (3.5)

we can eliminate (8%?*/0+%)(x,k), with x=7+ ¢,(r,k),
from (3.4) and thus obtain

(H" =) (Zu®) (v, k)= [{2¢',(r,k)+ (¢} (r, )}

I(1+1)
% <k2 R G T Vir+ ¢,(r,k))) +1(+1)

1 1 " . a0
X (;7 -mr) - ¢ (r, )1+ ¢)(r,k)] ‘o

-Vir+ ¢,(r,k))] (Zut)r, k), (3.6)

where ¢;=23¢,/3y and ¢; = 3%} ,/ 3.

If one chooses ¢,(r,k) to satisfy the first-order dif-
ferential equation (other choices are possible, but this
appears to be most convenient for our purposes)

{2070, 0) + [0} (r, ) PYR2 = V(v + 0, (7, k)]
= VL(7'+ d)l('}’,k)),
then (3. 6) reduces to (3.1) with

(3.7
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Vl,eff:qlo(,r!k)—‘—ql(ryk)% (3. 8)
where
4307, R =V(r+ olr, ) +10+1)
x[(r+ o(r ,2))2 =72 - {20"(r,k)
; (1+1)
+[¢ (r,k)]2}<———-————[r+ o 10T + Vlr+ ¢(r,k))> ,
(3.9)
and
(v, R)=0"(r,R) 1+ ¢'(r,B)] . (3.10)

Note that the subscript [ has been dropped from ¢
since Eq. (3.7) is independent of [.

The above calculation is justified provided that we can
show the existence of a twice continuously differentiable
solution to the differential equation (3.7). This follows®
from the theory of ordinary differential equations for a
suitable choice of R.

We recast (3.7) in the form

%:[1 + g, )]/ (3.11)
where

x=¢(r,k)+ 7,

gl Y=V, (x)[k? -~ V ()], (3.12)

A unique twice continuously differentiable solution to
(3.11) satisfying x(R) =R is given by

fox[kz—VL(t)]"zdtzkv (3.13)
provided that V,(x) and (dV,/dx)(x) are continuous and
E* -V, (x)> 0 for x € [0,). This is certainly true if R is
chosen sufficiently large, V(x) is continuously differen-
tiable, and k% - V(x)> 0 for x< [R,=). The properties of
¢(»,k) may be summarized as follows,

Theovem 1: Let V(r)e CY{[R,=)) for R sufficiently
large with lim__, »*V(#)=¥#0 and V’()= O(»"*"!) for
some $ < a<1. Then for k= k,> 0 there exists a unique

solution ¢(#,k) to the differential equation (3.7) such
that

(1) ¢(r,k) is C? for r=[0,=),

(2) ¢(r,k)=0 for »<R,
(3) p(r, %) -%L V, (0 dt — Kq (k)

= O(%) 2Ol po(r)¥2***], where

o 1 VL(t) 1/2]
Krzj; [1_WVL(t)- ( i ) at

with p,(r)=1 for a<1 and p,(»)=1logr for a=1,
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e Ay
(4) 5o (r,le)—Zk2 yoatien

=o(g) - Olparse], n=1,2.

The short range character of V},et¢ f0llows from prop-
erties (3) and (4) since for large » and £#0,

qo=0(r™ er Vir)dr),
(3.14)
qd1= O(’V'a-l).
Thus under the hypothesis of Theorem 1 the integral
equation (2.18) becomes

Gt (r,7,E)

]

<Zu;><r,k>=u,(r,k)-J'”

a0+ a0, B )2 . (3.19)

An integration by parts in the last term {justified if V{(+)
is C*([R,«))} yields

(Zub)r,B)=u,(r,k) - fo“’ K, v ) Zu¥) (¥ k) dv', (3.16)

where
K*(r, Vsk)zﬁz("":k)cgz(”, v, E?)
oGt
— (0 )5y 7 1), (3.17)

8
@7 k) =g, o7 B) - Py g, (¥, k).

Using a standard technique, one can multiply (3.16) by

R(r) =732 (L +pter0r/2y (L + ) (3.18)
and define
vilr, k) = h(r(Zu})(r, k) (3.19)

and v,(»,k) = h(r)u,(r, k) to obtain the integral equation

vilr,R) = v,(r,k) = [T K&, RYi( B dv (3.20)
with the kernel
Ki(r, v, k)= h(nNKy,v R n(+")]?, (3.21)

which is Hilbert—Schmidt,

Having solved (3.17) by standard methods, one can
then recover ui(r,k) from (3,19). Hence we have the
following theorem.

Theorem 2: With the hypothesis of Theorem 1 and
the additional assumption that V”(¥) is continuous for »
= R, u(r,k) is related by (3.19) to the solutions v}(r,k)
of an integral equation with a Hilbert—Schmidt kernel.

4. ASYMPTOTIC PROPERTIES OF Z

In conclusion we will prove the asymptotic condition
(1.1). It is computationally more convenient, however,
to deal with its equivalent form (2.11) and (2.13).

According to (2. 13) one must prove

s-lim
t- k0

xexp(— k) fk)dk =0,

bt [uf (r+ olr, k), k) - w,(r, B)]

(4.1)
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where for convenience we take f(k) belonging to the
Schwartz § space on [0,) and vanishing in some neigh-
borhood of the origin.

In (4.1) one has

ut(r, k)= f,(k) exp(iln/2) "V 2/ 1 ¥ (v, k) (4.2)
U (v k) =1, (r, k) £,(B) = f,(ry =R)f,(= R}/ 2i (4.3)
and u;:u_*l where ¥,(»,£) is the solution of

2
(—8—37 DAL V(r)) ¥y k) =Ry, (7,2, (4.4)

which is regular at »=0 and satisfies ¥,(0,%)=0 and
(8r-*¥,/37)(0, k) =1, while f,(v, ) is defined as the Jost
solution of (4.4) satisfying the asymptotic condition

lim f,(r, k) exp[-it(r, k)] =1 (4.5)
withr
el k)= [T (B2 -V ()] 2 ds, (4.6)
and f, (k) is the Jost function
A0 =2 7, -0 2 w0
- \Pl(r,k)%f,(af, —k)] . 4.7
Let us define
a,(v,k)=V2/7 sin[¢(r,k) - In/2]. (4.8)
We will prove (4.1) by showing that
s-lim P(»,4)=0 4.9
t o
and
s-lim Qj(#,t)=0, (4.10)
feoo
where
Pr,H= f: i (r+ ol k), R) = a,(r + o, k), )}
xexp(~ ik%t) f (k) dk, (4.11)
and
@, 0= [ la,r+ ¢(r, k), &) —u,(r, k)]
xexp(~ ik%t) f (k) dk. (4.12)

We will only outline the argument which is based on the
work of Matveev and Skriganov,*

From (4.11) one obtains the estimate

| P\(r,t)| < const(r/?), r<£r/? (4.13)

which follows from an integration by parts with respect
to dk exp(—ik®%#) and the estimates

% wilr+ d)(r,k),k)\ < consty,

(4.14)
i}
1ﬁal(7+ qb(r,k),k)\ < constr,
For »> */? we split P; into the two terms
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Py(r, )= \fﬁ/—Ef: ACENICNINY
~explit(r+ ¢(r,k),2)]}
xexp| - i(k2t + 17/ 2)] F (k) dk/ 24, (4.15)

Polr,t)= Vz/_nfo” {exp[- it (r+ o(r, k), B)] = [ £,(=R)/f, ()]

xf{r+ ¢(r,k), —k)}exp|-i(k*t —17/2)]

xf (k) dk/ 2i. (4.16)
For ¢ sufficiently large, one obtains the estimate
| Py(7, 8)| < constr, (4.17)

which follows from the estimate (see Ref. 4 with n=1
and the estimate on ¢ in Theorem 1) '

|f,(r + d(r, k), &) — explit(r + ¢ (7, k), R)]| <[AR)/ |k|]r
(4.18)

with A() bounded and # sufficiently large. Finally,

from (4.16) one obtains the estimate
| Py(7,t)| < consty™. (4.19)

This is obtained via an integration by parts with respect
to dk exp[~ (% + £(r + ¢{r, k), k)] which yields

9 Si(=k)
% [(1 TR ST e R

xexplig(r+ ¢,k)])f'(k) [2kt+ 5—2— zlr+ qb,k)]-l]

| Pyo(7,8)| < const J-w
0

dk

(4.20)

from which (4. 19) follows since (3/2k)(r + ¢, k) = O(»)
for » =,

From (4.13), (4.17), and (4.19) one has
0 1/2 o
LB alar=+ 1) Fitr,0]ar

< const t"1/2+ const -2 /2 + const /2,

(4.21)

which tends to zero for ¢ =« and &> 3.

An exactly similar argument proves (4. 10) except that
in place of the estimate (4.18) one uses the fact that for
ky — =,

|u, (v, &) = V2/7 sin(ky - 11/2)| = O((r)) (4.22)
and Eq. (3.11) which implies that
a,(r+ ¢(r,k), k)= V2/m sin(kr - I7/2). (4.23)

APPENDIX

The previously given® 7 derivations of (2.15) from
(1.1) were assuming that Z is a bounded operator. Since
in general Z can be expected to be an unbounded
operator!=3 those proofs have to be reconsidered.

Let us recast® (1.1) in the form

¥, =s-lim(e) [ ** dtexp(iH,t)Z exp[(¥e — iH)E ¥, (A1)

€= 0O+

The derivation of (2.15) from (Al) consists, in princi-~
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ple, in applying the spectral theorem to (Al), inter-
changing the order of integration in ¢ and in the energy
variable A, and then performing explicitly the
integration in ¢.

Since Z is unbounded, we can apply the spectral
theorem only after taking a x/ for which exp(—iHt)x
is in the domain of Z* at all te R', and bringing Z
to the left-hand side of the inner product,

(x| v =lim(ze) [ az
0

(z* exp(—iHyt)x | exp[(F e — iH)t]¥,). (A2)
Thus, in fact, we work with the Bochner integral
T X =¢ef0*w dtexp{(Fe + iH)}Z* exp(- iHyt)X. (A3)

In order to prove the existence of this integral, as well
as for the validation of the interchange in the order of
integration in

(| ¥y =2 [T at [ expl(e - )]
X dy(Z* exp(~ iHyt)x | EZ V), (A4)

we are going to show that the vector-valued function

x(#) = Z* exp(- iH t)x (A5)
is strongly continuous in f € R! and that
[x(#)||< const, fcR. (A6)

As a matter of fact, if that is the case, we can repeat
verbatim the argument in Ref. 5, pp.444—45 {with
Z* exp(- iH,t) replacing exp(- iH,f)] and obtain that

(X*e I\II;)
=se [ 4 [ aKz* expl(s e+ in - iH )| ESE)  (AT)

=zxe [ ;"“ d{(te —ir+iH )y | ZERY ), (AT)

for vectors ¥, for which ZE#¥, is defined at all Ac R!,
The above relation immediately implies (2. 15) provided
that our assumptions on y are satisfied by a set 7 which
is dense in 4.

We prove the earlier mentioned properties of x(#) in

(A5) for vectors xe/),,. We write
Xy (7, 1) =[exp(= iHt)x], .(7) (A8)

and note that (since Z acts in the ranges of R, of Q,) it
follows from (2.10) that in the momentum representation
(ZQ )} X m(t) is given by

Xenllest)= [ 0¥l + G0 BV Xy, 1) .
To prove the strong continuity in # of (A9) [and there-
fore also of x(¢)], we consider first
Ximlkst) = (2m) 2 exp[ - im(1 + 1)/2][ £, (k)]
x f: [£,(r) expliky) - f,(- k) exp(~ ik¥)]X,,, (v, 1) dr.
(A10)
Since |f,(xk)/f,(k)| =1, the above function in %, con-

(A9)

D. Masson and E. Prugove&ki 301



sidered as an element of L2([0,%)) is obviously strongly
continuous and norm-bounded in the parameter {c R!.
Consequently, the problem of establishing (A5) and (A6)
is reduced to establishing these same two properties for
the differences

Dt (ki) =X (k3D) = X, (Bs5t)

= (2m)" /2 exp| - in(1 +1)/2][ £,(R)] 3 (L 1) s

o==1

xf,(ok) fow Lf,(r + ¢,(r,k), 0k) — exp(icky)]dr (All)
for which an estimate of the form

(fo‘” | D (kst) |2 dr)} 12

<constZ)(f dk | f (v, o)X, (7, t)dr |2 (A12)
g=-1 70
can be derived, where
c,(r,ok)=f{r+ ¢,(r,k), ok) — exp(ioky). (A13)

By combining (4.18) with the estimates in point (3) of
Theorem 1, we obtain that

O(k1). (A14)

We show now that if x, (7,¢) is a Schwartz § function
it can be majorized in any neighborhood of ¢# 0 by some
t-independent function that is Lebesgue integrable in »
€[0,%). Indeed, we have®

¢y, ok)=

(exp(—iH)X](r) = (4mit)=3/?
fm3 exp[(i/4t)r — v’ P]x(r") dr’.

Integrating by parts we obtain

‘ (1 + %)z[exp(— iHt)X)(r)|

2 re rl
_ . N-3/2 r- s
_’(4mt) exp(4 )J;Rs exp( ary )
)x )dr’

‘p (r' )V x(r |drl

x(1 - v2)? exp<

<t-3/22 (A15)

where p,, =0, ...,4, are polynomials in r of degree

n having coefficients of the form ct”, ¢ >0, with v as-
suming some integer value between 0 and 4.
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The above result enables us to apply Lebesgue’s
dominated convergence theorem to the integrals in (A11)
and thus conclude that Dfm(k,t) is continuous in /# 0 for
each fixed k< [0,). In its turn, this result in conjunc-
tion with (Al14) enables us to use again Lebesgue’s
dominated convergence theorem and infer that D} (k,¢)
is strongly continuous in £#0,

We note that the case {=0 can be easily treated by
suitable changes in our estimates.

The boundedness in norm (A6) for large values of |{|
can be obtained from (A12) by noting that for ¢l =1
(A15) yields

{exp(- iHyt)X(r) | < consts®/?[1 + (»/20)2]",

since the coefficients of the polynomials p, stay bounded
as |¢| =, Thus we get

|f (v, o), (r, 1) dr|

< 0( |k[-1)f [1+ 3/t d(x/t)
which estabhshes (AB).

We note that an alternative method for deriving (A6)
can be applied to those vectors x for which exp(iHt)Z*
xexp(—iHt)x can be shown to converge strongly to €2,
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A general quantum field theory is considered in which the fields are assumed to be operator-valued
tempered distributions. The system of ficlds may include any number of boson fields and fermion fields. A
theorem which relates certain complex Lorentz transformations to the TCP transformation is stated and
proved. With reference to this theorem, duality conditions are considered, and it is shown that such
conditions hold under various physically reasonable assumptions about the fields. Extensions of the algebras
of field operators are discussed with reference to the duality conditions. Local internal symmetries are
discussed, and it is shown that these commute with the Poincaré group and with the TCP transformation.

I. INTRODUCTION

In an earlier pa.per,1 hereafter referred to as BW I,
the authors have discussed the duality condition for a
Hermitian scalar field. It is the purpose of the present
paper to extend the results in BW I to a general field
theory, within the framework described in the mono-
graphs by Streater and Wightman? and by Jost. * We
thus consider a theory in which there appears an arbi-
trary set of local and relatively local spinor and tensor
fields. Each field has a finite number of components,
and is assumed to be an operator-valued tempered dis-
tribution. In contrast to the situation in BW I we now
have to consider fermion fields, and their characteris-
tic anticommutation relations, which necessitates an
obvious modification in the definitions of the duality
conditions,

As we shall see, however, much of the reasoning in
BW I applies in almost unchanged form to the issues in
the present study. When this is the case we shall rely
heavily on BW I, and not repeat argumenis already given
in that paper. The notation and terminology in BW I
will be followed whenever applicable, We also refer to
BW I for additional references to related work,

In Sec, II we review some aspects of the geometry
of Minkowski space, and we also review some well-
known facts about the quantum mechanical Poincaré
group and its complex extension, In Sec. IOI we state
our assumptions about the quantum fields, which are
more or less standard., In these two sections we also
explain the notation which we follow in the subsequent
discussion,

The locality condition for the quantum fields is ex-
pressed in terms of the familiar (normal) commutation
and anticommutation relations. For our purposes it
would be extremely cumbersome to have to consider
commutation and anticommutation relations simultane-
ously, and we therefore find it advantageous to restate
the locality conditions in terms of the vanishing of
certain commutators. The simple device through which
this can be achieved is explained in Lemma 1 with refer-
ence to the field operators, and more generally, in
Theorem 2 in Sec. V.

In Sec. IV we discuss the relationship between com-
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plex Lorentz transformations and the TCP transforma-
tion. The considerations are analogous to the considera-
tions in Secs. III and IV in BW I, except that we now
deal with spinor and tensor fields rather than with a
single scalar field as in BW 1. The main result in this
section is presented in Theorem 1; this theorem is
analogous to Theorem 1 in BW I, The form of this the-
orem is hardly surprising, in view of the analogous re-
sult in BW I, and some readers might feel that it would
have been enough just to state the theorem. We felt,
however, that an outline of the reasoning was in order
and that some of the cumbersome details should be
presented explicitly in writing and not left entirely to
the imagination of the reader.

Sec., V in BW I was devoted to a discussion of some
algebraic questions relating to Theorem 1. This dis-
cussion applies as such to the present study, and we do
not repeat it here,

In Sec. V of the present paper we discuss the duality
condition for the wedge regions Wg and W,, where Wy
={x1x*> |x*I} and W, ={x Ix® <— |x*|}. This discussion
is analogous to the discussion in Sec. VI in BW I. The
issue is the following, We wish to find two von Neumann
algebras 4(Wg) and 4 (W) such that 4(Wy) can be re-
garded as locally associated with Wy and 4 (W) can be
regarded as locally associated with W,. Furthermore,
the association should be consistent with the well-known
TCP symmetry of the quantum fields, These notions are
detined precisely in Definition 2 in Sec. V. If there are
no fermion fields, then one aspect of locality is that
A(Wg) is contained in the commutant 4 (W)’ of 4(W.),
and the condition of duality is that 4 (Wgz)=4(W,)’. Ina
theory in which fermion fields do occur these condi-
tions have to be modified in an obvious way. The condi-
tion of duality is now that 4 (Wg) = (24 (W;)Z™!)’, where
Z is the unitary operator defined by Z = (I+iU,)/(1 +7) in
terms of the unitary operator U, which represents a
rotation by angle 27 about any axis. In this paper we
employ the notation 4 (W) =(Z4(W.)Z™'), and we call
A (W) the quasicommutant of the algebra 4(W;,). The
modified conditions of locality and duality are thus
stated in terms of the notion of a quasicommutant. We
note here that the second iterated quasicommutant is
equal to the second iterated commutant, and that the
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quasicommutant is equal to the commutant whenever
Uy,=1, and hence Z =1. The reader who feels temporari-
ly bewildered by the appearance of the superscript g in
Secs, V and VI might find it helpful to ignore, at first,
the distinction between a quasicommutant and a com-
mutant, and hence to read the superscript ¢ as the
familiar von Neumann prime. This corresponds to the
special case of no fermion fields. We feel that the
modifications occasioned by the presence of fermion
fields are really utterly trivial, although perhaps
slightly distractive at first,

In a quantum field theory the local von Neumann
algebras must be appropriately related to the field
operators. Let (Wg) denote the algebra of (in general
unbounded) operators constructed from fields averaged
with test functions with support in W, and let P(W,)
be analogously defined. A natural relationship between
A(Wg) and P(Wg) is that the operators in the latter
algebra shall have closed extensions affiliated to 4 (Wy),
with the analogous relationship between 4 (W) and
P(W.). We have not been able to show that von Neumann
algebras A(Wy) and 4(W,) with the above properties do
exist for a geneval field theory, i.e., without further
assumptions about the fields which go beyond the usual
minimal assumptions. Hence we consider some special
conditions on the fields which guarantee the existence
of algebras 4 (W) and 4 (W) with physically satisfac-
tory properties, Our conditions on the fields are not as
such physically unreasonable, but it would clearly be
desirable to settle the question of whether they are in
fact necessary. The main results in Sec. V are present-
ed in Theorems 3 and 4. We note here that these re-
sults, in the special case of a single Hermitian scalar
field, are considerably stronger than our results in
BW I,

In Sec. VI we discuss the construction of local von
Neumann algebras associated with other regions than
wedge regions in terms of algebras associated with Wg
and W,, and we show that the extended system of local
algebras satisfy a condition of duality if the algebras
A{(Wg) and 4 (W) do. For reasons of simplicity we
restrict our considerations to very special regions:
double cones and their causal complements. Our re-
sults concerning the properties of the extended system
of algebras in general are stated in Theorems 5 and 6.
Theorem 7 describes the situation under specific
assumptions about the fields. The discussion in Sec. VI
is analogous to the discussion in Sec, VII in BW I, but
the results in the present paper are considerably
stronger than our earlier results, The paper concludes
with Theorem 8, concerning local internal symmetries,
in which we note that such symmetries commute with all
Poincaré transformations and with the TCP
transformation.

1. GEOMETRICAL PRELIMINARIES. ABOUT THE
QUANTUM MECHANICAL POINCARE GROUP

Minkowski space /)] is parametrized by the customary
Cartesian coordinates x = (¢!, x%,x% x%). The Lorentz
“metric” is so defined that x - y =x%p¢ — xly! — x%p% — x%3,
The elements A =A(M,y) of the proper Poincaré group
L, are parametrized by a 4 X4 Lorentz matrix M, and a
real 4-vector y, such that the image Ax of a point
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x €/)] under any A € Zo is given by Ax =AM, y)x = Mx +y.
The image of any subset R of // under A is denoted AR,

The group of all 4 X4 Lorentz matrices M, i.e., the
group of all proper homogeneous Lorentz transforma-
tions, is denoted L, A rotation in L, by angle & about
the unit vector e is denoted R(e, #). We denote by
Ve, £) the velocity transformation (in Lg) in the 3-
direction given by

10 0 0
01 o0 0
)=
Ve D=10 o cosh(t) sinh() | (1)

0 0 sinh(f) cosh(¢#)

We define a “right wedge” Wy, and a “left wedge”
Wi, as the following open subsets of Minkowski space:

WR:{x|x3> lx4l}, WL:{x|x3<— \x“l}n (2)

These two regions are bounded by two characteristic
planes whose intersection is the 2-plane {x|x3=x4 =0}.
We note that the one-parameter Abelian group of veloc-
ity transtormations V(es, t), f real, maps Wy onto it-
self and W, onto itself,

We next consider an involutory mapping x —’gx of
Minkowski space onto itself, defined by

Jx =~ R(e, X,
or 3)
g(xi,xZ’xti,xti) = (xi,xZ, _xS, _x4)’
where R(e;, 7) denotes the rotation by angle 7 about the
3-axis. We see that § maps Wy onto W, and the map-

ping can be described as a reflection in the common
“edge” {x|x%=x*=0} of the pair of wedges Wy and W,.

We note that V(es, ?), as given in (1), is an entire
analytic function of . It is easily seen that

g = Vieg,im). (4)

For any subset R of Minkowski space /| we define the
causal complement R° of R by

Re={x{lx-y) - x~y)<0, all y€ R}. (5)

We note that with this definition W% =W, and W% = Wp,
where the bar denotes the closure., Two open regions
R, and R, such that R{=R, and R{=R, form a pair of
causally complementary open regions, Among such
pairs the pair Wz and W, is distinguished by the simple
geometric relationships described above, Any pair of
wedge-regions bounded by two nonparallel characteristic
planes are distinguished in the same sense, and any such
pair is in fact Poincaré-equivalent to the pair (Wg, W),
i.e., of the form (AWg, AW,) for some A € ;. We
shall here define [/ as the set of all (open) wedge re-
gions bounded by two intersecting characteristic planes,
i.e.,

W=1AWge|A € Ly} (6)
Although we shall at first be explicitly concerned with

W, it is clear that analogous considerations apply to
any Wel/.

The regions Wy and W, have further distinguishing
properties, which are of crucial importance for our
discussion, namely the following. Let t=1,+it;, with f,,
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t, real, If x € Wg, then the complex 4-vector z(¢)

= V{es, 1)x is an element of the forward imaginary tube in
CcY, i.e., Im(z($)) e V,, for all complex ¢ in the open
strip 0 <t; <, and z(#) is in the closure of the forward
imaginary tube for all ¢ in the closed strip 0 ¢, <7. We
here denote the forward lightcone with the origin as
apex by V,; the backward lightcone is denoted V.. Simi-
larly, if xe W, then z(¢) is in the forward imaginary
tube for all complex ¢ in the strip — 7 <#; <0 and in the
closed forward imaginary tube for all ¢ in the closure of
the above strip. These assertions are easily established
through a simple computation, {See formula (45b) in

BW I, | We note that the above facts were also of crucial
importance in Jost’s proof of the TCP theorem,

For the reader’s convenience we shall here review
some well-known facts about the universal covering
groups of the Lorentz and Poihcaré groups, and about
the complex extensien of the covering group of the
Lorentz group. °

The universal covering group of L,, i.e,, the group
of all unimodular 2 x2 complex matrices, is denoted g.
A specific two-to-one homomorphism of ¢ onto L, is
given by

g—M(g), M, (g)=3Tr(glo,g0,), (M

where 0y, 0,, 03 are the usual Pauli matrices and where
04=1, The rotations and velocity transformations in g
are denoted

u(e, 6) =exp(- zi6e-0), v(e,?)=exp(3te.0), ®)
and under the homomorphism (7) we thus have
R(e, 6)=Mu(e, 6)), V(e,t)=M(le,?)). 9)

The group ¢ can be regarded as the complex exten-
sion of the group SU(2) of all unitary matrices (rota-
tions) # < #, and every irreducible (unitary) represen-
tation u — D°(u) of SU(2) can be analytically extended to
a representation g —D*%(g) of #, such that the matrix
elements of D°(g) are homogeneous polynomials of de-
gree 2s in the matrix elements of g, The most general
finite-dimensional irreducible representation of ¢ is of
the form

g~ D""%"(g)=D"(g")® D*"(g),

where g7 = (g")"!. The mapping g —g” is an outer auto-
morphism of # which preserves every element in the
subgroup SU(2).

(10)

In view of the complex structure of # it follows that
the complex extension ¢, of # is the direct product of
# with itself, i.e., the group g,= ¢X¢ of all ordered
pairs (gy,4;) of elements in ¢ with the law of composi-
tion (g{,24)(g1,8%)=(gi&1,&384). The group # can be
identified with a particular “real subgroup” of g,
through the one-one correspondence

g—(g,8). (11)

To the set of all finite-dimensional irreducible rep-
resentations g — D" *'(g) ot # corresponds a particular
family of finite-dimensional irreducible representations
of #., which can be regarded as the set of all finite-
dimensional irreducible analytic representations of ¢,
namely the representations
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(81,82) =~ D5 *"(g1,82) =D%(g1) ®D%(g,).

With reference to the above definitions we define,
for any complex number ¢, the complex velocity trans-
formation v (es, £) in the 3-direction as the element

(12)

v,(e3, t) = (exp(~ 2103), exp(zt0y)) (13a)
of the group g, and it follows from (12) that
D5 "(v,(es, 1)) = D¥'(exp (- $t03)) ® D¥"(exp(3t0y)).  (13b)

The matrix-valued function of ¢ in (13b) is an entire
analytic function of the complex variable #, and hence
the unique analytic extension of the matrix-valued func-
tion D%"*"(v (e, 1)) of the real variable £, We note in
particular that

DY"(v,(e5, 7)) = (- 1)*'D% (e, m), (142)
D3 (€3, = im)) = (= 1)2D%" “(u(es, 7). (14b)

The formula V{(e,, iw)=— R(es, 7) is a special case of
(14a) (with s’ =s” =3), and with M, denoting the analytic
extension of the representation g — M(g) to the complex

group g, we have M (v (e, t)) = V(es, £) for all complex £,

The universal covering group of io is denoted 7_ . The
elements x=)(g,x) are the ordered pairs consisting of
any g€ ¢ and any x €/, with the law of composition
aMg,xMm(g”,x")=2(g’g”, x'+M(g")x"), We define an
explicit homomorphism x ~A(A) by A(A(g,%))
=A(M(g),%).

The Hilbert space 4 of physical states is assumed to
be separable. It is assumed to carry a strongly con-
tinuous unitary representation x — U(\) of the quantum
mechanical Poincaré group #. We write U(g, )
=U(\(g,x)), and we also employ the special notation
T(x)=U(l,x) for the translations, The translations have
the common spectral resolution :

T(x)=U{,x) = exp(ix - p)u(d’p), (15)

and it is assumed that the support of the spectral mea-
sure u is contained in the closed forward lightcone V,
(in momentum space). This assumption about the sup-
port of u will be referred to as the “spectral condition”
in what follows,

We assume the existence of a vacuum state, repre-
sented by the unit vector §, uniquely characterized by
its invariance under all translations, The vacuum state
then satisfies UA)Q2=Q for all Az, It is well known
that the spectral condition allows the extension of the
representation of the translation subgroup to a unique
representation z — T'(z) of the semigroup of complex
translations for which Im(z)e V,, such that 7(z) is a
bounded and strongly continuous function of z in the
closed forward imaginary tube, and a strongly analytic
function of z in the open forward imaginary tube,

The one-parameter group of velocity transtormations
in the 3-direction, as well as its analytic extension to
the complex domain, will be of particular interest, and
we shall therefore employ the shorter notation V()
=U(v(es, 1), 0) for the representatives of these velocity

transformations, More generally we shall write
V(1) = exp(— i TK,) :f exp(— iTs) Uz (ds) (16)

for any complex 7. Here u, is the spectral measure in
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the simultaneous spectral resolution of the group of all
V(#), f real, and K, is the unique self-adjoint operator,
with domain Dy, such that V() =exp(- itK;). For a dis-
cussion of the domains of the normal operators V() we
refer to Sec. IV in BW I, We denote (as in BW I) by D,
the domain on which V(ir) is self-adjoint and by D_ the

domain on which V(- i7) is self-adjoint.

I11. ASSUMPTIONS ABOUT THE QUANTUM FIELDS

We denote by J{R" the set of all complex-valued
infinitely differentiable functions of compact support on
rn-dimensional Euclidean space R", and we denote by
S{R™ the space of test functions on R” in terms of which
tempered distributions are defined, The space ((R") is
regarded as endowed with the particular topology ap-
propriate to the definition of tempered distributicns, §

For an unbounded linear or antilinear operator X
defined on a domain D we shall employ the unorthodox
notation (X, D), as in BW 1. The adjoint of (X, D} is
denoted (X, D)* = (X*, D(X*)), where D(X*) is the domain
of the adjoint. This notation will not be employed for
manifestly bounded operators, for which the domain is
taken to be the entire Hilbert space //.

We shall next state the basic assumptions about the
gquantum fields. If is not our aim here to state a set of
minimal independent assumptions for a field theory, but
rather to describe the situation which prevails in a
standard field theory.

(a) We assume the existence of a set of boson fields
B (x), where b is an element in an index set I, and a
set of fermion fields ¢>(f’(x), where f is an element in
an index set Ir. The index sets are regarded as dis-
joint, and it is assumed that at least one of these sets
is nonempty; otherwise they are arbitrary. We thus
admit as possible special cases the cases when either
Iy, or else I is empty. Each field 8’ (x) or ¢ ¥’ (x) has
a finite number of components, denoted 82’ (x), respec-
tively d)ff’(x), where o is a suitable index distinguishing
between the components,

(b) We also consider the set of all components of all
the fermion fields and all the boson fields. An element
in this set is denoted ¢, (x), where p is an element in an
index set I such that when g runs through 7/, each com-
ponent of each field is obtained once and once only. Each
component ¢, (x) is an operator-valued tempered distri-
bution in the following sense, To each fix)e §(RY), and
each p €I, corresponds a closable linear operator
(¢,[f], D) on a dense domain D, (independent of f and p)
such that ¢, [f]D;C D,. The mapping f—~ (¢,[f], D) is
linear, and for any &< D, the vector ¢,[f]t is a strong-
ly continuous function of f on §(R%),

Furthermore, if 0={(u1, u2,..., un) is any ordered
n-tuplet of indices from I, then there corresponds to
every f(xi,xg, .ev, %) € S(R™ a closable linear operator

(@1f;0}, Dy) on Dy such that ¢{f;0}D; ©D,. The mapping
f— (<p{f 0}, Dy) is linear, and for any £< D, the vector
w{f o}t is a strongly continuous function of f on §(R*).

If f is of the particular form flx(,%s,...,%,)
=f10c)fa () « =« fulx,), with fo€ S(RY) for k=1,...,n,
then, on Dy,

@‘Lf? 0}= <Pu1[f11<ﬂu2[fz] te (1)

¢un[fn]-
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This is consistent with the common notation for
@l{f; 0} in terms of the symbolic integral at right in

olfioh=f ., ded ) - - dtix,)
XfC g, Koy e s X)) @i ®1) @2 (g) - -+ @up(x,). (18)

(c) Let (/) be the algebra, defined on D;, which is
the linear span of the identity I and all operators
(@{f;0}, D). The dense domain D, is assumed to be
precisely equal to P{))Q.

{d) For any field component ¢, (x) there exists a field
component ¢ ,,(x) such that for any fe §(RY

((Pu'[f*]7D1)*D(QJu{f];Dl)- (19)
The field component ¢,.(x) is then also denoted ¢, (x).

(e) The domain D, is invariant under }, i.e., UA\)D,
=D,, for any xc #. The action of U(\) by conjugation on
the elements of P(/) is specified by the conditions

(@) T, )Ty = @, b +x") (20a)
for any field component ¢, (x).
(B) For each be I,
U(g, 08, ®)U(g,0)"
(20b)

=2 TLg BN (M(gw),
where g — I:(”"'(g) is similar to one of the representa-
tions g —~ D°** (g) for which 2(s’ +s”) is an even integer,
(y) For each fe Iz,
U(g, 006, (x)U(g, 0)"

=2 TR (M(g)), (20c)
'3

where g — I''"(¢) is similar to one of the representa-
tions g — D" ¥ (g) for which 2(s’ +s”) is an odd integer.

The sums at right in (20b) and (20c} extend over ail

the components of the field 3® (¥), respectively the
tield ¢ ¢ (x).

(f) All the {ields satisfy the novmal conditions of
locality, i.e., they satisfy the conditions (in the sense
of distributions)

(8.2 (), B2 (")) =
(82 x), o2 x"] =0,
69 %), 64 (")} =0

on D, for all spacelike x - x’,
denotes the anticommutator, i, e

(21)

Here the curly bracket
, XX =XX L XX,

The above formulation of the basic assumptions about
the fields is more or less standard. The essence of the
notion of a set of quantum fields is a certain kind of
representation of a tensor algebra of multicomponent
test functions by an operator algebra P{/#). The precise
formulation of a general field theory is unfortunately
beset by considerable notational difficulties. We have
tried to select a notation which is convenient for our
particular purposes. Let us now elaborate further on
the basic assumptions, and on some well-known im-
mediate consequences.

(g) Whether the number of fields is finite, countably
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infinite, or uncountably infinite is immaterial for the
conclusions which we shall draw. That each tield 8 (x)
or ¢ {x) has only a finite number of components,
where the notion of “component,” of course, refers
specifically to the transformation laws (20b) and (20c),
is, however, essential, Our purpose with introducing
the specific “irreducible fields” g (x) and ¢’ (x) was
to be able to state the transformation laws (20b) and
(20c), as well as the locality conditions (21), with
maximum clarity. For the subsequent discussion it will,
however, be more convenient to employ a unified nota~
tion, in terms of the symbols ¢, (x), for all the field
components, and we shall therefore restate the condi-
tions (20b) and (20c) in the form

Ulg, 000, 0)U(g, 0! =2 T, (g™ 0, dM()x)  (22)

The “matrix” T'(g) can be regarded as the direct sum
of the finite-dimensional matrices I'®(g) and I'’(g) in
an obvious sense. The sum in (22) is always a finite
sum, and for each fixed u (or each fixed p’) there is
only a finite number of values of u’ (respectively of u)
for which T, . is different {from zero. We shall also
consider the analytic extension of the representation
g~ T(g) of # to a representation (gy,2,) = I'(gy,8,) of
#., defined as the direct sum of the corresponding
analytic extensions of the representations I''”’(g) and
T'(g) as described in Sec, II. To the complex velocity
transformation v (ey, £) thus corresponds the representa-
tive T'(v (e, )}, each matrix element of which is an
entire analytic function of the complex variable {. With
reference to this extension we thus define the diagonal
“matrix” '’ (with eigenvalues +1 and — 1) by

I =T (v, (e;, - in))T (e, 7). (23)

That I'” has the stated properties follows at once from
(14a).

(h) The domain D; on which the “averaged fields” and
the operators in (/) are defined should be carefully
noted. It follows readily from our assumptions that for
any (X, Dy) € P(/) the domain of the adjoint (X, D;)* con-
tains Dy, The restriction of the adjoint to D; shall be
denoted (X', D;), and called the Hermitian conjugate of
X; the notion of the Hermitian conjugate of a field opera-
tor thus depends on the specific choice of Dy, It also
tollows from our assumptions that (X7, D) 2(#) for all
X, D;)e P(M). In particular the Hermitian conjugate
@[] of the averaged field ¢ ,[f] is the averaged field
@L(f*]. The mapping (X,D;)—~ (X', D,) is an antilinear
involution of 2(/#) [such that (X X,)' = XIXT).

We note that every operator (X, D,) < P(/}) satisfies
(X7, D)** C (X, D * . (24)

It is a hitherto unsolved problem whether the assump-
tions which we have made imply that the inclusion in
(24) can be replaced by equality for some nontrivial set
of operators in P(/).

(i) Let R be any subset of Minkowski space/|. We
define /;(R) as the polynomial algebra generated by the
identity operator I and all operators (¢,[f], D,), with
g€ ly, fix)e S(RY and supp(f) CR. We define the al-
gebra Q2(R) as the linear span of 7 and all operators
(o{f; o}, D,), where o=(ul, u2,...,un) is any n-tuplet

307 J. Math. Phys., Vol. 17, No. 3, March 1976

of indices in Iy, and where f(x;,%,...,%,) € §(R*) with
supp(f) C (XR)".

It is easily seen that (X, D)~ (X*, D,) is an involution
of both y(R) and (R). From the conditions (20a)—(20c)
it follows that

UM Po(RYUM)™ = PyA(WR),
UQ) PRYUM)™ = P(A(M)R)
for any Ae; and any R,

We trivially have /4(R) C P(R)C P(/#). According to a
well-known theorem of Reeh and Schlieder’ the linear
manifold /2;(R)2 is dense in /4 for any open nonempty R,

25

(i) Let the unitary operators U, and Z be defined by
Up=U(-1,0), Z={+iUy)/(1+3). (26)
These operators trivially satisfy

UVi=1, Z'=U,, UNUUN=U, UMNZUN)'=Z
(27a)
and
U,R=29=8, UD;=D,,

ZD, =D, (27b)

Furthermore, it follows from the assumptions in (e)
above that

UpBY ) =B (YU, ZBD ()27 =Y (x), (282)
Upp S ) == 0L ), Zo P )Z21=iU,0P(x) (28D)

tor all boson fields 8 (x) and all fermion tields ¢ " (x).

The fact that the involution U; commutes with all
boson fields, but anticommutes with all fermion fields
permits a unique resolution of any field operator into a
sum of a “boson operator” and a “fermion operator,”
and it also permits a restatement of the locality condi-
tions (21) in terms of the vanishing of certain commuta-
tors, We shall state the important facts in the matter in
the form of a lemma for later reference,

Lemma 1: (a) Let U; and Z be defined as in (26), For
any subset R of /, let

Ps(R)={X, D))| UXU, =X, (X,D{)e PR)}, (292)
Pr(R)={X,D)|UXU,=-X, (X,D))e P(R)}.  (29b)

Then every (X, D) € 2(R) has a unique resolution of
the form

X=X, +X;, X, Pg(R), Xs€ Pr(R), (30a)
where, in fact,
X, =2X + UXUy), Xp=3(X - UXU,). (30D)

The sets Pz(R) and 2z(R) are mapped onto themselves
under the involution (X, D{) -~ (X', D,). Furthermore,

ZX,Z1=X,, ZXZ'=iUX, (31)
for all X, € P5(R) and all X, < Pr(R).

(b) For any (X,D,)c P(R), let (X?, D)) be defined by

(X*,D,)=Z(X,D)Z" = (zXZ, D,). (32)

If Ry and R, are two open subsets of // such that R,
C R§, then it follows from the locality conditions in (f)
above that
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[Xb, Yb] =0, [Xb: Yf] =0, [Xf’ Yb] =0, {Xf’ Yf}=0
(33a)
on Dy for all X, Pp(Ry), X; < Pr(Ry), Y,€ Ps(R,), and
Yr<€ Pr(R,;). The conditions (33a) are equivalent to the
condition

[X, ¥¥]=0
on Dy for all X e P(Ry), Y P(Ry).

(33b)

We omit the completely trivial proof. We note that the
lemma is vacuous if Uy=1, which is the case if and only
if there is no fermion field,

IV. COMPLEX LORENTZ TRANSFORMATIONS AND
THE TCP TRANSFORMATION

In this section we shall present the generalizations
appropriate for the present situation of the considera-
tions in Secs. Il and IV in BW I, The main result is
presented in Theorem 1, which corresponds to Theorem
1 in BW I, As in BW I we arrive at the main conclusion
through a sequence of lemmas, arranged in such a way
that the similarities with the discussion in BW I are
pretty obvious.

For any f(¥1,%y,...,%,) € S (R'") we define a Fourier

transform f by

f(pig s 9Pn)
S @) e, x) exp(i2 #) . 64)

For any positive integer n we denote by T, the open
tube region
Tn‘-‘{(zsz’ ey Zp) ‘ Im(zk) €V, k=1,... ,n} (35)
in complex 4n-dimensional space, regarded as a direct
sum of # replicas of complex Minkowski space and

parametrized by an n-tuplet (z4,2,,... »2,) of complex
4-vectors. The closure of T, is denoted T,,.

Lemma 2: Let z & Tl, i, e., z is any complex 4-vec-
tor in the closed forward imaginary tube. Then

@) T(z)D;<Dy (36a)
(b) If f S(R") there exists an f,e §(R*) such that

~ n
fe(Pu-u-;Pn)=}'(P1’-~-:Pn)eXp<iz‘rz:‘ipp) (36b)
tor (p,...,p,) € V,, where V, is the subset of R*" de-
fined by
n
V,,={(P1,...,,z>,,)| Z)kp're Vn kzl,-w’n} (36(!)
r=
and for every such f, we have
T(2)pif; o9 = ol f,; 0}, (36d)
where ¢ is any ordered n-tuplet (ul, u2,..., un) of in-

dices from I,

Lemwma 3: (2) For eachn=1, let E, be the set of all
functions f(xy,...,%,;24,...,2,) defined for (xy,...,x,)
€ R and (zq,...,2,) € Ty, such that f¢ §(R*") and such
that the Fourier transform f of f relative to the varia-

bles (x,,...,¥,) satisfies the condition
n n
F(D1y ey PriZeyen- ,z,,):exp<z'z;1 Ezkep,> (37a)
k=1 rak
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for all (py,...,p,) €V,, with V, defined as in (36c). The
set E, is nonempty, and to every n-tuplet o

=(ul, n2,..., un) of indices from I, corresponds a
unique vector-valued function ¢(zq, 2,,...,2,;0) on T,
defined by

¢’(21,32a L ,Zn;0)=(p{f;0'}9,

where f is any element of E,.

(37v)

(b) The vector-valued function ¢ (2, 2s,...,2,;0) is a
strongly analytic function of (zy,2,,...,2,) on T,, and
for each point in this domain it is an analytic vector for
the Lie algebra of the group U(2).

(c) For any element A =A(g,x) of the quantum me-
chanical Poincaré group g,

U(7\)¢(z1,Z2a ) 7Zn;o)

= Z,‘, Lo, o(g )0 (Mz, +x, M2y, Mz, ..., Mz,;0'), (37c)
Q

where M=M(g), and where the sum is over the finite

number of n-tuplets 0/ = (11, u2’, ..., urn’) of indices

trom I for which

Ty, (8)=Tus, (&) s, u2(8) "+ Ty el 8) (374)
is not identically zero (as a function of g),
It may here be noted that
@u1R) @@ +2g) o Qa2 +2g 400 +2,)Q (87e)

is a defensible notation (within the framework of dis-
tribution theory) for the vector ¢ (zy, 2q,...,2,;0).

Lemma 4: (a) Let {f,1f,€ S(RY, k=1,...,n} be any
n-tuplet of test tunctions, and let o= (ul, u2,..., un)
be any ordered n-tuplet of indices from I,. For
k=1,...,n, let X,=¢,,[f.]. Then the vector

T @)X T @)Xy -+ T )X, (38a)

is well defined (through successive left multiplications)
for all (z,2,,...,2,)€T,, and it is a strongly continu-
ous function of the variables (z4,29,...,2,) on T, and a
strongly analytic function of these variables on T,.

(b) There exist tunctions flxq,...,%,;21,...,2,) de-
fined for (xi,...,x,) € R* and (z,,...,2,) € T,, such that
f& S(R*) and such that the Fourier transform f of f
relative to the variables (x,,...,x,) satisfies the

condition

}‘(pv ses ;pn;zb oo ’zn) = exP(l kZ/lz—_J;Zk"pr) kl-—Ii }k(pk) (38b)
for all (py,...,Pn) € V,, with V, defined as in (36c), and
for all (z4,2,,...,2,) €T, For any such function f,

oAfiol=T )X T(2,)X, - Tz )X,Q. (38¢)
YK f,cHRY for k=1,2,...,n, and (24,23,...,2,)
eT,, then
dtey) oo - dH )i 00g)fa () < - Fule)
x¢(zi +X1,29+X9— X 1,83 +X3—Xgy4.:,8y +xn—xn-1;c)

=T@)X, TE)X, - - T )X, (38d)

(=)

(d) Let {R,In=1,...,*} be any set of open, nonempty
subsets of Minkowski space. For such a set, and for
any n= 1, let S, denote the linear span of all vectors of
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the form XX, .-+ X,Q, with X, defined as in (a) above,
and with £, € §(RY), supp(f)CR,, for k=1,...,n.

Then the linear span of the vacuum vector £ and the
union of all the linear manifolds S, is dense in the
Hilbert space /.

About the proofs: Lemmas 2—4 in the present paper
correspond to Lemmas 2—6 in Sec. IIIl of BW I, and the
reasoning there presented applies with very trivial
modifications. The conclusions in Lemmas 2 and 4; the
conclusion in part (a) of Lemma 3, and the conclusion
[in part (b) of Lemma 3] that ¢(z,2y,...,2,;0) is
analytic as asserted, follow from the spectral condition,
the action of the translation group by conjugation on the
fields, and the assumption that the fields are fempered
distributions on the domain Dy, That we now deal with
an arbitrary number of field components instead of with
a single field as in BW I is immaterial in the proofs.
The formula (37c) is the trivial generalization of the
formula (34) in BW L. Since the matrix I'(g"!) in (37c)
is in effect similar to a finite direct sum of matrices
D5+$"(g"!), and hence an entire analytic function of g,
it follows that ¢ (24, 22,...,2,;0) is an analytic vector
for the Lie algebra of the group U{#,0), and hence also
for the Lie algebra of the group U(#).

We next consider the action of the complex velocity
transformations V(t) = exp(— {tKs), where ¢ is complex,
on the vectors ¢ (2, 2s,...,2,;0). We denote by Dy(n/2)
the domain on which V(in/2) is self-adjoint and by
D, (- 7/2) the domain on which V(- ir/2) is self-adjoint,
The domain Dy,(r/2) is then a core for all operators
V() with 0 < Im(f) <7/2, and the domain Dy (- 7/2) is a
core for all operators V(f) with 0= Im(#)= — 7/2, The
next lemma corresponds to Lemmas 8 and 9 in BW I,
and it is proved, on the basis of Lemma 3, by a very
trivial modification of the reasoning in BW I.

Lemma 5: Let (z4,...,2,) be an n-tuplet of complex
4-vectors z,=x,+1iy,, where x,,¥, are real, y,l :yg =0,
yi>lyil, for k=1,,..,n Leto=(ul,p2,...,pun) be
any ordered n-tuplet of indices from I, For any 2 and
any complex ¢t we define z,(¢) by

z,(t) = V(es, t)z,. (39a)
@)K x,c Wy (i.e., x> ixdl), for k=1,...,n, then
(24GT),...,2,G7)) € T, for all 7 [0,7/2]. The vector
&(2(,...,2,0) is in the domain D{r/2), and
VETD (... ,2,;0)
= E, fma,(vc(ez,, —iNe(z,G7),...,2,G7);0%) (39b)
o

for all 7€ [0,7/2], where I is defined as in (37d).

(b) It x,€ W, (i.e., x3 <— |xil), for k=1,...,n, then
(z;(7,...,2,(i7) e T, for all 7 [-7/2,0]. The vector
#(24,...,2,;0) is in the domain D,(-7/2), and the rela-
tion (39b) holds for all 7€ [- /2, 0].

(c) Let (x4,...,x,) be such that x,c Wy for k=1,...,n,
Let v be the real forward timelike 4~vector with com-
ponents v =(0,0,0,1), and let ¢ be a real variable. Then

s-1im 2 Ty, (e, )Vn/2)p (x, +itv, Xy +itv, . . . %, +itv;0”)
t-0+ o

=s-lim 2 T, c.)V(-in/2)
o’

t-0+
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Xd)(gﬂﬁ +ity, xy+itv, . .., Jxn+itv;o’)
=¢)(21, . (39(:)

where z, = (x},x%,ix},ixd), for k=1,...,n, and where

c, and c_ are the elements ¢, =v,(e;, in/2), c.

=v,(ey, - i1/2), of the group g.. Here 7 is defined as in
(3).

The next lemma corresponds to Lemma 10 in BW I,

e ’Zn;o)y

Lemma 6: Let R, be a bounded, open, nonempty sub-
set of Wy, and let xy € Wy be such that (x ~ xy) € W, for
all x € Ry, For any integer n»>1 we define the set R, by

Ry={x +(n -1y |x € Ry} (40a)

(a) Then R, c Wy for all n, and it n>k, then (x’' —x")
e Wg for all x’ € R,, x” « R,, In particular R, is space-
like separated from R, (i.e., R,CR}) if n#k,

(b) Let {f,|k=1,...,n} be an n-tuplet of test func-
tions such that f, & §(R* and supp(f,) C R,, for %
=1,...,n, Letf} denote the test function defined by
fiw)=f,(-x). Let o=(p1,u2,...,un) be any ordered
n-tuplet of indices from Ip. Let c(s)&/)(R'). Then

V(i”)C(K3)¢u1[f1]§Du2[f2] e (pun[fm]Q
= f:.oU(u(eay ), 0)0(K3)¢u1[f1¢]§0u2[fz{] e (pun[fni]Q,
- (40b)
where I'” is the diagonal matrix given by
f‘" = 1=.‘(’Uc(eS’ = ”T))f‘(u (ea, 77))-

This lemma can be proved, on the basis of Lemmas
4 and 5, by a trivial modification of the reasoning by
which we proved Lemma 10 in BW I; the modification,
of course, has to do with the appearance of the
matrices I in the formulas. To bring out the similari-
ties with the discussion in BW I, we define the test
function fJ by f/(x)=/,(J ), and we then have

U(u(e39 7T), 0)(puk[fki]U(u(e3’ﬂ)y 0)-1
= ? I‘uk, u'(u(eBy - 7T))¢u,'[f;]-

With reference to this formula it is easily seen that
the formula (52) in BW I is a special case of (40b),

(40c)

(40d)

That the matrix I in (40c) is diagonal (with diagonal
elements +1 or - 1) follows at once from the fact that
the matrix I'” in (23) is diagonal (with diagonal elements
+1 or -1),

Our conclusions up to this point in this section are
completely independent of the locality conditions (f) in
Sec, III, We shall now draw some further conclusions,
in which we take the locality conditions into account.
Before we state the relevant lemma, we recall that the
domain of the closed and novmal operator V(t), t com-
plex, depends only on Im(f). We write the operator as
(V(), D,(Im(t))) when we wish to exhibit the domain
explicitly.

Lemma T: Let{R,In=1,...,=} be a fixed set of
bounded, open, nonempty subsets of Wy, constructed
as in Lemma 6. Let ¢ be the linear span of the identity
operator / and all operators (@, D) of the form

Q= @ul[f1]¢u2[f2] e wun[fnL (41a)
where {f,1k=1,...,n} is any n-tuplet of test functions
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such that f,€ $(R*) and supp(f,) CR,, for k=1,...,n,
and where ¢ =(ul, u2,..., un) is any ordered n-tuplet
of indices from /7, Then:

(a) The linear manifold D, = QQ is dense in the Hilbert
space //, and D_ = span{c(Ka)Dql c(s)e H(RHY} is a core
for every operator (V(t), D, (Im(?))).

(b) (@*, D€ it (Q,Dpey.

(c) There exists a unique antiunitary operator J such
that if (Q,Dy) €0 and c(s) € D(R"), then

Viim)c (K3)QQ = c (K Q*Q, (41b)
The operator J is an involution, i, e.,
J=1, (41c)
and it satisfies the conditions
JQ=Q, JD;=Dy, ZJIXJZ'< P(y) (41d)
tor all (X,D()e P(A), and
JzJ =21, JUJ=U,,
(d1le)
JV{(#)J = V() for all real f,
JD,=D., J(V(r), D) =(V(-ir),D.), (411)
JD_=D,, J(V(-im),D.) =(V(ir),D,). (41g)
(d) The antiunitary operator 6, defined by
J=ZUules,n), 0)9, {41h)

is a TCP transformation which satisfies the conditions:

6i=U,, 6,0=0, 0,U(g,x)0;'=U(g,-x), (42a)

©,D; =Dy, O, (M =Ph) (42b)
and

049, )07 =p, T}, ,@L(~ %), (42¢)

where p, =+1 if ¢, (x) is a component of a boson field
and p, == if ¢, (x) is a component of a fermion field.

Proof: (1) This lemma corresponds to Lemma 11 in
BW I, The reasoning in its proof is similar to our
reasoning in BW I, but there are some important dif-
ferences of detail which have to be discussed. We first
note that the assertions (a) and (b) are trivial, The re-
maining assertions might be proved in the stated order,
which in particular yields a proof of the TCP theorem.
In order to shorten the discussion, we shall, however,
base our proof of the assertion (c) on the well-known
fact that under our general assumptions about the fields
a TCP transformation 6, which satisfies the conditions
(42a)—~ (42¢) does exist. ? The relations (42a)— (42¢) will
thus be assumed, and we define the antiunitary opera-
tor J by (41h), where Z is given by (26). It is then
trivial to show that J satisfies the relations (41c)—(41g).

(2) The formula (41b) holds trivially if @ is a multiple
of 1. Suppose now that @ is of the form (41a). We write
Xp= q’uk[fk] and Yk:(puk[fki] for k=1,...,n, and we then
have

Je*Q=Jxt...xixia
=pETy ZUlu(es,m), 0¥, - - 1,¥,Q,

%0

(43a)

where Dy =p,1Puz"* * Pun, in view of (41h) and (42¢). For
any two operators Y, and Y in the set {Yy, ¥s,...,¥,}
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the supports of the corresponding test functions £ and
fiare spacelike separated, and hence Y, anticommutes
with ¥ if both operators are averaged fermion fields,
whereas Y, commutes with ¥ in all other cases, It is
easily shown that under these circumstances

PEZY V¥ Q=YY .- Y, (43b)
and hence
JQ*Q =T Ulules, 7), 0)Y ¥y« - - ¥, . (43c)

From this it follows, in view of (40b) in Lemma 6,
that the operator @ satisfies (41b). From this it trivial-
ly follows that (41b) holds for all Q< 0.

We are now prepared to state the main theorem of
this section., It will be convenient for the subsequent
discussion to introduce the following notation. For any
subset R of /) we define the algebra P(R)? by

PR ={(zx2, D,)| (X, D)) e PR)}, (44)
where Z is given by (26).

Theorem 1: {a) The algebras P(Wz) and P{W,)? are
x-algebras with the antilinear involution (X, Dy)
— (X*,D,). They commute on Dy, i.e.,

(X, Ylp=0
for all Y€ D, and for all X< P(Wg), Y& P(W.)%

(45a)

(b) The vacuum vector Q is cyclic and separating for
both P(Wg) and 2(W,)%.

(¢) With V(t)=U(v(es, ), 0) (a velocity transformation
in the 3-direction),

V() P(WRV ()t = P(Wg),

45b
V6 POV V() = POV o)

for all real {, and with J defined as in Lemma 7,
J PWR = P(W)°. (45¢)

(d) With the domains D, and D_ such that the operators
(V(r), D,) and (V(-iw), D) are self-adjoint,

PWRRCD,, V(imXQ=JX*Q, (450)
for any X € 2(Wyg), and
P(W,)QCD,, V(~in)YQ=JY*Q (45¢)
tor any Y e P{W,)%
(e) The condition
CpXQ=X*Q, all X € P(Wp) (46a)

defines an antilinear operator (Cg, P(W)R), and the
condition

CiYQ=Y*Q, all Ye (W, )* (46b)
detines an antilinear operator (C%, P(W,)*Q).
These two operators satisfy the relations
(Cr, P(WR)Q** = (CT, P(W,)*Q)* =V (i), D),  (46c)

(€3, PWLYQ)** = (Cg, P(WR)Q)* = (JV(~ i), D). (46d)

This theorem corresponds to Theorem 1 in BW 1. The
proof is identical with our proof in BW I, provided that
we consistently substitute the operator C for the opera-
tor C;, and the algebra P(W;)® for the algebra P(W,).
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In the particular case that there is no termion field
among the quantum fields we have Uy=/and Z=1, and
hence P (W)= (W,), in which case the present theo-
rem is identical with Theorem 1 in BW I,

The algebra P(Wjy), respectively the algebra (W),
can be regarded as consisting of field operators locally
associated with the wedge region Wy, respectively the
region W;. We note that the role of these algebras is
not quite as symmetric in the present theorem as in
BW I, in the sense that the assertions are about the
pair (P(Wz), P(W.)%) rather than about the pair
(P(Wg), P(W.))., It is, however, easily seen that there
is a completely equivalent formulation in terms of the
pair (P(W.), P(Wg)®), and we note, for instance, that

P(WYRCD,, V(-in)YQ=J,Y*Q, (7a)
tor any Y < 2(W.)}, and
PWRFQRCD,, VEnXQ=J.X*Q, (47b)
for any X € /(Wz)?, where
Jp=2JZ = UJ =JU,. {47¢)
Furthermore,
Iy P(Wp) = P(Wg). (47d)

We conclude this section with the remark that all the
considerations in Sec. V in BW I also apply to the pres-
ent situation, provided that P(W,) is replaced by P(W)*
and that 2, (W,) is replaced by Py (W) =ZpP,(W.)Z!
everywhere in the discussion. In order to have a more
suggestive notation it is then convenient to change the
notation in BW I according to the scheme: //(W})

~ UYWL, AL —AL, etc.

V. THE DUALITY CONDITION FOR THE WEDGE
REGIONS Wz AND W,

The discussion in this section corresponds to the dis-
cussion in Sec, VI in BW I. We are thus concerned with
the question of how the field operators in (W) might
generate a von Neumann algebra of bounded operators
which can be regarded as being locally associated with
the region Wy We must, of course, here define the
term “locally associated with” precisely and in a man-
ner appropriate for a field theory in which fermion
fields might occur., To set the stage for the discussion,
we begin with some algebraic considerations.

Definition 1; If 4 is a von Neumann algebra such that
UpA Ut =A, and it 4% =ZA4Z! with Z detined as in (26),
then the quasicommutant 4° of 4 is defined as the von
Neumann algebra 4°= (4%)’.

In a theory in which fermion operators, i.e., opera-
tors X which satisfy U,XU;1=~X, occur, the notion of
quasicommutant® is the proper notion in terms of which
one may formulate the conditions of locality and of
duality, As an algebraic notion the notion of a quasi-
commutant is less general than the notion of a commu-
tant in the sense that the former notion refers to a
specific unitary involution U,

We formulate the pertinent facts about the notion of a
quasicommutant as follows,

Theorem 2: Let 4 be a von Neumann algebra such that
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U AU =4, and let A%=(242Z™)' be its quasicommutant,
Let

As=1X|UXUs =X, XA},

Ar={X| UXUG == X, X< A}, (482)
and
A9 =Y |0 YU =Y, Y4,
495 ={Y| 0¥ TGt =- ¥, Yeqe- (48)
Then:
@) UpAUs =A%, A=Z(ANZ", (A=A (49)
(b) Every operator X €4 has the unique
representation
X=X, +X;, withX,€4p, Xs€Ap, (50a)
where, in fact,
Xy =3X + UXUFY), X,=2(X - UXUG1). (50D)

Every operator Y <4 has the unique representation

Y=Y,+Y;, with Y € (49, Y;€ (495, (50c)
where, in fact,
Yy =3(Y+ Uy YUY, Y,=3(Y- U, YUY, (50d)

{c) The elements X, €A 5, X;SAp, ¥,€ (495, and
Y;e (A% satisfy the conditions

[Xs, Y] =0, (51a)
(X, ¥¢]=0, (51b)
[X,,Y,]=0, (51c)
X, Y} =X, Y, + VX, =0, (51d)

The set (4% is a von Neumann algebra, precisely
equal to the set of all bounded operators Y, which satisfy
the condition U,Y,U;! = ¥,, and the conditions (51a) and
(51c) for all X, € 45, X; €4 The set 4p is a von Neu-
mann algebra, precisely equal to the set of all bounded
operators X, which satisfy the condition UyX,U;! = X,,
and the conditions (512) and (51b) for all Y, < (495,

Y,<€ (49 r. The set (4% is precisely equal to the set

of all bounded operators Y, which satisfy the condition
U,Y,Usl = - Y, and the conditions (51b) and (51d) for all
Xo€Ag, X €A . The set A is precisely equal to the
set of all bounded operators X, which satisfy the condi-
tion UpX,Up' =~ X, and the conditions (51c) and (51d) for
all ¥, € (495, Y, (4%

(d) The vector @ is cyclic (respectively separating)
for 4 if and only if it is separating (respectively cyclic)
for 4°.

We omit the very trivial proofs of these assertions.
We stated the above facts in the form of a formal theo-
rem in view of their importance for our discussion.
The situation might be illustrated as follows. Suppose
that two von Neumann algebras 4, and 4, are “locally
associated with” two regions R, respectively R,, which
are causally independent. The “local” nature of the as-
sociation can then be expressed through the relation
A1CA9, which, in view of the theorem, is equivalent to
the customary conditions in terms of commutators and
anticommutators, i.e., the fermion operators in 4,
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anticommute with the fermion operators in 4, and com-
mute with the boson operators in 4,, whereas the boson
operators in 4; commute with all operators in 4,. Now
A1C A% is equivalent to the condition that [X, ¥]=0 for
all X €4, and all Y& 4%=24,Z"!, which means that the
locality conditions are expressible in terms of the
vanishing of certain commutators, irrespective of
whether fermion operators occur or do not occur in the
theory. This has the important practical consequence,
from our point of view, that we do not have to create a
new algebraic theory in order to deal with the case of
fermion operators; as in BW I it suffices to consider the
relationships between von Neumann algebras and their
commutants. ° Let us also note here that according to
the fermion-superselection principle only a boson
operator can be a physical observable. This means,
with reference to our illustration above, that the ob-
servables in 4, and 45 are precisely the same, and
thus that the observables associated with the region R,
commute with the observables associated with R,.

Definition 2: (a) A set K(Wg) of bounded operators
such that X* € K (Wg) for all X € K (W) shall be said to
be covariantly associated with Wy if and only if

UMK (W)U CK (W) (52a)

for all elements \ in the semigroup o(Wg) consisting of
all x€ # such that A)WxC Wg, In particular,

VIOK(WR) V() =K (W), all real ¢, (52b)
and, more generally,
UMK (WU =K (W), all A€ g (Wp), (52¢)

where ;(WR) is the group of all elements A & ; such
that A(A)Wg =Wy, i.e., all Poincaré transformations
which map Wy onto Wg.

(b) A set K (W) of bounded operators such that ¥*
eK (W) for all Ye K (W,) shall be said to be covariantly
associated with W, if and only if

K(W,) =Ulu(ey, ), 00K (Wr)Ulu(ey, m), 0), (53)
where K (Wg) is a set covariantly associated with Wpg.

(¢) Let K(Wg) be a set of bounded operators, co-
covariantly associated with Wy as above., The asso-
ciation shall be said to be TCP-symmetric if and only if

Oy K (Wr)O5' = K(Wy) (54a)
or, equivalently,
JK (W™ = K(WL), (54b)

where K (W) is given by (53).

(d) A set K(Wpg) of bounded operators which contains
X* if it contains X shall be said to be locally associated
with Wg if and only if K (Wg) is covariantly associated
with Wy and

K(Wg)cK(WL), (55)

where K (W) is given by (53) and where the von Neu-
mann algebra K (W;)? is defined as (K(W.)*)'.

(e) A von Neumann algebra 4 (Wg), locally associated
with W, shall be said to satisfy the condition of duality
if and only if
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A(WR) =74(WL)G, (56)

where A (W) is defined in terms of 4 (W3) in analogy
with (53).

We present these formal definitions for later refer-
ence as we will repeatedly encounter sets which satisfy
one, or several, of these defining relations. The
geometrical significance of these definitions is obvious
and need not be discussed here. Concerning the physical
interpretation, we note that the conditions in (d) are
minimum conditions which a set of “local observables
for Wg” would have to satisfy. In a quantum field theory
these conditions are not, however, by themselves
enough; the bounded local operators should also satisfy
some condition of locality relative to the local field
operators,

Lemma 8: Let 7 be a set of closable operators, such
that U, 7Us! = 7. We define the set 79 as the set of all
bounded operators X such that

XY, D(V))* (Y, D(V)*X*,
XY, D(Y)y** (Y, D(V)**2*

for all (Y,D(Y))e 7. Or, equivalently, the set 7° is
precisely equal to the set of all bounded operators X
such that for all (Y,D(Y))e 7,

XY, D(Y)) C (Y, D(Y))**X*,
@*)*(Y, D(Y)) C (Y, D(V))**(X*)*.

(67

(58)

(a) The set 77 is a von Neumann algebra, and it satis-
fies the relation Uy( 79 Us! = 74,

(b) Let the set 7% of bounded operators be defined by
F=(F% (59)

Then 7% is a von Neumann algebra precisely equal to
the von Neumann algebra generated by the operators V
and the spectral projections of the operators K for all
pairs of operators {V,K}, where V is the unique partial
isometry, and K is the unique nonnegative definite self-
adjoint operator, defined through the polar
decomposition

(Y, D(Y))** = VK, D(Y**)) (60)
of the closure of any (¥, D(Y))e 7.

This lemma is a paraphrase of well-known facts
about the commutant in the sense of von Neumann!! of a
set of closed operators. An equivalent definition for
#7 is thus

},q: (Z]**Z'i)'

with the prime notation of von Neumann, and the set
7% is then given by

}GG = (} **)u
where 7** denotes the set of all closures of the opera-
tors in 7. That the assertion in (b) above about the
algebras 7% [regarded as given by (61b)] holds is well
known!? (and easily proved). That 7* (and hence 7%) is
invariant under conjugation by U, follows trivially from
the corresponding property of 7.

(61a)

(61b)

We shall call 7° the quasicommutant of the set of
adjoints and closures of the possibly unbounded opera-
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tors in 7; this is consistent with our earlier terminology
in the case that 7 is actually a von Neumann algebra.
We shall say that the von Neumann algebra 7% is
genevated by the set 7,

We shall next consider some special sets of bounded
operators defined in terms of field operators in P(R),
where R is any subset of /). In this section we are
primarily interested in the wedge regions Wy and W,
but for later reference it will be convenient to consider
other regions R as well. We note here that it would be
reasonable to restrict the regions R such that they
satisfy the condition R°®=R, but we shall not do so
since we do not here wish to investigate the geometri-
cal implications of this restriction,

Definition 3: Let R be any subset of Minkowski space,
and let R° be its causal complement {as defined in (5)].

(a) The set / (R) is defined as the set of all finite
linear combinations of operators of the form (¢,[f],D,),
where u € Iy and where f& §(RY, with supp(f)CR.

(b) The set g (R) is defined as the von Neumann alge-
bra genevated by [ (R), i.e.,

G(R) =/ (R)™, (62)

where the superscript “qq” denotes the mapping 7 — 7%
defined in Lemma 8.

(c) The von Neumann algebra (" (R) is defined as the
quasicommutant of [/ (R°), i.e,,

CR)=£ (RO =G (RO, (63)

where the superscript “g” denotes the mapping 7 — 7¢
defined in Lemma 8.

(d) The weak quasicommutant C,(R) of P(R°) is de-
fined as the set of all bounded operators X such that

(Yo | X =(X*o | Y
for all ¢, p< D, and all (¥, D;)e P(R®)*=ZP(R%)Z.

We introduce the new term “weak quasicommutant”
with some reluctance, but it does seem fairly ap-
propriate to describe the nature of the sets (,,(R). The
adjective “weak” is here intended to convey an impres-
sion of the “weak” nature of the “commutation relations’
(64), as contrasted with the more restrictive conditions
(57). 1t should be noted, however, that the operators in
C»(R) commute in the weak sense of (64) with all the
operators in P(R°)*, whereas the operators in ((R)
commute in the strong sense of (57) only with the opera-
tors in the subset / (R°)* of P(R°)%

(64)

3

We shall next consider some fairly elementary prop-
erties of the sets defined above,

Lemma 9: Let R be any subset of Minkowski space,
and let the sets / (R), C(R), C(R), and § (R) be defined
as in Definition 3. Then:

(a) Each one of these four sets satisfies the condi-
tion (65a) of covariance, the condition (64b) of TCP
symmetry, and the condition (65¢) of isotony, i.e., if
Q(R) is any one of the sets / (R), C(R), C,(R), or g(R),
then

UMQRUMW ™ =0(A(MR), allreg, (65a)
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0,0 (R)O;' =0 (- R), (65b)
where - R denotes the set - R={-x|x e R}, and
QR)DQ(Ry), whenever RDOR, (65¢)

(b) The set (,(R) is a weakly closed linear manifold,
closed under the x-operation, i.e., it contains X* if it
contains X,

A bounded operator X is in( ,(R) if and only if
X(Y*, D)) (Y, D)*X
for all (Y, D) € P(R%)".

(c) A bounded operator X is in (,(R) if and only if the
condition (64) holds for all ¢, D, and all (¥, D,)
e [ (R°)%, or, equivalently, if and only if the condition
(66) holds for all (Y, D)) & / (R°)".

(@)

(66)

XXXy o(R) (67a)
for all Xe (,(R) and all X, X, € (R). In particular,
CR)eC ,(R). (67b)

(e) If R° has a nonempty interior, then R is separat-
ing for C,(R), i.e., if Xe(,(R)and XQ=0, then X=0,

I R has a nonempty interior, then g(R)Q is dense in
the Hilbert space 4.

) If (for a particular subset R) the “linear field
operators” in the set / (R°) satisfy the condition that D,
is a core for the adjoints of the operators in the set,
i.e., (Y1, D)*=(¥,Dy** for all (¥, D,) </ (R°), then
CR)=C,R).

Proof: (1) The assertions (a) and (b) are trivial, We
note here that the condition (66) [which is a trivial
restatement of the condition (64)] is equivalent to the
condition that

X(Y*’ DI)** e (Y’ D1)*X
for all (Y, D) € P(RO).

(68)

(2) To prove the assertion {c), we assume that X is a
bounded operator which satisfies the condition (64) for
all ¢,¥e Dy and all (Y, Dy) e/ (R°)* It follows at once
that the condition (64) then also holds for all (Y, D;)
€ Py(R°)*. For such an X, let ¢, ¢« Dy, and let (¥, D,)
€ P(R°)*. Since we have ZD,=D,, and since the quantum
fields are operator-valued tempered distributions, it
follows from the fact that (& /) (RY)" is dense in § (R
that there exists a sequence {(Y,,,Di) | (Y4, Dy) € Py (RE)*,
k=1,...,=} of operators such that

s-UimY, =Yy, s-limYip=VY*o, (69)
R =~ R wo
It readily follows that the relation (64) holds for the
above operator (Y, D;), and hence Xe( ,(R) as
asserted.

(83) We consider the assertion (d), Let Xe((R), X,
€(,(R), and (Y, D,) e / (R°)*. We then have, in view of
(57) and (68),

XX, (Y*, D)** CX(Y,D)*X, < (v, Dy)*XX,,, (70)

which means that XX,,€( ,(R). From this (67a) follows
readily, and, since I€( ,(R), the relation (67b) follows.
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4) ¥ Xe(,(R), then XQ=0 implies that
(V9] XY,Q) =(¥Y§Y,2|XQ) =0 (71)

for all Yy, Yy P(R®)®, By the Reeh—~Schlieder theorem
the set P{R°)*Q is dense if R° has a nonempty interior,
which implies that in this case X =0 if (71) holds. This
proves the first assertion in (e), and in view of (67b) it
follows that Q is a separating vector for the von Neu-
mann algebra ((R), and hence a cyclic vector for its
quasicommutant (; (R°) whenever the interior of R° is
nonempty. It readily follows, since ((R) satisfies the
condition of isotony (65¢), that g(R)Q is dense whenever
R has a nonempty interior.

{5) We consider the assertion (f), I (Y*, D,)*
={Y,D)** for all (Y, Dy) €/ (R®), and if X&( ,(R), then
the relation (68) implies that X € (C(R). In view of (67b)
this implies that (', (R)=C(R), as asserted. This com-
pletes the proof,

We note that it does not follow from the definition of
C(R) as a weak quasicommutant of an algebra Q2(R°) of
unbounded operators [or equivalently as the “weak
commutant” of the operator algebra /(R°)?] that C,(R)
is a von Neumann algebra; the set need not be closed
under multiplication. What the actual situation is in
quantum field theory we do not know. In the case of free
fields the premises in part {f) of the lemma are trivial-
1y satisfied, and ((R) is then identical with the von
Neumann algebra ("(R). In this connection we refer to
the work of Powers on algebras of unbounded operators,
their “weak commutants, ” and related subjects, 13

Lemma 10: Let R be any subset of Minkowski space,
and let the notation be as in Definition 3 and Lemma 9.
Let 44(R) be defined as the set of all bounded operators
X such that XX,, and X, X are both in (,(R) for all X,
c( ,(R). Then:

(a) The set 44(R) is a von Neumann algebra, and
C(R)CAWR)CCL,R). (72)

(b) The mapping R — 4,(R) satisfies the condition of
covariance (65a) and the condition of TCP symmetry
(65b) in Lemma 9. In particular Uy4,R)Us =4, (R).

(c) All operators (Y, D;) < P(R°) have closable exten-
sions defined by

(¥, Dy) — (a{Y), D) = (¥"%, D) = (Y™, D,), {73a)
where D, is the domain defined by
D, =spaniXe|X c4,(R), » € D,}. (73D)
These extensions satisfy the conditions
{(*, D)* D{a(YY*, D)* 2 (@{Y), b)) O (¥, Dy). {73c)

(d) Let /7,{(R°) be the set of all operators {a{Y), D,)
with (¥, D;) € 2(R°). Then, with the notation in Lemma
8,

AoR) = Pa(R)S,

PuBOY = Py (RO =4, (RY € G (R®)
and the closures and adjoints of the operators (a(Y), D,)
in 2 (R°) are thus affiliated fo the von Neumann algebra

AR,

{74a)
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The weak quasicommutant of 2, (R€) relative to the
domain D, i.e., the set of all bounded operators X
such that

x*¢ [a(Y)?P =(a(V))* ¢ | XD

for all ¢,y& D,, all (a(Y),D,) € P,(R°), is precisely
equal to the set (,(R).

(e) The mapping (Y, D) — (a(Y), D,) of the algebra
P(R) onto 0,(R°) is a representation, and it is a
x-representation of the x~algebra O(RC) in the sense that

(@(¥"),D,) = (a(Y)*, D,). (75a)

(74b)

The representation is continuous in the sense that

s-lima(¥,)y=0 (75b)
& =~
for all y< D, whenever
s-1imY,0 =0 (75¢)

R =
for all ¢ € Dy,

Proof: (1) A,{(R) is trivially a x-algebra since (R}
is closed under the *-operation. From the fact that
Cw»(R) is weakly closed, it follows that 4,(R) is also
weakly closed, and hence a von Neumann algebra. The
relation (72) is trivial in view of (67b). The assertions
{b) are obvious.

(2) It follows from (66) that if X, {R) and ¢ € Dy,
then X¢ € D(Y*), for any (Y, D,)e P(R)?. In view of (72)
this implies that D,, as defined in (73b), is contained in
the domain of the adjoint of any operator (¥, D) in
PR or in P(R®), since ZD,=D,, It follows that the
extensions (a(¥), D,) are well defined by (73a). Further-
more, (73a) also defines an extensicon of every opera-
tor (Y*, Dy)e P(R°?, and we have

(@(zYz?),D,) = Z(a(Y), D,) 2"
for all (Y, D) € P(R°).

(3) Let X;, X, €44(R), ¢ € Dy, and (¥, Dy) € P(R)".
Then XX, € 4,(R), and since 4,{R) C(,(R), we have

a(V)X Xy = V"X, Xp0 =X, X Ve
=X, Y™X;6 =X;a(Y)X;0,

(76a)

(76b)

which implies that X, commutes with (a(Y), D,)** in the
strong sense of (57), and we have thus proved that
AoR) T P, (R4, 1, furthermore, readily follows that the
relations (73¢) hold for all (Y, Dq) € P(R°), and hence
for all (Y, D)€ P(R°). The relation (75a) is then trivial,

(4) We next consider the weak quasicommutant
Cua(R) of 7,(R¢) relative to the domain D,. K is easily
seen from the condition (74b) that a bounded operator
X is in (q(R) if and only if X, XX, e, (R) for all X, X,
€A4(R). This implies that (,,(R)=C,(R), as asserted,
We obviously have XX, , X X<c(,,(R) for all X,,€( ,,(R),
X e pP,(R°)%, and in view of the results in step (3) above
the first relation (74a) follows., The remaining relations
(74a) then follow trivially, in view of (72).

(5) The remaining assertions in part (e) of the lemma
are trivial, and we omit the detailed proofs.

We must here state that we know much less about the
relationships between the sets ((R), (,(R), and 4,(R)
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than we would like to know. We note here that ((R) was
defined as the quasicommutant of the subset / (R°) of
P(R°), which means that the closures and adjoints of the
operators in / (R°) are affiliated to the von Neumann
algebra g(R“) =C(R)%, but we see no obvious reason why
this would imply that the closures and adjoints of the
operators in 2(R°) are also affiliated to this same von
Neumann algebra. The lemma now shows that there ex-
ists a “natural” extension (a(Y), D,) of all the operators
in 2(R°) such that the closures and adjoints of the ex-
tended operators are affiliated to (; (R®), or to the pos-
sibly smaller von Neumann algebra 4,(R)?. It is here
important to note that this extension depends on the set
R°, although this is not shown explicitly in our notation.
A field operator which can be associated with different
regions might thus have different extensions constructed
as in the lemma.

In view of our present lack of understanding of the
general structure of a quantum field theory the possible
physical interpretation of the weak quasicommutant
C »(R) of 2(R®) is far from clear. With reference to the
discussion by Licht of strict localization!* we note here
the following, Let V be a partial isometry in C,(R)*
such that V*V =1, and let y=VQ, Then ¥ is in the do-
main of (¥, D)* for any (¥, D) P(R°) and we have, for
any such (Y, Dy),

(| Yy =(a|ve) (772)
and, more generally,
(Y| vl =(¥10| 1,9 (77b)

for any two (Yy, D,), (Y,, Dy) € P(R°). We here assume
that both R and R° have nonempty interiors., It is then
not hard to show that if a vector ¥ satisfies the condi-
tions (77b), then ¢ is of the above form.

The expression at left in (77a) might be loosely re-
garded as the “expectation value of the field operator ¥
in the state ¢,” and the “local character” of the state
then manifests itself in the fact that the expectation val-
ue in the state equals the vacuum expectation value, for
all operators (Y, D)< P(R°), Note, however, that the
operator Y™ at left in (77a) cannot in general be re-
placed by Y** or by ¥, as ¥ might not be in the domains
of these operators. We furthermore note that the condi-
tion (77a) also holds for all the bounded operators in the
von Neumann algebra (,(R)?, but not necessarily for
the operators in ((R°). In our opinion (77a) is a neces-
sary condition for a local state (localized in the com-
plement of R°) but by no means a sufficient condition.

We shall next consider the properties of the sets
CR), AgR), C,{(R), and g(R) for the special case that
Relf/. The lemma which follows corresponds in part
to our Theorem 3 in BW I, with some added refinements
which we overlooked before,

Lemma 11: Let C(R), C,(R), A4(R), and g(R) be de-
fined as in Definition 3 and Lemma 10. Then:

@) C(Wg) =C(Wg), Co(Wg)=C,(Wp),
GWR)=G (Wr), Ay(Wg)=As(Wg) (782)

with analogous identities for the corresponding objects
associated with W,, and
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C(We)CA(Wr) CC,,(Wr) CG (Wr) =C (Wy)%. (78b)

(b) The von Neumann algebra ( (Wp) is locally asso-
ciated with Wy and the association is TCP symmetric,
in the sense of Definition 2,

(c) The set ,,(Wg) and the von Neumann algebra
G (Wg) are covariantly associated with Wy, and the
association is TCP symmetric, in the sense of
Definition 2.

(d) For every X e(,(Wz) [and hence for every X in
C(Wg) or 4,(Wg)] we have

XQeD,, VEnXQ=JX*Q, (19)

(e) The von Neumann algebra 4,(Wjy) satisfies the
conditions:

As(W)=0,4 (Wr)o!

=Ulu(ey, m), 04 (Wr)Ulu(ey, m), 0) (80a)

and
UM A(WR UMY =4,(Wg) (80b)

for all A€ # such that A(\) Wg= W, i.e. , for all Poin-
caré transformations which map W onto Wy,

(t) [X,JX,J]R=0 (81)
for all X€4,(Wg), X, € Cyp(Wg).

Proof: (1) We consider the identities (78a). Let x
€ Wg. Then we have ( (W) DC(Wg) D2 T&)C(We)T )1,
in view of the fact that ( (R) satisfies the condition of
isotony. Since ((R) is weakly closed, and since T (x)
is a strongly continuous function of x, it follows at
once that the first identity in (78a) holds. The next two
identities are proved by exactly the same reasoning.
The fourth identity follows from the second, and from
the definition of 4,(R) in terms of C,(R).

(2) The inclusion relations between the first three
sets at left in (78b) correspond to (72) in Lemma 10,
The assertions (e) also follow from Lemma 10. [Note
that we do not assert that (80b) holds for all Poincaré
transformations A which map Wy into Wg. ] The asser-
tion (c) is trivial.

(3) The relation (,(Wg)c(C(W.)? is not trivial; it is
equivalent to the condition that all operators in (,,(Wy)
commute with all operators in ( (W;)*. To prove this
relation, we first consider the assertion (d) of the
lemma. The relations (79) follows readily from the
definition of (W), and Lemma 13 in BW I, (In this
argument we depend, of course, ultimately on Theorem
1 of the present paper in place of Theorem 1 in BW 1.)

(4) Let X< 4,(Wg) and let X, €, (Wg). Since, by (c)
above, (,(Wg) is invariant under conjugation by V(#), it
follows that XV(H)X%V(t)"! €, (W) for all real £, In
view of (d) above it then follows from Lemma 14 in BW I
that the relation (81) holds.

(5) Let X e (C(Wg), and let X,,c(,,(Wz). We write
Y=2JX,JZ, and we then have Y& (C,,(W;). Let x € Wp,
and let X(x) =T (x)XT{x)"!, Then X (x)e( (Wg), and (81)
holds with X replaced by X(x), We consider the special
cases when each one of the operators X and Y is
either a boson operator (i.e., a bounded operator which
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commutes with U;), or else a fermion operator (i.e.,
a bounded operator which anticommutes with Uy). The
relation (81) then implies that

X(x)Y +sYX(x))2=0, (82)

where s =+1 if both X and Y are fermion operators, and
s=-1 if at least one of the operators X and Y is a
boson operator.

We note that the operator Q(x) =X ()Y +sYX(x) is in-
cluded in the set C,,(R), where R =W, U A({I,x)Wpg; this
follows from Lemma 9 since X(x) cC (A, x)Wg) CC(R)
and Ye(,(W.)C(C ,(R). Since the interior of R° is
nonempty, it follows from Lemma 9 that @(x) =0. Since
Q(x) is a strongly continuous function of x, we conclude
that (XY +sYX)=@Q(0)=0. This in turn implies that
[X,JX,J) =0, From the fact that this relation holds in
the special cases considered it readily follows that it
holds for all X (Wg), X, €(,(Wg). This means that
Cw(WR)CC(WL)“=g(WR), as asserted in (78b). This
completes the proof of the lemma,

The relations (78a) should be carefully noted, The
algebraic objects appearing in these relations are thus
the same for the closed wedge Wy as for the open wedge
Wg, which fact leads to a considerable simplification of
the subsequent discussion, We employ a notation in the
following according to which the objects are labeled by
the open wedges Wy and W,

The facts stated in part (b) of the lemma correspond,
in a sense, to a well-known result of Borchers concern-
ing the local nature of quantum fields which are local
relative to an irreducible set of local fields. !*

Theovem 3: Let the notation be as in Definition 3 and
Lemmas 10 and 11,

(A) If the quantum fields ave such that 4, (Wg)Q is
dense in the Hilbert space #/, then 4,(W3) is locally
associated with Wg, and the association is TCP sym-
metric, in the sense of Definition 2, Furthermore,
Ao(Wg) satisfies the condition of duality, and

CWr) CAWR) =Co(Wr) =4y (W) CC (Wg).

(B) If the quantum fields ave such that there exists a
von Neumann algebra 4 (W) c(, (Wg) such that 4(Wz)Q
is dense, and such that 4 (W) is either locally asso-
ciated with Wz, or else covariantly and TCP sym-
metvically associated with Wy, in the sense of Defini-
tion 2, then:

(a) The algebra 4 (Wy) is locally, and TCP symmeltri-
cally, associated with Wy, Furthermore, 4 (W) satis-
fies the condition of duality, and

(83)

As(We) CAWg)=A (W) ,(Wg), (84a)
where
AWp)=Ulu(eq, m), 0) 4 (Wg)Ulu(ey, 1), 0)! (84b)

as in Definition 2, The relation 4,(Wg) =4 (Wz) holds if
and only if 4,(Wg)Q is dense,

(b) The algebra 4 (Wg) is a factor, with Q as a cyclic
and separating vector. For any X< /4 (W),

XQeD,, V(imXQ=JX*Q, (85a)

and
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JA (W) =A (Wg)'. (85b)
(c) There exists an extension of the operators in
P(Wg) defined by
X,Dy) (eR(X),Dm):(XT*,Dm), (86a)
where
Dyg=span{Y¢|Ye 4 (W,), 6 €D} (86b)

such that the extension satisfies the conditions
X', Dy)* D (ex(X)*, Dy p)* D (ex(X), Dyg) D (X, D). (86c)

The mapping (X, D;) — (ex(X), Dyz) of P(Wy) onto the
set ,(Wg) of the extended operators is a continuous
x-representation in the sense described in Lemma 10.

The closures and adjoints of all operators (ex(X), D;g)
€ P,(Wpg) are affiliated to the von Neumann algebra

AWg).

(d) The weak quasicommutant ( (W) of P (Wg)
relative to the domain Dyg, i.e., the set of all bounded
operators Y such that for all (X, Dy) e P(Wg),

Y¥(ep(X)*, D1g) C (ex(X), Dyg)*Y* (87)

is precisely equal to the quasicommutant 4 (W) of

pe(WR)-

Proof: (1) Let 4(Wjg) be a von Neumann algebra such
that 4 (Wg) CC,(Wg) and V(E)4 (We) V()™ =4 (Wg) for all
real t, The algebra 4,(Wg), in particular, satisfies
these conditions, in view of Lemma 11, If now 4 (Wg)Q
is dense, then it follows from Theorem 2 in BW I that
(85a) and (85b) hold. It furthermore follows from
Lemma 15 in BW I that 4 (W) is a factor. We have thus
proved the assertions (Bb).

(2) We consider the relation (81) in Lemma 11, with
X, =X;X,, where X, and X, are elements of a von
Neumann algebra 4 (Wg) which satisfies the premises in
step (1) above, and where X € 4,(Wy). By repeated ap-
plication of (81) it readily follows that [X, JX J]JX,2 =0,
and, if 4 (W) is dense, it follows that [X,JX,J]=0 for
all X e /4,(Wg), X;€4(Wg). In view of (85b) this im-
plies that 4,(Wz) CA4(Wg), as asserted in (84a).

(3) We consider again the relation (81), with X =X,X,,
where X3, X, € 4(Wy) and X, € C,(Wy). By repeated ap~
plication of (81) we easily show that

[XS’ J‘XwJ]‘X(iQ = 0- (88)

In the particular case that 4,(Wg)Q is dense the rela-
tion (88) implies that C,,(Wx) C WAy (We))' =44 (Wa),
where the equality between the last two members fol-
lows from step (1) above. In view of (78b) in Lemma 11
it then follows that the relations (83) hold. We have thus
shown that the premises in (A) imply the relations (83).
Since (,(Wg) is covariantly associated with Wg, we then
conclude that 4,(Wp) is locally associated with Wp. We
have thus proved the assertions (A).

(4) We consider a von Neumann algebra 4 (Wg) which
satisfies the premises in part (B). I 4(Wg) is locally
associated with Wy, then 4 (W) CA(Wg)?= (4 (Wg)')*
= (4 (Wg)J)® in view of (85b), and this means that the
association of 4 (W5) with Wy is TCP symmetric. Con-
versely, if 4(Wg) is TCP symmetrically associated with
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Wg, then (85b) implies at once that 4 (Wg) =4 (W.)?, and
in particular the association is local. It readily follows
from the results in steps (2) and (3) above that 4,(Wg)
=4 (Wg) if and only if 4,(Wg)$? is dense. We have thus
proved the assertions (Ba).

(5) The assertions (Bc) are proved in the same man-
ner as the corresponding assertions about the exten-
sion (¥, D,) — (a(¥), D,) in Lemma 10, and we need not
repeat the arguments,

(6) We finally consider the assertion (d). It readily
follows from (87) that a bounded operator Y, is in
C we(Wy) if and only if ¥,Y,¥,e(,(W;) for all Yy, Y,
€A (W.). We can restate this as follows. The operator
X, is in W, (W, )J)* if and only if X, X, X, e, (Wg) for
all Xy, X, € A (Wg).

An operator X,, which satisfies the above condition is
thus included in C,(Wg). By the same reasoning as in
the proof of (81) in Lemma 11 we show that [X, JX, J]|Q
=0 for all X €4 (Wg), X, € (J(,.(W)J). By the same
reasoning as in step (3) in the present proof we con-
clude that [X, JX,J] =0, which means that (W)
CA(Wg)' =4 (W,):. Since the set 4 (W,) is trivially in-
cluded in (,,(W;) it follows that the two sets are equal,
as asserted.

This completes the proof of the theorem., We
postpone the discussion of this result until after the
next theorem,

Theovem 4: Let the notation be as in Theorem 3 (i. e.,
as in Definition 3 and Lemma 10),

(a) The following six conditions are equivalent:

(1) GWe) G W) (892)
(2) CWg)=C(W,). (89b)
(3) G (Wr) CCalWr). (89¢)
(4) Q is a cyclic vector for ((Wg).

(5) Q is a separating vector for G (W)

(6) g(WR)QcD,,, and V(Er)XQ=JX*Q (894)

for all X eg(WR).

(b) If these conditions are satisfied, then

/40(WR) =C(WR) =Cw(WR) =g(WR)- (90)

The von Neumann algebra 4,(W) satisfies the
premises of part (A) of Theorem 3, and all the conclu-
sions of that theorem apply. In particular 4,(Wg) is a
factor with @ as a cyclic and separating vector, It is
locally and TCP symmetrically associated with W5, and
it satisfies the condition of duality.

Proof: (1) We first note that since G (Wg)9Q is dense
by part {e) of Lemma 9, the relations (90) imply that
Ao(Wg) satisfies the premises of part (A) of Theorem
3, and it then follows trivially from that theorem that
the six conditions in part (a) of the present theorem are
satisfied.

(2) Since g(W,)' =( (W), the condition (89a), in view
of (78b) in Lemma 11, at once implies the condition (90).
Similarly (89b) implies (90). The condition (89¢) im-
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plies, in view of (78b), that (,,(Wg) =g(WR), and hence
C.(Wg) is a von Neumann algebra, which, by the
definition of 4,(W5z) must be equal to 4,(Wg). Since this
von Neumann algebra now has € as a cyclic vector, it
readily follows from Theorem 3 that all the conditions
(90) hold.

(3) The conditions (4) and (5) in part (a) of the the-
orem are obviously equivalent. If condition (4) holds,
then A (Wg) =C (Wg) satisfies the premises of part (B) of
Theorem 3, and it follows trivially that the conditions
(90) are satisfied.

(4) I condition (6) is satisfied, it follows from The-
orem 2 in BW I that JG (Wg)J =G (Wy)’, which implies
{89b), and hence (90). This completes the proof,

As the symbolism in Theorems 3 and 4, and in the
preceding lemmas, might appear bewildering, we
shall now discuss the situation in plain English. Part
(b) of Theorem 4 describes what we regard as highly
desirable properties of a quantum field theory, and
these properties are thus implied by either one of the
six equivalent conditions in part (a). We consider the
first of these, namely the relation (89a). The von Neu-
mann algebra ( (Wg) is “generated” by the quantum
fields (¢,[f], D;) with the support of f in the right wedge
W, and ¢ (W.) is defined analogously, The condition
(89a) is simply the condition that these algebras are
local, i.e., one is contained in the quasicommutant of
the other. These algebras are always sufficiently
“large” in the sense that each one of them has the
vacuum vector as a cyclic vector, and according to
(78) in Lemma 11 it is always the case that the quasi-
commutant of either one is contained in the other. We
do not know, however, whether (89a) holds generally;
in a particular field theory it could be the case that
these algebras are “too large” in the sense that they
fail to be locally associated with the wedges. The the-
orem now shows that the condition that the algebra
g(WR) not be too large in the above sense is precisely
the condition that Q is a separating vector for G {(Wg),
i, e., the condition that G (Wg) does not contain any non-
zero operators which annihilate the vacuum vector.

The algebra  (Wy) is defined as a “strong” quasi-
commutant of the field operators (¢,{f], D), with
supp(f)C Wy, i.e., ((Wg) is precisely equal to the set
of all bounded operators which commute with the clo-
sures of the operators (¢,[f], Dy)?, supp(f)C W, in
the strong sense of von Neumann, The algebra ( (Wy) is
then trivially equal to the quasicommutant of g (W),
According to Lemma 11 the algebra ((Wg) is always
locally associated with Wy, and the association is
furthermore TCP symmetric. These circumstances
correspond to a well-known result of Borchers which we
referred to earlier, '* The algebra ((Wy) is a reason-
able choice for “the algebra of all bounded operators
locally associated with Wy” unless it so happens that
this algebra is “too small” in the sense that it fails to
satisfy the duality condition. By the theorem the algebra
is too small in the above sense if and only if it does not
have the vacuum vector as a cyclic vector, i.e., if and
only if ((Wg)8 is a proper subspace of the Hilbert
space #.
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We have already discussed (following Lemma 10) the
possible physical interpretation of the set C, (W), de-
fined (in Definition 3) as the “weak quasicommutant” of
all the operators in P(W;). Now it is interesting to note
that, by Lemma 11, the wedge region Wy has the spe-
cial property that C,(Wg) is included in ( (Wg). This
result, which we derived on the basis of Theorem 1, is
not a triviality in our opinion. We also know that an
analogous inclusion relation does not hold for arbitrary
open regions R, It is, furthermore, interesting to note
that, by Theorem 4, the seemingly weak condition
G (Wg) c((Wg), 1. e., the condition that the operators
in G (Wg) commute at least in the weak sense of (64) with
the operators (¢,[f], D;)° for which supp(f)< W;, in
fact, implies that C(Wg) =C,(Wg) =g(WR), i.e., that
C.,(Wg) is a von Neumann algebra, identical with G (Wg),
and that ¢ (Wg) is locally associated with Wy and satis~
fies the condition of duality. This result is also
ultimately based on Theorem 1, and it does not seem to
follow from some more trivial considerations,

We do not know at this time whether C,(Wg) is always
a von Neumann algebra, i.e., closed under multiplica-
tion, without further conditions on the quantum fields.
The set (,(W5) is trivially equal to the von Neumann
algebra C(Wg) it (X', Dy)* = (X, Dy)** for all (X, Dy)
€/ (W;). One might thus say that the relation (,(Wg)
#( (Wpg) (if there are quantum field theories for which
this is the case) in some sense reflects the inadequacy
of the domain D, for the definition of the field opera-
tors. Let us here note that with our present understand-
ing of the situation the equality C,(Wg) =C (W) does not
by itself seem to imply the duality condition, In particu-
lar we have not shown that it might not happen that
C (W) consists of multiples of the identity only.

The sixth condition in part (a) of Theorem 4 is of a
“technical” nature, without any immediate physical
interpretation, We stated this condition because its form
suggests a possible direct connection with Theorem 1.
We note, for instance, that, in the very special case
that the vacuum vector is an analytic vector for the
field operators (¢,[f],D;) (as is the case for a free
field), then the sixth condition follows trivially from
the facts in Theorem 1. We are nof, however, here
conjecturing that the sixth condition follows in general
from Theorem 1 alone,

Even if the premises of Theorem 4 are not satisfied,
it is conceivable, according to Theorem 3, that the
quantum fields nevertheless have extensions which are
affiliated to von Neumann algebras which satisfy a
duality condition, at least for the wedge regions in /.
It is easily seen that if (X, D) — (ex(X), D;z) is an ex-
tension of a set of field operators which satisfies the
condition (86c), then the weak quasicommutant (relative
to D, ) of the set of extended operators is necessarily
contained in the weak quasicommutant of the original
set. The premises in part (B) of Theorem 3 thus seem
to us to express minimal conditions which a “local”
algebra “generated” by the fields must satisfy.

In Sec. VI of BW I we considered four particular con-
ditions on the quantum field, called Conditions I-1IV,
which were shown to imply the duality condition for the
wedge regions. We shall not state the generalizations
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of thgse conditions here, but we assert that our earlier
Conditions I, II, and IV trivially imply the premises of
Theorem 4, and that our Condition II implies the
premises of part (B) of Theorem 3.

VI. THE DUALITY CONDITION FOR VON NEUMANN
ALGEBRAS ASSOCIATED WITH DOUBLE CONES AND
THEIR CAUSAL COMPLEMENTS

In this section we shall generalize the discussion in
Sec. VII of BW I. We shall thus consider the construc-
tion of von Neumann algebras locally associated with a
particular family of regions, namely double cones and
their causal complements, in terms of a von Neumann
algebra 4 (Wy) locally associated with Wz, The scheme
is the same as in BW I,

Definition 4: Let the von Neumann algebra 4 (Wg) be
locally associated with Wpg, in the sense of Definition 2,

(a) For any Wel/, i.e., for any wedge region W
bounded by two nonparallel characteristic planes, we
define a von Neumann algebra 4 (W) by

ANGCN W) =UNA(WUM)?, any A€ 7. (91)

(b) For any two points x; and x, in Minkowski space
such that x, € V,(x,) {[where V,(x;) is the forward light
cone with x; as apex], we define the double cone
C=Clxy,x,) by

C(xi,xz):V,,()Q)ﬂ V_(xz), (92)
where V.(x,) is the backward light cone with x, as apex.

The double cones so defined are thus open and nonempty.
We denote by [, the set of all double cones.

For any double cone C we define a von Neumann
algebra A(C) by

B©@ =n{Am|Wwey, woCk (93)

(c) For any C €/), we define the von Neumann algebra
A(C®) by

AC)={AW|Wey, wcCe, (94)

(d) A set of von Neumann algebras, defined as above,
shall be called a local AB-system,

It is easily seen that the definition in part (a) above is
consistent, i.e,, that the algebras defined by the
right-hand side of (91) for two different X', 1", are
equal whenever AQ)Wy=A(\")Wg. We remark here
that, as in BW I, we prefer to regard 5(C) as associat~
ed with the closed set C, and hence the above notation.

We shall next state a theorem corresponding to The-
orem 5 and part of Theorem 6 in BW I,

Theorem 5: Given a local AB-system, defined as in
Definition 4 in terms of a von Neumann algebra 4 (Wj)
locally associated with Wy, then:

(a) The algebras in the AB-system satisfy the condi-
tions of covariance and isotony, i.e., if Q(R) denotes
A(R) or A(R), with the appropriate restriction on E,
then the conditions (65a) and (65¢) hold. Furthermore,

B(CYTAMCACS) (95)
for all We{(f/, Cy,Cy€/),, such that C;c WC 4,
(b) The algebras 3(5) are local, in the sense that
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BCYCRECyY (96a)
for any Cy, Cy€/),, such that Cy cEg. Furthermore,
BC)*DA(C?) (96b)
for any Ce/f,.
(c) The mapping W— 4 (W) is continuous from the
outside in the sense that
AW =n{AW) | Wye W, Wy> W} (97a)

and it is continuous from the inside in the sense that
AW ={4W)| W, e, w,cw}, (97D)
The mapping C — 4(C) is continuous from the outside
in the sense that
B©=n{BECY|CyeD,, CCoh
The mapping C°— 4 (C°) is continuous from the inside
in the sense that
AC)={4(C9|CieD,, CioCY. (97d)
(d) If the algebra 4 (Wjy) satisfies, in addition, the
condition of TCP symmetry, as stated in Definition 2,
then the AB-system is TCP symmetric in the sense
that
0 AWM =A(- W), 8,8(C)85!=4(-0),
0,4 (C905" =4 (- C°)
for all We/, Ce/),, and where — R={x|-x € R} for
any subset R of Minkowski space,

(97¢)

(98)

(e) If the algebra 4 (Wpg) satisfies, in addition, the
condition of duality, as stated in Definition 2, then the
algebras A(C) satisfy a condition of duality in the sense
that

B(C)=A4(C°)
for any C</).

(99)

The assertions (a)—(d) in the theorem correspond to
Theorem 5 in BW I, and the assertion (e) to the asser-
tion (a) in Theorem 6 in BW 1. The above assertions are
proved by a very trivial modification of the reasoning
whereby we proved the corresponding assertions in
BW I, and we do not feel that it is necessary to repeat
the arguments here. The modifications, of course, have
to do with the circumstance that the locality conditions
in the present theorem refer to the notion of a quasi-
commutant, rather than to the notion of a commutant as
in BW I,

The above theorem is of interest because it shows
how a “wedge algebra” 4 (W) with physically desirable
properties gives rise to a sysfem of algebras (associat-
ed with other regions) with physically desirable prop-
erties, such as covariance, isotony, TCP symmetry,
and duality. In our study of a general quantum field the-
ory the crux of the matter is thus to establish the ex-
istence of an algebra 4 (Wj) which is locally associated
with Wy and which satisfies the conditions of TCP
symmetry and duality.

Now it should be noted that nothing said so far guaran-
tees that 5{C), for some particular Cs/),, contains
other elements than multiples of the identity., In a
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physically satisfactory “local” theory it must clearly be
the case that at least some of the algebras S(C) are non-
trivial. In a quantum field theory one might in fact
demand that all the algebras 4(C) are nontrivial,

and furthermore one might demand that the

algebras A (C) associated with all Cc C§, for some C,
should generate the algebra 4 (C§). We shall show that
this is in fact the case if the quantum fields satisfy the
conditions in part {a) of Theorem 4, We do not have a
corresponding result for fields which merely satisfy the
premises of Theorem 3. The situation in the latfer case
is complicated by the fact that the extensions of the field
operators described in Theorem 3 depend on the region
with which the operators are associated, and to clarify
the situation it would be necessary to investigate the
relationship between the domains of the extensions for
different regions. This we have not done, and we shall
therefore restrict our considerations to the case

when the premises of Theorem 4 are satisfied. We note,
however, that we do obtain a satisfactory local theory

if the fields satisfy the premises of Theorem 3, and
some additional condition which guarantees that 8(C)$
is dense, We refer here to the assertions (b) and (d) in
Theorem 6 in BW I, which can readily be generalized to
the present situation, It is of inferest to state the gen-
eralization of the first one of these assertions as
follows.

Theorem 6: Let the von Neumann algebra 4 (Wg)
satisfy the premises of Theorem 5, and let a local AB-
system be defined in terms of 4 (W) as in Definition 4.
Let 4 (Wy) satisfy the condition of duality, as well as
the additional condition that

XQeD,, VEnXQ=JX*Q
for all X € 4(Wg).

If there exists a double cone C; such that 3(50)9 is
dense in the Hilbert space #/, then

(100)

A€ =18©)|cep,, ccCg}” (101a)
for every Ci€/)., and

AW ={8C)|AL,, ACjcW}", (101b)

ACH={8(Cy)|A L, ACycC5}" (101c)

for every C,€/),, We /. I, furthermore, C,C Wp,
then
AWg) ={Vt)BC)V @) |te R}, (101d)

These assertions are proved by the same reasoning
as in our proof of the corresponding assertions in The-
orem 6 in BW I, and we shall not repeat the arguments.
We note here that the premises of the theorem at once
imply that © is a cyclic and separating vector for
A(Wg), as well as for 8(C;). We furthermore note that
the condition (100) is not required for the conclusion in
part {e) of Theorem 5, It is, however, essential for the
present theorem, and in particular for the conclusion
(101d). We refer here to our discussion in Sec. V of
BW I of the connection between our considerations and
the Tomita—Takesaki theory of modular Hilbert alge-
bras, !® The relation (101d) can thus be understood with
reference to the fact that because of (100) the group
{V(®)1t< R} is precisely the modular automorphism
group for 4 (Wg).
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In preparation for Theorem 7 we prove a lemma
about the nature of the weak quasicommutant (", (R) in
the special case that R is the closure of a double cone
in/f,.

Lemma 12: Let C<c/),. Then

Col@=n{Cum|Wey, woC. (102)

Proof: (1) Let C, denote the set defined by the right
side of (102). It is at once obvious that (,(C) )C(Cy, and
we thus have to prove that if X<, then Xe(,(C).

(2) Let p eIy, and let fx) € /) (RY) such that supp(f)
=R, C C° The support R, of the test function f is thus a
compact subset of the open set C°, For any x we denote
by b(x; p) the open ball of radius p> 0 centered at x
[where Minkowski space is regarded as a Euclidean
space with Cartesian coordinates x = (x!, x?, x3 ,x%]. Now,
for each x € Ry we can select a p{x)>0 such that
b(x;2p{x)) C W for some We// such that W< C®, The set
{bx;p(x)) Ix € Ry} of open balls covers Ry, and, since
R, is compact, this open covering contains a finite sub-
covering. There thus exists a finite set {x,ix, < R,,

k=1,...,n} of points, and a set {W,1W,c(l/, k=1,...,n}
of wedges, such that
Ry CU{bley; ple ) R =1,. .. 0}, (103a)
bley; 2p(x,)) S W, C°, k=1,. (103b)

In view of (103a) there then exists a set | g,(x)ig,
€)RY, k=1,...,n} of functions such that supp(g,)
Chlx,; 2px,)) for k=1,...,n, and

7

2) &) =1, allxcR,.

k=1

Let (Y9 Di):((pu{fl"ol) and (Yk) Di
k=1,...,n We then have

(103c)

((pu.{fgk}: fOI‘

n
(Y’ Dl) = kE- (Yk, Di),
where (Y,, D)€ / (W,). X now X&(;, then Xe( (W)
and hence X commutes in the weak sense (64) with
(Y,, D)’ for k=1,,.,,n I follows, in view of (103d),
that

Y | Xo) =(X*¢ | Y7y
for all ¢, Y& Dy.

{3) For any X €(; the relation {103e) thus holds for
all (Y, Dy)=(o,[f], D1)CL(C"') such that supp(f) is com-
pact. The set /) (R?) is dense in §(R%) in the topology of
the space of tempered test functions, and, since the
quantum fields are operator-valued tempered distribu-
tions, it readily follows that (103e) holds for all (¥, Dy)
=(¢,(7], Dy)€[(C°) such that fe §(R*), supp(f)cC,
i.e., for all elements of / (C°). 1t then follows, in view
of Lemma 9, part (c), that X<(,(C). This, in effect,
completes the proof of the lemma.

(103d)

-

(103e)

We are now prepared to present the main result of
this section.

Theorem T: Let the quantum fields be such that the
conditions in part (a) of Theorem 4 are satisfied, i.e.,
the von Neumann algebra 4(Wpg) =4 ,(Wg) satisfies the
relations
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/](WR) :C(WR) :Cw(WR) :g(WR),

and hence the algebra is locally and TC P-symmetrical-
ly associated with Wy, Furthermore, 4{Wg) satisfies
the condition of duality, and the conditions (100). Let a
local AB-system be constructed from 4 (W), as in
Definition 4. Then:

(104)

(a) The algebra 4 (Wy) satisfies all the general and
special premises of Theorems 5 and 6, and all the con-
clusions of these theorems apply. In particular 5(C,)%2
is dense for any Cy</),. Furthermore, for any C;c/),
such that Co C Wg,

AW ={Vt) G (C)v(e)!|te R, (105a)
ACH=1g(C)|A e Ly, AC T}, (105b)
{b) For any C&/),,

C(O)CCL(O)=B(C), GO CA(C), (108a)
CulC)DCCY DA, G(C)DA(CO). (106b)

(c) With the notation of Lemma 10, ,40(5) :cw(é)
=A(C) for all Ce/).. For any such C the operators in
P(C°) have extensions constructed as in part (c) of
Lemma 10, and these extensions have the properties
described in the lemma. In particular the closures and
adjoints of the extended operators are affiliated to the
von Neumann algebra 4 (C°).

(d) With the notation of Lemma 10, ( ,(C¢) D4,(C°)
2 (C%) for all Ce /). For any such C the operators in
P(C) have extensions constructed as in part (c) of
Lemma 10, and these extensions have the properties
described in the lemma. In particular the closures and
adjoints of the extended aperators are affiliated to the
von Neumann algebra 4,(C¢)* Cg(ﬁ) c B(0).

Proof: (1) The algebra 4 (Wy) trivially satisfies the
general premises of Theorem 5, From the construction
of the AB-system, and from (104), it follows, in view of
Lemma 12, that ¢, (C)=4(C).

Since the mapping R —-g(R) satisfies the condition of
isotony, the inclusion relation at right in {108a) foliows
from (104). The remaining relations (106a) and (106b)
are then trivial,

(2) Since, by Lemma 9, g ) is dense for any
C < /). it follows that g(C)SZ is dense, as asserted in
part (a) of the theorem, Let now Cy</), and C,C W,
Let 4, denote the von Neumann algebra defined by the
right member in (105a). The vector £ is then a cyclic
vector for 4 z, and in view of the construction we have
V() ARVt =4 for all real ¢, Furthermore, it is
trivially the case that 4(Wg) 24 . It then follows from
Theorem 2 in BW I that 4 (Wg) =45z, as asserted in
(105a), The relation {105b) follows trivially from the
relation (105a),

(3) The assertions (c¢) and (d) of the theorem are tri-
vial in view of Lemma 10,

As we see from this theorem, a very satisfactory
“local” theory results if the quantum fields satisfy the
premises of Theorem 4, i.e., any one of the six con-
ditions in part (a) of that theorem. There thus exists a
local AB-system which satisfies the condition of TCP
symmetry and the condition of duality 4(C)*=4(C®).
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Furthermore, for any C</)_, the von Neumann algebra
R(C) has © as a cyclic and separating vector. The rela-
tions (101a)—(101d) hold, which means that the set of
local operators associated with the bounded regions C
is sufficiently large in the sense that these operators
generate all the algebras of the AB-system, as de-
scribed by the relations (101a)—(101d). Now it is in-
teresting to note that the algebra 4(C) is in fact equal
to the weak quasicommutant ,(C) of the set of all field
operators of the form (¢,[f], D), where fe §(RY),
supp(f) < C°. We thus have a conceptually simple pre-
scription for “finding” the algebras 4(C) provided that
it has first been established that the quantum fields do
satisfy the premises of Theorem 4.

We note here that this is the case under what we
called Condition I in BW I, because this condition says
that ( (Wz)Q is dense. It follows that all the conclusions
in Theorem 7 hold under our earlier Condition I. We
overlooked this fact in our previous paper.

We infer from the work of Landaul!” that g(é) is in
general smaller than 8(5). The study of Landau is
concerned with generalized free fields, in which case
we have the further simplification that (,,(R)=C(R) for
any subset R of /j. We then have 4(C°) =( (C°) and 4(C)
= (C), but it can well happen that g(C) #4(C).

We conclude by stating a theorem about local internal
symmetries.

Theorem 8: Let 4(Wg) be a von Neumann algebra
locally and TCP-symmetrically associated with W, It
is assumed that 4 (W) satisfies the condition of duality,
and that furthermore

XQCD,, VEnXQ=JX*Q (107)

for all X e 4(Wg). Let a local AB-system be constructed
in terms of 4 (Wpg) as in Definition 4.

Let G be a unitary operator such that
GR=Q, GAMWMG=4(W), all We|f.
Then:

(108a)

(a) The operator G commutes with the TCP transfor-
mation, and with all Poincaré transformations, i, e.,

0,60;'=G, UMNGUN'=G, allrcyp (108b)
(b) For all double cones C,
GR(C)G=R(C), GA(C)G=4(C). (108c)

(c) The set of all unitary operators G which satisfy the
conditions (108a) forms a group, the group of all local
internal symmeltvies.

This theorem is proved by the same reasoning as in
our proof of the corresponding Theorem 7 in BW I, and
it is not necessary to repeat the arguments here, We
note here that the conclusions of the theorem do not
follow (as far as we know) merely from the assumptions
that 4 (W) satisfies the condition of duality and is
locally and TCP-symmetrically associated with W,
Our proof in BW I depends on the specific conditions
(107), which presumably characterize local von Neu-
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mann algebras in a quantum field theory. Without the
conditions (107) it can be shown!® that G commutes with
all translations, but it appears that further assump-
tions are necessary for the conclusion that G also com-
mutes with homogeneous Lorentz transformations, 1°

We finally note that the “group of all local internal
symmetries,” as defined above, will in general in-
clude superselection symmetries with no observable
physical effects.
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A gauge-independent definition of differentiation is given for non-Abelian gauge fields in terms of parallel
translation. This is achieved by a suitable definition of time-ordered operator products. Equal time
commutation relations are used to derive the differential equations for the related Green’s functions. The
Green’s functions are discussed for general linear gauges. In comparison with electrodynamics the Green’s

functions have the well-known ghost-loop terms.

1. INTRODUCTION

The purpose of this paper is to extend a formalism
developed by Meetz! for scalar electrodynamics to non-
Abelian gauge theories. In this formalism the concept
of covariant differentiation (or parallel displacement)

is transferred to suitably defined time-ordered products.

The field equations obeyed by time-ordered products
and Green’s functions then naturally arise. Because this
concept is not restricted to the Abelian gauge group one
should be able to treat non-Abelian gauge groups with
their complications in the same way. We will show that
this in fact is the case.

Throughout the paper we shall consider a gauge theory
with local group SU(2). This is without loss of gen-
erality as the results are easily translated to the case
of any compact simple local gauge group. Now in the
usual formalism one defines the gauge-covariant
derivative of a field ¢* by

(Vi d)* (x): = ViP(x) ¢5(x): =[ 8440, — i & T A% (x)] ()

=[8440, — ig(TH*PAL(x)] ¢*(x). 1.1
Here A¢ is the gauge field potential (with the index a

taking the values 1,2, 3), 7% are the generators of the

Lie algebra of SU(2) in the representation corresponding

to the transformation properties of the field ¢%, and

g is the coupling constant. In the adjoint representation,

which for simplicity we always consider, we have

(T®)®° =de .. V.0 is covariant under the gauge trans-

formation

%(x) — expligTO(x) *° % (x), (1. 2a)
TA, (x) —~ exp[igT8(x)] TA, (x) exp[~ i gT6(x)]
- (1/ig) expligT8(x)] 3, exp[-igT8(x}], (1. 2b)

where 68%(x) are arbitrary functions. The relation be-
tween the gauge field potentials and the field strengths
is given by

(Vuvv— Vvvu)ab¢b(x) :—geachulba(x) ¢c(x)a (1- 3a)
where
Fo(0) =23,4%x) - 8,A5(x) - geac AL ) AS(x).  (1.3D)

A further covariant derivation V, and application of
the Jacobi identity gives the analog of the homogeneous
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Maxwell equations

VR (x) F,b(x) + Ve (x) F 2(x) + V& (x) F,2(x)=0. (1.4)
F,; transforms under gauge transformations as an
isovector

F,%x)— expligTO(x) ] F 5(x). (1.5)

All the complications of the non-Abelian gauge field
stem from the fact that, because the adjoint representa-
tion is not trivial, field strengths are gauge dependent.
Hence the covariant derivatives do not reduce to or-
dinary ones.

We can also consider this formalism from a more
differential geometric point of view. We regard (1.1) as
a covariant derivative in the sense of differential geom-
etry with linear connection ge,,, Aj(x). Parallel transla-
tion of a vector ¢°(x) along a path £(s) is then defined by
the differential equation

L 0(5(6)) - geune o) AL 9°(E(N =0 (1.6)

The solution of (1.6) for parallel translation along a
finite path is given by
¢°(1) — ¢*(x(s) =T explig [ dE*TAL(5)1*0"(0)

=: x®(x)d(x),

where T means ordering along the path,

(1.7)

Now one should consider two vectors ¢%(x), ¢®(y) as
physically equivalent if they can be transferred into each
other by parallel translation. In the presence of a gauge
field this concept of physical equivalence does depend on
the path chosen because under a deformation of the path,
with the endpoints fixed, we get

boxl() =g [ dE*(s) 88 (5" XE (Weeso FLl(E( M (),

(1.8)
where x2°(£(s")) =T explig f:, d£*TA,)?". The dependence
on the path prevents, in our view, this notion of phy-

sical equivalence to be of relevance. But locally we are
able to define the gauge-covariant derivative unam-
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biguously by parallel translation,
R T
lim =[x;"*(x) $°(r(s)) - ¢°(x)]

dg*
ds |,

ag”
ds |y

(éabau _geach;c;(x)) ¢b(x)~

(Vu9)ix) =

(1.9)

From our point of view only the local implications of
parallelism should be ingredients of a physical theory,
in particular with respect to the quantized theory. This
is in contrast to the view presented by Mandelstam in
Refs. 2 and 3. He introduced field variables that are
gauge independent, but depend on a path leading from
the space-time point x to infinity. For an isovector field
¢“(x) the path dependent field °(x,P) is constructed by
parallel translation of ¢® along the path P from x to in-
finity,

(v, P): =T" exp[~ ig fp dE*TA (£)]P¢%(x). (1.10)

Here T* means antipath-ordering.

We prefer a formalism that makes use of the concept
of parallelism only locally. In Sec. 2 we shall derive
the equal time commutation relations for gauge field
variables and a scalar isovector field. The procedure
will be closely analogous to that given in Ref. 1. We
also restrict ourselves to linear gauges. Our program
then requires the definition of parallel translation or
gauge-covariant differentiation of time-ordered products
or Green’s functions respectively. These concepts will
be introduced in Sec. 3 and the resulting field equations
will be determined. In Sec. 4 we shall summarize these
equations in the condensed notation invented by Man-
delstam® and write them in integrated form. The equa-
tions differ from those naively expected by an additional
term, which in perturbation theory produces the well-
known “ghost” loops in Feynman diagrams, found by
Feynman, * De Witt,? Faddeev and Popov, ® Mandelstam,
and others,

3

2. COMMUTATION RELATIONS

Our starting point is the Lagrangian of a non-Abelian
gauge field with structure group SU(2), coupled to a
scalar isovector field

L) == LFg, G)F 2 + 3{950°00) Vi 6°(x) = m°(x) 0°(0)].
(2.1)

The additional isovector field will not add appreciably

to the complexity of our system, but will help us to infer
the commutation relations in accordance with the classi-
cal Poisson-brackets that can be derived from (2.1),
e.g., by the method of Peierls.” From the Lagrangian
(2.1) we derive the classical equations of motion

VYL )F L (x) + g8 (x) 60 (x)egpa 0% (x)

=1V, (x) F,2(x) - ji(x)=0, (2.22)

VL)V (x)p(x) + mP P (x) = 0. (2. 2b)

We shall assume that these equations, suitably sym-
metrized, are still valid in the quantized theory. Here
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we want to remark on our treatment of noncommuting
operators in operator products. We always regard such
products as symmetrized and indicate this by a dot,
A+B:=3(AB+ BA), and appropriate brackets if more
than two factors are involved. Some of our calculations
require a reordering of symmetrized products. This
can be achieved by the formula A -(B-C)=(A+B)-C

- ill4, ], Bl. In our calculations the double commutator
always vanishes.

Now we proceed with the identification of the equal
time commutation relations. The commutators that can
be written down from the outset are those between the
scalar variables and their conjugate momenta. Non-
vanishing are

[¢a(x)x0)’ (V0¢)b(y,x0)]=i6ab5(x- Y)- (2' 3)
In contrast to the Abelian case the commutators between
field strength operators are gauge dependent and we
have to derive them. To do so we follow closely the
procedure given in Ref. 1 that relies on the method of
Peierls and consistency considerations.

First we determine the commutation relations be-
tween the field strength operators and the scalar vari-
ables. Af, hence F,}, and ¢° commute, because these
variables are independent. [This is not generally true.
Rather it is this assumption that confines us to “cou-
lomblike” gauges in the following. These gauges are de-
fined by imposing a gauge condition on the spatial com-
ponents A¥ of the potentials and treating Af as dependent
variable. ]

The commutation relations between Fy? and ¢® can be
derived by considering the zero-component of Eq.
(2. 2a), which is an equation of constraint,

Vi) «Fol(x) = = 3(x) = g(VE(x) p°(x)) €450 (%),
Relation (2. 3) implies
[-78(x,x%), ", 2")]=—igd(x - V) eapcd®(y,x"), (2.5a)
[ 78(x, 2%, (Vg)°(y, 20 ] = = ig8(X = Ve (Vo $)° (¥, x°).
(2. 5b)

(2.4)

In view of (2.4) and our assumption that A{ and the
scalar variables commute, we conclude from (2. 5a)

[Fo(x,%%), ¢°(y,%))]=-gTi*(x,y) $°(y,2"),  (2.6a)
where T'; fulfills the equation
Vi)« TPe(x, y) = de g, 5(X = ¥). (2. 7a)

Because of the hermiticity of F,? and ¢° it follows from
(2. 6a) that

Torox, ) 65y, 20) = - ¢°(y, x°) Too(x, y) .

Now we consider the commutator between F;; and <1>"¢>".
The Egs. (2.6a) and (2. 8a) imply

[Foi(x,x"), ¢°(y,x%) ¢°(y,x%]
= - g ¢%(y, ") [[9(x,y) - T4 x, v)'] °(y, x%).

(2. 8a)

On the other hand we can calculate this commutator
by the method of Peierls. We find that the gauge in-
variant quantities F ¢+ F,2 and ¢’¢® commute. But F 3
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and ¢°¢® commute as well and therefore the same holds
for Fy¢ and ¢°¢°. To satisfy this condition we demand

rex, y) =1 x, y)'. (2. 8b)

In the same way the method of Peierls shows that Fg
and (Vy¢)°¢®, (V,0)°(V,0)° respectively, commute. ThlS,
together with (2. 6a), (2.8b), and the hermiticity of

(V40)° gives
[Foix,x%), (V40)°(y, x°)] =£(V,0)°(y, 2% T (x, y)

=-g I'P(x,y)(Vo0)° (¥, 2). (2. 6b)

From now on we shall assume that I"®*° is a function
only of the spatial components A of the potential. Be-
cause I“"”C then commutes with ¢® and (V) the rela-
tions (2. 8a) and (2. 8b) show that it has to be antisym-
metric in the indices b and ¢. Therefore we can write

I9°(x, y) = iT3%(X, ¥ e goe (2.9)

From (2. 8b) we see that I'?® has to be Hermitian. It
obeys a differential equation that can be derived from
(2. 7a),

Vi) TP, y) = 6,5 5(x - ¥).

In terms of I'{’ the commutation relations (2.6a) and
(2. 6b) now read

[FO?(X7 x0)5 ¢)b(y, xO)] == ’lg F?c(x) Y) €cba ¢d(y,x0),
(2.10a)

(2. 7o)

[FO?(X, xo)’ (Vo¢)b(y, xo)] =-ig T'{°(x, y)fcbd(vo¢)d(y’x0)-

(2. 10b)

This is in close analogy to the Abelian case. The im-
portant difference is that now, according to Eq. (2.7),
T'; generally is a g-number function. An exception to

this is the axial gauge, as will be seen below.

Next we derive the commutation relations between
F,¢ and the spatial covariant derivatives (V;¢)’, To
achieve this we first compute the commutator of
FydoF 2 and (V46)°(V,;0)° by the method of Peierls. As
F j; commutes with (V,90)°(V;06)" we can, as in our pre-
vious calculation “divide” by it and we get

[FO:‘I(X,XO), (Vod))b(y,xo)(v ¢)b(Y) xO)]

=-ig 5ij5(X—Y)€abc( o¢) y,x ) oy, x . (2.11)
Together with (2. 10b) this implies
[Fog(xyxo)y (Vj(b)b(y,xo)]
=—ig8;; 6(X ~ ¥)eaps ?°(y,x°)
- ig TE(X, P)ecsa(V;0)°(y, %°). (2.12)

If we express V; explicitly in terms of the potential
(y) xO) = [6bcaj - gebchl]i'(y’ x())] (bc(y’ xO)’

and expand the left hand side of (2.12) with the help of
(2.10a) we find

[FO?(X,XO), A?(Y,xo)] =

b
Vjc(z)c

— [ 8450;; 8(x-y) -

(2.13)
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&, y) V7 (v, 20].

Here V, is defined by VS¥(y, x%) = [6.,3, +ge.0 A%y, 2%)],
where the derivative acts on the function to its left. Be-
cause of F i =0;A%- 3,49~ ge,,, AJAS, (2.13) leads to
[FO(il(x’xO)y Flk(y’x )]:i[éijvgb(x> xO)

- 5;,,VP(x,2")] 5(x~y) (2.14)
- Zg raC(x, y)ecbd sz(yyxo)-
Equations (2.13) and (2. 14) are consistent with (2. 4).

Finally we have to determine the commutator between
Fy% and F,%. To this end we calculate

[Foi(x,2%), V,i(y,x°) FySly, «%)]

= [Foix,2%), jb(y,x")]=ig TEX, Yeadi(y, x°). (2.15)

On the other hand, because of (2.13), we can evaluate
the left hand side as
[Foi(x,2°), Voily, ")« Fo5ly, x")]
= Vuiy, 2") < [Fofx, 2", oy, )] +ig{~ 6~ y)enge
XFof(x,x") + [T9°(x, ) 95y, x°) ] < eane Fo3(y, %)}
(2.18)

Using (2. 7b) and a reordering of the symmetrization,
we can transform the last term,

ig{= 8(y = X) €4,0F o (%, 2°) + [TF(x, 7) V5y, 2% ]~ €4 F oy, 2°)}
=igVyl(y,x") o[- TV, X) » €gqe Fo§ (%, 5°)
+ X, ¥) c€gee Fo3(y, x°)] +ig TE X, ¥) €0 (v, 2°).
2.17)

Together with (2.15) we have
Vbi(y, xO) °[F0Li1(x7 xO)’ FO?(Y)xO)]
= ng(YaxO) ° [_ 1g r?d(xay) °€dceF03(Yax0)
+ig TSy, %)« €g0e Fof (%, 2°) 1. (2.18)

Hence the commutator reads

)] - igr?c(xy Y) ° €(:l‘ni};‘()lji(y’ x[))

0
6::adFOt"i(xy x).

[FO[iz(x,xO), FO?(Y,XO

+igT%(y,x) (2.19)

This is what can be derived without more definite as-
sumptions on the gauge defining operator I';. To go on
we shall require in the following that A obeys a linear
gauge condition,

S ar(@)Alz,y") v,k (z,y) = B*(y,»").

Here B®is a ¢-number function and ¢
matrix that is assumed to satisfy

(2. 20)

is a c-number

'YX, ¥) = Bgp O(X = V). (2.21)

Substituting (2. 20) in (2. 13) we find that this gauge con-
dition requires

[ dr@) v, 2) (V'v) (z2,9)°,

provided that the operators involved exist.

r?(x,y) = (2.22)

To solve for the dependent variables A we start from
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the equation
Fl(x) =3, Af(x) - 3; A§(x) — geancAi(x) < Ag(x)

=9y Al(x) - V¥(x) - AQlx), (2.23)

which solves the field equation (1.4). If we integrate this
equation with y;, we get
[ dr(z) Fol(z,x°) v,i(2, %)
=2,B%(x,x°) + [d7(z) Ad(z, ") < [VI%(2,x")v i (z, )],
(2.24)

Under the assumption that the commutator of A§ with A?
is a function of A? we can remove the symmetrization
of the product, which gives an additional commutator
that is a function of A',?, and integrate with (V'y;)"!. Upon
symmetrization of the resulting expression the additional
term vanishes and we finally arrive at
A§(x,x%) = [ d7(2) {Fy}(z,x°)  Thy(2, %)
- [2:B°(z, x) [ (V'v,) (2, %)"} (2. 25)

This is in agreement with our assumptions on the com-
mutator of AZ and A%,

Lastly we calculate with the help of Egs. (2.10),
(2.13), (2.22), (2.7), and (2. 25) the commutators of
¢ with the other field variables:

[Af(x,x%), Ally,x")]
=—i{[T®(x,y) - V¥€(x,x") [ d7(z) T¥(z, x) T¥(z,y)],

(2. 26a)
[Folf(x’xo), Ag(y’xo)]
:iaor?b(x) y) +ig€ach0‘ii(x’x0)
o[ [dr(2) T®(z,%) T2(z,y)] - igT°(%, y)
sersAl(y, x%) +ig A§(X, x°) c €,y TE(X,¥), (2. 26b)

[A5(x, %), ¢y, x")]=ig [ dT(2)T(z, %) T2, Y)eame d°(y, x°).

(2. 26¢)
To derive (2.26b), one has to use the formula
[Foi(x,x%), TF(y,2)]
=TI, X)ego Ti°(X, 2)
+ig [ dr(z’)
x[T3(x, 2) 05 (2") TY(y, 2 )esoe Teb(2”, 2)]
=g T3y, X)egeTi°(X, 2)
+ig [ dr(@) [T}y, 2") Vi (z)
XTY (X, 2")es0 T se(2’, 2)]

+igTh(y, 2)T9°(X, 2)eoges (2. 26d)

that follows from (2.22). In addition (2.23) and (2. 25)

are needed to cast (2.26b) into the special form given
above.

The commutators we have derived are a generaliza-
tion of those obtained for the coulomb gauge by Schwin-
ger.® Our formulas cover all linear “coulomb like”
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gauge conditions. For the coulomb gauge we have to
choose
i 2 1
H = - —_— =,
')’ab(xi}')— 5ab axz 47r|x—yl
Alternatively, we can choose a path gauge, as mentioned
in Ref. 1, with

Yap(X, y) = 6abf_i dg' s(x -y - &),

where £(s) denotes a fixed spatial path from zero to in-
finity. For £(s)=ns, n an arbitrary unit vector, we re-
cover the axial gauge used by Arnowitt, Fickler, % and
Schwinger. '° In the case B*=0 this gauge has the prop-
erty that the component of the three-vector A{ in the
direction of n vanishes. From this it follows that the
corresponding ¥,i(x,v),

. i 0
Y;b(’(,y),q == 5abn imd86(x_ y- ns),

(2.27)

(2.28)

(2.29)

fulfills A%(x) v,:(X,y) 4 =0 without integration. This
implies
r‘a:;(xay)A: Ya;;(x, Y)A, (2. 30)

as we see from the explicit expression (2. 22). We shall
remark on the implications of (2. 30) in Sec. 4.

3. TIME-ORDERED PRODUCTS AND FIELD
EQUATIONS

In this section we shall find a definition of time-
ordered products of field operators, denoted by T, SO
that these products with a suitable definition of covariant
differentiation (or parallel translation) obey Egs. (1.3)—
(1.4) and yield covariant field equations. T products
will differ from ordinary time-ordered products, de-
noted by T and defined explicitly by

TAx), B =0("-3y)Ax)BE)+ 606" - x") Bw)A(x),
3.1)

by additional terms similar to those found in Ref. 1.

T is equal to T, if only scalar variables are involved.
For field strength operators the generalization from
electrodynamics is straightforward, i.e.,

T(F, %), F,20))=T(F,%x), F,2))
+i8,,(ghel - ghet) (&gl - glgd)6;, 6(x = ).
(3.2)

This is to be generalized to products of several field
strength operators as follows,

%(Fug(x)m Fl)eo0) =T(F,8(x) coe Foy)eee)
+i8.(8h gh—gh e (gegl— 5180
X 8;;0(x = y) T(ew0) + voe, (3.3)

where the symbol f‘u;', means that the denoted operator
is not to be included in T ordering.

Next we consider the inclusion of one potential op-
erator A% in T ordering. For this we calculate with the
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help of {2.13)

0T (F,uy2), Agle)) = 3iT(F,5&), ANa’)) = g€seq

XT(FA(z), Asz'), AXz"))
=T(F =), Flz")
+i(ghel-ghal) (ghgi- g8 {64p0:, 5(z - 2')
~ (60637 — geraAJ2 ) T3z, 2")} 5(2° — 270).
We now see that with the definition
T(F,i), AMz")=T(F.l(z), Az")
-i(ghgl- gLl gl TPz, 2")6(" — 21"),
(3.4)

the connection (1. 3b) between field strengths and po-
tentials is also true for T products,

2e), ANz")) - 3T (F %), AbR"))
—gena T(F,02), ASR)), A" =T(F,%z), F,2")).
(3.5)

IT(F,

The extension of (3.4) to products with more than one
field strength operator is obvious and is given by the
recurrence relation

T(AL), Fu) ) =TA20),

-i(glgl-glgh) gl T(TP(2,y)

F.3 4(z) oo )

X8z =af), eoe) +oee, (3.6)
Now we are able to define the gauge-covariant
derivative of 7 products,
VR (x) T($°(x) voe , Fpglz) w00 ) =3, T(p%(x) »oo, Fpilz) oov)

~ T (A5 (), O2(x)eer,
X Fod(z) o). (3.7)

We have written the gauge-covariant derivative of a
scalar variable. In this case the derivation results in

TD(x) T(p2(x) o0, Foz) ov0) =T ([6459 s — EacvAl ()]
(bb(x)v °e0, Fag(z) ‘ °°)=f(€zb(x)¢b(x); SR an(z) ¢ ”)
(3.8)

because the extra terms for the potential are cancelled
by the commutators that are produced by the time dif-
ferentiation. This is analogous to electrodynamics. !
Repeating the calculation of Ref. 1 gives the field equa-
tion (1. 3) for T products,

V() V)] T (¢?

[Vo(x) VEb(x) (x) o0, Fpilz) oee)

== geup T(F (1), @P(x)oee, FAE) e0). (3.9)

That (3.9) is true also for gauge covariant derivations
of fields strength variables is seen by a straightforward
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but a little more tedious algebraic calculation. We also
can verify (the details of the calculations are omitted in
the following) that Eq. (1.4) holds for T products with-

out extra terms,

V) T(Fall), Fui")

=T(V8@) F @), F,i"))=0 (3.10)

Here [poA] means cyclic permutation of indices. We
have assumed (1.4) to hold also in the quantized theory.
Equation (3.10) is true for an arbitrary T product.

The field equation (2. 2) is more difficult for T-~pro-
ducts. For the 7-product of two field strength operators
we find

Vi) T(F,e), F,ie")
=T(V4() FL0@), Fole")

+i[g,, Vi4z) — £,,V2(2)] 6z — 27)

- iggiT¥(z,2') 5% = 2% c€,4o Foi(z ")

+igeqe T(gile%(2,2) 5(z° = 2%, F,iz"). (3.11)/

If we anticipate that in future formulas I'; will always
appear in the combination

T2(x,y): = giT®(x,y) 8(x"~ »?), (3.12)
which is a particular solution of
Iz;b(x) FBC(X,Y)Z(Sacé(x-y), (3-13)

we can write (3. 11)’ in the more compact form
2) T(F, L) 2" =T(V4(E) Fubi), Fi")
+i[ £,V () = £, Ve @) 8¢ - 2)
-igIfz,z’)
“€cae Foole')

+g T(tr[T°T,(z,2)], F,iG").

The generalization of this to an arbitrary T- product is

given by

Vas@) T(¢°06) e, Fule) o F o) o)
=T(@ () ver, Vi) Fble) oo i) m>

+ i 4,75 @) = 200 V5] 0le =2V T(9°(x) o2e , 200)

—ig T(¢°(x) »o», T%(z,2") > €gs FL(2") w)+

- ig%(-oo , T2z, x) epp T (5) 200 F 8

+g T(¢°() oo, tr[ToT,(z,2)] 000 FLie") o),

(2"} soo )} + ooo

(38.11)

as can be seen by an easy but lengthy calculation. We
observe that in addition to the first, the second, and

the fourth term, which appear in the corresponding
equations in electrodynamics, there are two additional
terms. The third term shows that the field F; itself
carries isospin. The last term will later be seen to give
rise to the additional terms in the perturbation series
found by Feynman,* De Witt,® and Faddeev and Popov. ¢
In our formalism the trace term arises from the fact,
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that F,; obeys a field equation with covariant derivatives.

To include the potential term of this derivative in T
ordering, we have to add for the pairing A¥(z), F,2(z)
just this trace term. It is not cancelled by a contribution
from the commutators that are produced in the course
of differentiation.

Next we want to consider equations for T products that
contain more than one o-component of the potential. To
obtain the extra term that has to be added for two po-
tential operators, we regard the equation

3, TIANx), ALy))-2,T(A%x), Al(y))
_geabcT(A;f(x)’Ag(x)yAg@))
=T(F, i), Al) + (g gl - 2. g%

x g A%x), Al)] o(x" - »7). (3.14)

This can only be calculated if we make special assump-
tions on the gauge (which is not necessary up to this
point). If we restrict ourselves to linear gauges as dis-

cussed in Sec. 2, we can use (2. 26a) to evaluate the
commutator., Because of (3.4) we have to define

T(A%(x), AXy))=T(A%(x), A4Y))

+igl gl [ dr(z) T(z, %) T(z,y) 6(x" = y°).

(3.15)
This is in agreement with the relation
2, T(A2x), AXW)) - 3,T(A2(x), A'D)) = geune
XT(AL(x), Aflx), ALW))
=T(F,5(x), AXp)). (3.16)

We again indicate the generalization to T products of
several potential operators:
T (A% (x) coe A%(p) eoo ) =T(AL(x) 00 AL(y) cor)

+igh &8T( [ dr(z) T%(z,x) TS%z, y)

X 5(x0 = y0) « 00) + w00 , (3.17)

Now we can calculate the analog of the field equation
(3.11) for T products of potential operators. If there is
only one potential, we get

~ ~ o~ ~

VaE) T(F.), AF @) =T 4e) F.2e), AZ @)
+8[ 8,0 8,00 —2) + Tz ,2")
X (o 35+ & €oter AYZ)]
+g T(r[T°T,2,2)], A% ("),
(3.18)
where I', is defined by (3.12). Again the additional trace

term appears. The generalization of this formula to an
arbitrary T product is given by

Vi@ T(#°(x) coo , FuS(z) e AY (27) oo)
=1(Bags 8,9 82 =2 ") T(@P(x) wve, wee) + V0 (27)
XT(pP(x) vee , T2z, 2") cae)) + vee
+8 T(¢%(x) o, tr[T°T,(z,2)] ooe AL (27) oee)
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— Qg T(woe, T2%(a, ) €gpg $Hx) co0 AT (27) se ) + voo
+T(G0(x) oo, Vo2l2) FoS(2) coo AY (@7) < oo). (3.19)

In proving this, one must be careful to keep track of all
additional terms that arise from differentiation. The
term I'% (z,2') 3, is first obtained inside a 7 product
and the derivative has to be taken out of the T product.
This gives additional equal time-commutators that can
be calculated by means of (2. 26b) and add up with the
other terms to perfectly defined T products. Doing so,
one has to take into account that the extra terms (3. 15)
of T products are operators. When differentiating on
the left-hand side of (3.19) we get commutators of F}
with the extra terms required by T ordering. These
prove to be necessary to cancel with other terms from
the equal time commutators.

If we use field equation (2. 2a), the last term can al-
ternatively be written in the form

T(pP(x) neo, VE (@) Fo0(2) voe AT (27) voc)
=g T($2(x) vor, [V542) 0%2)] €0e®(2) o0 AL (27) w00).
(3. 20)

rE‘his may by expressed as the covariant derivative of a
T-ordered product in view of Eq. (3.7),

T(PP(x) ove, o) ver AT () ooe)

= gV (2) T(@2(x) vor , [0%(2) €0go® ()] oo

XAg'(Z’) ”") zzwe (3.21)

(3.19) and (3.21) are covariant field equations for T-
ordered products of potentials,

Finally we derive the field equations obeyed by the
scalar field, We have to calculate

Tu00) V() T(p%(x) o0 ¢ (') von ) AL(2) eon).  (3.22)

Here the only problem is the evaluation of the time
derivative. With the help of the commutation relations
(2. 26¢) and (2. 3) we obtain

V0 () VEH) T(P%x) veo ¥ (x7) vee, AS(2) +o0)
= V3 () T(V52x) %(x) veo ¥ (x7) v o0, A%(2) ooc)
=T (V,2(x) VE2(x) ¢¥(x) voe ¥ (%) v o0, A%(2) vo¢)

= 8y O(x = x7) T(ooe, A%(z) vee )+ voo, (3.23)

The commutator (2.23c) and its analog with ¢® replaced
by (V,6)” are needed to cancel the additional terms from
including the potential terms of the covariant derivatives
in T ordering. The last term is due to (2.3). We then
have the field equation

Vi () V) T(0Ux) o0 O (1) e 00, AL(2) on )
== mPT (PP (x) vor ¥ (x7) o0, A() eov)

— 1 8y 800 = X)) T(eve, Al(z) oo0 ) + 00, (3.24)
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where we made use of Eq. (2.2b),

We want to remark that the scalar field is, of course,
not essential for our treatment. If we drop all terms
that refer to scalar variables, we get the equations for
a pure Yang—Mills field including all the complications
we are interested in.

4. GREEN'S FUNCTIONS

The (disconnected and unrenormalized) Green’s func-
tions are defined as the vacuum expectation values of
T-ordered products

Gb.no,:i:: (x oo0 , zm):«wf(d)b

0).
(4.1)

(x) oo, ATL(Z) eoo )

Differential equations for these Green’s functions follow
from the field equations (3.9), (3.10), (3.19), and (3. 24).
It is convenient to use the condensed notation introduced
by Mandelstam.? We shall describe it briefly.
Consider the set of functions
FErtaa (ven  Z0es),

These functions can be regarded as bilinear forms over
V*XV, where V is a suitable vector space and V* its
dual. More explicitly we write

)[F},
(4.2)

Fb .i“'(x e Z -u):: (eb..., :“: (1 oo, 2 +so

where ( | ) is the canonical bilinear form over V*XV, F
is an element of V, and e”*""'2..% (x +o, 2 <o) is a basis
element of V*, In this scheme the set of Green’s func-
tions (4.1) is determined by a specific vector Ge V. G
has to obey vector equations which we shall now consider.

We define operators ¢(x), A%(z) by their action on
the basis vectors of V* as follows:

e T (ke 2 e ) QOx) = €V T O (K vee 2 0ee),
(4. 3a)
eb"'v‘l‘:'. (x vese zl..-)gﬁ(z):eb""ﬁ':::g(x..., z""Z).

(4. 3b)

The tilde distinguishes these operators from guantum
mechanical operators. Their action on vectors FeV is
defined by transpostion, i.e.,

(eb ...,:::: (X e Z e .-) ab' (x') 1F)

xeer, 2 000} | ¥ (2)F). (4.4)

=1’y
Another set of operators n°(x), Z%(z) is needed to pro-
duce the source terms of the field equations. It is de-
fined by the following commutation rules:

(%), B (x)] =i By Bx —x7), [1°(x), A%()]=0, (4.52)
[Z23(), A% (2")) == {600 g, 82 — 2")
+ 5%, 2") (80w 00 + 8 €orw AL,
(4. 5b)
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[23@), B ]=igT%k,x)eopq $2(). (4.5¢)

Here for linear gauges f;j"(x, y) is defined by the equation

T2(x,z) =g} [ dr(w) i (x, w)

x[(19' - igT Ay, ]! (w,2)® 6 (-2,  (4.6)

as may be seen from (2.22) and (3.12). In addition to
(4.5) we have to require
en’(x) =0, €,Z%(@)=0 4.7

where ¢, is a basis element of the one-dimensional sub-
space of V*,

(e;|F)eC.

We also postulate for the Green’s vector G,

(eo’G)zl. (4-8)

We now formulate the field equations. First we de-
fine the gauge-covariant derivation of basis elements

0

GZC(X) et ,(‘l’".(x... z ..-); _ Py ebvu,:::: (X"", z ...)

— G epae @I (x e, zoee ) A N(x). 4.9)
Because of (4. 3a) this is equivalent to

V(%) $°(x) = [6ped,, ~ g €pac AL (x)] $°(x). (4.10)

The field equation (3.9) is then represented by

[VE () Vi) - VB (x) Tel(x)] 3%x) = ~ gepeq Foul(x) 9%(x),
(4.11)

where (3.5) or (3.16) imply
L3x) = 8,A%%) = 0, A2(x) - g e Al (x) ALx).

This shows that (3.10) is represented by an operator
identity on V*, i.e.,

VGC(Z )pr](z) _—

(4.12)

(4.13)

The relations for the Green’s functions, implied by
(3.19) and (3. 24) are more complicated. They give rise
to the following equations for the Green’s vector:

(98 (0) Vo2 (x) $2x) +m2pP () = P(¥)]G =0,  (4.14a)
{94 (2) F,%(z) - g tr[T°T (2 ,2)] - j2z) ~ Z%(2)} G = 0.
(4. 14b)

Gu and I?up have been defined above and, in agreement

with (3. 20), fﬁ(z) is given by
Fale) =gl VE@) 6"@) ) ecae $°(2).

The field equations for the Green’s functions are re-

covered, if we multiply (4.14) by the basis elements
I A (e, 2 e ) =g (x) e AL(2) s, (4.16)

[here the multiplication is defined by the bilinear form
( 1)], and shift the operators 1°, Z2 to the left by means
of (4.5) until (4.7) can be applied.

(4.15)
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We now consider (4.14Db) in more detail. First we
write it in the form

{0 A%z) - 248,A2) - Jolz)
"ZZ(Z)}G:Oa

where we have separated the linear term from Vi F; ,
i.e.,

- & tr[T“I"v(z,z)] (4. 17)

Vi) FL i) =0 AlR) - 243, A% 6) - Be), (4.18)
and have defined
Jiz) =k%z) +7%(z). (4.19)
From (4.17) we deduce the identity
{3°J4z) + g 0 tr[T°T,(z,2)] + *Z32)}G=0.  (4.20)
We also can derive the following identities:
{T4(2)Fste) + £ V4 tr[T°T (2, 2)] + Viele) Z5 ()} G =0,
(4.21a)
[Fee)72 () - g7 @JecasB )] G =0, (4.21b)
{¥e(2)2¢ z)+gV (z)tr[T‘l" (z,2)]
+8 N2 )ecaad® ()} = 0. (4.21c)

Equation (4. 21a) follows from (4. 14b) and (4.12), Eq

(4. 21b) from (4. 14a). To prove the operator identity
(4.21¢) we have to show that the left hand side commutes
with A% and ¢° and that it “annihilates” e,. This follows
from (4 5), (4.7), and the equations

gVE @) tr[T°T, (2,2)] =g tr(T?) 8(z ~ z)
+ig€adc v¢‘iJ'¢2(Z'0) fﬁe(z ,’M)) !w:z

:igeadc Fﬁ(‘l‘e(w) fﬁe(z ,W) | w=z) (4' 22)
V4 0)Z5 (@) =25 @) 660" + 8 €cahl ()]
- igeadce(‘;e(w)fﬁe(z ) w) iw:z' (4 23)

n (4.22) and (4.23) we have to regard tr(T?%) 6(z - z)
=0-8(z -~ z) as zero.

To write (4.17) in a form that can easily be integrated
we introduce another operator ¢%(z) that is defined by
the relations

(£2G), A% (@")] == b4 gu, 0z —2"),

(% (2), #°(x)]=0, ey&%()=0. (4. 24)
We can express Z} in terms of ¢§ as follows,
Z8@)=83() - [ d*w[Vhyw) Ew)
+ N @w)eaeed® )T 2, ). (4.25)

It is easily checked that this expression fulfills the
commutation relations (4.5). The operator equation
(4. 21c) follows from (4. 24) and (4.22), and (4.7) is
secured by the ordering of the operators in (4. 25).

Next we define
(4. 26)

Yil(x,y) =ghvi(x,y) 6(x" - »°).

Hence
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Y2 (x,y) = 8,006 = 9), (4.27a)

B, y) = [ dhwy e, w) (V)™ w, ). (4.27b)
From (4.27) we conclude

I‘“c(z w)—fd4w Yz, w’) a"fgc(w',w), (4.28)

where we stress that y, is a c-number function. We now
substitute (4.25) into Eq. (4.17). (4.20) and the repre-
sentation (4. 28) then can be used to find the following
form of the field equation:

[0 A% (x) - 2°0,4%(x)]G

=fd4w Gabgﬁ(é(z - Pz, w)

aw
x {J2w) +g tr{T*T,w,w)] + @w)}G. (4. 29)

Integration of (4.29) with Feynman boundary conditions
yields

A,f(z)G:fd“wfd“w’DAz—w)

X (Gacgﬁ{)(w—w )+58_ Py (w,w’)) x{Tw?)

w")}G +3,C%=)G,
(4.30)

+g tr[TTy(w’, w")] + &5

where
ODplz =w)=>58(z —w). (4. 31)

The undetermined gradient term can be fixed by the
gauge condition (2.20). The latter can be written by
means of (4.26) as

f d4wg’c‘(w)y§“(w,z)=B“(z). (4.32)
To simplify, we set B%(z)=0 and obtain
AL2)G= [ 2Dz, 2" |v) {T4(z")
+gtr[T*T (27,2 )] + £2 (21} G, (4.33)

where D%, (z,z' | v) is the gauge field propagator in the
gauge defined by ¥?® and is given explicitly by

Dﬁbv(zyz’l7)= f d4wf dhw’ <5acg26(z"‘w)
6 (o)
+ o ?/ca(?'U,Z)>

XDp(w - w')

d
3z ygb(w"21)> .
(4. 34)

% (Bungim Sl =204

The integration of the scalar field equations is simple.
If we write (4.14a) as

[O+m?) ¢’ ) - B (x) - P*(x)] G = 0, (4. 35)

where ﬁb(x) denotes the terms of (4.14a) that contain
the Af operators, we get the integrated form

FG = [ dx'apx— x)[H (x") +1°(x")]G. (4.36)
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Here, of course, Ar is the solution under Feynman
boundary conditions of the equation

(O +m¥Ap(c = x7) = 5(x ~ x7). (4.37)

From the integrated equations (4.33), (4.36) we can re-
cover the Feynman rules for our system. These rules
coincide with the “naive” Feynman rules except for the
contribution of the trace term in (4.33). To obtain a
more explicit version of the latter contribution we ex-
pand the inverse operator in the representation (4. 27b)
into a power series,

(V) v) P = (I - i gTAy) ™" (x,9)®

= [Gabé(x_y)'l_nz; fd4w1 cee fd4wng€acd'g>c;(x)

X2, 10,) X w00 X g €5enA2(00) yz"(w,,,w] :
(4. 38)

The corresponding expansion of the trace term reads

g tr[T°T, (z,2)]
=-1 [g\a f d4”~‘1 f d4wng€bac?’ﬁd(2 ’w1)g€aef£2(w1)

XVLE 01, 105) X 200 X g€y AR} V5! (s, 2)]. (4.39)
1t is seen that the correct Feynman rules require the in-
clusion of additional terms, which can be visualized as
closed loops built from asymmetrical “propagators”
v*(z,z’) and vertices ge,,.. Here the index a is con-
tracted with the second, the index ¢ with the first isospin
index of a y, “propagator” while b is contracted with the
isospin index of a propagator i D*(x,z). The Lorentz in-
dex of the latter is contracted with the Lorentz index of
the propagator 4,. In addition these loops get an overall
factor of — 1.

These terms have been found by Feynman, ‘ De witt,
Faddeev and Popov,® Mandelstam,® and others. They
are usually referred to as loops of “ghost particles,”

The axial gauge defined in Sec. 2 is particularly in-
teresting. We see from Egs. (2.29), (2.30) that in this
case
tr[Tafu (Z )Z)A] - tr[T“‘y u(Z ’Z)A]

. 0
=—tr(T%g\n; f ds 6(z—z-ns) 5(zy— 2%

=0. (4. 40)
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Hence the ghost particles disappear in this gauge.

Finally we consider the generalization of our formulas
to four-dimensional linear gauges. As our results are
perfectly covariant nothing forbids us to leave our
starting point: the Coulomb-like gauges with y, defined
by (4.26). If we admit arbitrary solutions of Eq. (4.27a)
to construct the kernel I', according to (4.27b), we ob-
tain general four-dimensional linear gauges. Examples
are the Lorentz invariant solution

YN, v) = 8440, Dplx = 3) (4.41)

of (4.27a), which corresponds to the Landau gauge, and
the four-dimensional generalization

ﬁb(x,y)Z- 6ab dgu. é(x—y - ‘E)y (4-42)

of the spatial path gauge considered in Sec. 2.

We end with the remark that our approach is com-
pletely analogous to electrodynamics.! The covariant
definition of time ordering automatically gives the cor-
rect Eqs. (4.14) for the Green’s functions. Due to the
kernel T, these equations are gauge dependent. Mandel-
stam® eliminated this reference to a particular gauge by
the introduction of path dependent variables. We prefer
to formulate the theory in terms of the local concept of
covariant differentiation. In this framework it is not
possible to remove the gauge dependence of the equations.
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A list of orthogonal coordinate systems which permit R-separation of the wave equation ys,, — A\ = 0 is
presented. All such coordinate systems whose coordinate curves are cyclides or their degenerate forms are
given. In each case the coordinates and separation equations are computed. The two basis operators
associated with each coordinate systemn are also presented as symmetric second order operators in the

enveloping algebra of the conformal group O(3,2).

INTRODUCTION

In this article we complement the contents of our
previous article! (hereafter referred to as I) by giving
a detailed treatment of the orthogonal coordinate sys-
tems for which the two-dimensional wave equation

9;,¢=A2¢ (*)

admits an R-separable solution.? We recall that an R-
separable solution of (*) can be written in the form
exp[Q(i, p, v)JA(1)B(p)C(v). Here U, p, v are curvilinear
coordinates and @ is a function such that either

0%Q

40,

AEXN
OAON ’

NN =u,p, v,

for at least two distinct pairs A, A" or @ =0. The latter
case is the familiar one of separation of variables. In
searching for R-separable solutions of (*) we restrict
our attention in this article to orthogonal curvilinear
coordinate systems. These are systems of coordinates
i, p, v such that the differential form

ds? =di? - dx® - dy? (0.1)
can be written
ds?=Fdp%+Gdp?+ Hdv?, (0.2)

with F, G, and H real functions of y, p, v. In a subse-
quent article we shall give a systematic treatment of
the nonorthogonal systems for which (*) admits a
separation of variables.

The methods necessary for systematically finding all
such orthogonal R-separable coordinate systems have
been developed in some detail in the book by Bécher.?
These methods can be readily adapted to the problem
of interest in this article. There are however a num-
ber of new developments occurring in the case of (*).
These developments stem from the fact that (*) is in-
herently more complicated than Laplace’s equation

(arx+ayy+azz)¢=0’ (0. 3)

which Bbcher treated in detail. The contents of the
article are arranged as follows.

In Sec. I we give the basic ideas necessary to con-
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struct the coordinates which allow an R-separation of
(*). This involves a treatment of pentaspherical space,
relevant properties of cyclides, and the method of
finding the pentaspherical coordinates (and hence the
coordinates £, x, y) in terms of the various curvilinear
coordinates. Enough detail is presented in this section
so as to make the article reasonably self-contained.

In Sec. II the connection between the wave equation (*)
and pentaspherical coordinates is discussed.

Section II contains the classification of orthogonal
R-separable coordinates of (*). In addition the separa-
tion equations are given and identified as much as
possible. We also give the two symmetric second order
operators whose eigenvalues are the separation con-
stants. These operators are expressed in terms of the
symmetry group of (*) discussed in detail in I.

The best-known coordinate systems which permit
separation of variables in the wave, Laplace, and
Helmholtz equations have the property that the coordi-
nate surfaces are orthogonal families of confocal
quadrics

x2 + yz 4 22

A-a, A-a, A-a,
or their limits.* Thus the coordinate surfaces are
ellipsoids, hyperboloids, spheres, planes, etc. The
Helmholtz equation separates only in coordinate sys-
tems of this type, but the wave and Laplace equations
admit more general separable systems. This fact is
related to the greater symmetry of the latter differen-
tial equations. Indeed, the wave equation admits an
inversion symmetry which transforms the coordinates
X, 9, tto x/x-x, y/X-x, {/X-X, where x-x=1%~x% -2,
Under inversion and space—time translations the
orthogonal coordinate surfaces (0.4) are transformed
into orthogonal surfaces, each of the form

=1, a; const (0. 4)

a(lz_ xa_yz)z +ax?+ byz +ct?
+dx+eyv+fi+h=0. (0.5)

The fourth-order surfaces (0. 5) are cyclides®'® and
the coordinate surfaces are orthogonal families of con-
focal cyclides. The set of all cyclides is invariant
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under the conformal symmetry group of the wave equa-
tion. Moreover, one can show by explicit construction
that certain confocal families of cyclides define
orthogonal coordinate systems which permit separa-
tion of variables in the wave equation. No separable
systems other than these are known. Two families of
confocal cyclides define equivalent coordinate systems
if one can be obtained from the other by a transforma-
tion belonging to the conformal symmetry group

S0(3, 2) of the wave equation. Certain special families
of cyclides can be mapped to the form (0.5) with a =0
by a conformal symmetry, and these families lead to
the special coordinate surfaces (0. 4) and their limits.

To determine all distinet cyclidic separable co-
ordinate systems, we clearly need to classify the dis-
tinct equivalence classes of cyclides under the action of
the conformal group.

However, as shown explicitly in I, the action of this
group on x, v,  (Minkowski) space is rather complicated.
To simplify the computation of equivalence classes, one
sets up a correspondence between three-dimensional
Minkowski space and five-dimensional pentaspherical
space as defined in Sec. I. In pentaspherical space the
general cyclide takes the simple form (1.9) and the
action of the conformal group SO(3, 2) reduces to
matrix multiplication. Thus the classification of cy-
clides into SO(3, 2) symmetry classes can be carried
out in a straightforward manner, and the results
mapped back to Minkowski space to yield R-separable
coordinate systems for the wave equation.

I. PENTASPHERICAL COORDINATES AND
ORTHOGONAL FAMILIES OF CONFOCAL CYCLIDES

In this section we will outline the use of pentaspheri-
cal coordinates in classifying orthogonal families of
confocal cyclides. Such orthogonal families, each pro-
vide an R-separable coordinate system for (*). The re-
sults presented here summarize those aspects of the
work of Bocher that are relevant for this article.
Further details can be found in Bécher’s book and also
the book by Coolidge. ®

Any set of objects that can be put into one to one
correspondence with sets of five homogeneous coordi-
nates xy :x,: %51 X, : X5 not all simultaneously zero but
connected by the relation

WA aZ a2+ a2+ 22 =0 (1.1)
are called points in pentaspherical space. It is clear
that in general the quantities x; are complex numbers.
For our purposes the subset of pentaspherical coordi-
nates of interest for the wave equation (*) can be ob-
tained from the coordinates ¢, x, v as follows. Instead of
considering the usual Cartesian coordinates £, x, v in
three-dimensional Minkowski space, consider the
Cartesian coordinates defined by

Z=1, X=ix, Y=iy. (1.2)

The correspondence between a point (¢, x, ¥) in Min-
kowski space and a point in five-dimensional space is
then achieved as follows. The stereographic projection
of the Cartesian coordinates with respect to the four-
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dimensional unit sphere embeds the point (Z,X, ¥) in a
four-dimensional space. The homogeneous or projec-
tive coordinates of the corresponding four-vector are

V=72 pP =P+ $%, =1 —pP g - s?,

. . 1.3

¥3=2ips, v,=2iqs, y,=275, ( )
where the coordinates ¢, x, y are given by

t=v/s, x=p/s, v=gq/s. (1.4)

If we adopt entirely real coordinates by writing z,=1,,
1=1,2,5, and z,=-1iy,, i{=3,4, we see that these co-
ordinates satisfy

25— 22+ 22+2%-22=0 (z;all real). (1.5)

The subset of pentaspherical space of interest then con-
sists of those points whose pentaspherical coordinates
are

Xy =i(r2—p2—q?+s?), x,=rP-pPogP -2,

(1.6)

Xy =2ips, x,=2igs, x5=2¥S.

In this work we are concerned only with these points in
pentaspherical space which correspond to the real co-
ordinates z, satisfying (1.5) (i.e., having the same
signature as this equation). An alternative equation to
(1.8) can be obtained via the substitutions p —~ - ip,

qg—~ —-1iq, ¥ = —ir. From the form of (1.1) it can be seen
that to transform one set of pentaspherical coordinates
¥, into another set x; via a linear transformation

=V, %, (1.7)
which preserves
Q=x+x2+x2+x2+ 2
is only possible if V=(V,;) is an orthogonal matrix:
vVT=1 [VT=(V,), V,,eC]. (1.8)

In particular for the case of interest here the orthogonal
transformations V corresponding to points in penta-
spherical space of the form (1.6) are isomorphic to
elements of the group O(3, 2). This is the symmetry
group of (*).

A cyclide is defined to be the locus of points x; in
pentaspherical space lying on the quadric surface

5
d= 2 a;xx;=0 (1.9)
2 J=1

i, =
with a;;=a,; and det(a,;)# 0. The problem of classifying
types of cyclides under the group of orthogonal trans-
formations V as in (1.7) and (1. 8) is then the problem
of classifying the intersections of two quadric forms in
five-dimensional projective space, where one form is
required to be equivalent to €, (1.5). This is performed
by the method of elementary divisors applied to the two
quadratic forms. ® If we take the quadratic forms to be
® as in (1.9) and Q=733 ;., b;;%,;%;, each class of
quadratic forms &, § is then specified by the corre-
sponding invariant factors. The invariant factors form
a complete set of invariants for each class of pairs
©, ®. This means that if @', &’ have the same in-
variant factors as @, &, the two systems are related
by a linear substitution

B ’_._.
Xi=CyiX;5

det(c;;)#0.
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The invariant factors of a given pair of quadratic
forms are obtained as follows. Suppose D=det|Aa;; - b,|
contains the factor (X —u)*0. A second index , is de-
fined to be the highest power of (A ~u) which divides all
the first minors of D. Proceeding in this manner we
obtain the terminating set of indices e, =1,-1,, e,
=l -1L,..., ¢,=1.,. The powers (A —u)*,

(A =u)?,...,(x~u)° are called the invariant factors

to the base A —u of the determinant D of the family of
forms. All possible invariant factors of D then deter-
mine a complete set of invariants. The standard nota-
tion for the inequivalent classes of pairs Q, & of
quadratic forms is to display the indices e, for each of
the roots of D=0 within a square bracket. Those in-
dices belonging to the same base or root of D=0 are
enclosed in conventional brackets. As an example con-
sider the invariant factors (x - a)?, (A-d), (A ~¢),

(A — d) the corresponding notation is [2111]. If the in-
variant factors are (A ~a)?, (A—-a), (A -¢), (A -4d),

then there is more than one invariant factor to the base
a. Such a cyclide is then called a degenerate form of
the corresponding cyclide in which there is only one
invariant factor to each different base. For this second
example we have a degenerate case of the cyclide
[2111] and write this as [(21)11]. If the set of invariant
factors are (A —a)?, (x=5), (A=5), (A—c), then the
notation would be [2(11)1]} and so on. The list of pairs of
quadratic forms in five variables which are inequivalent
are (this does not include the singular cases, which we
do not need here, see, for instance, Bromwich®):

1. [11111] Q=2+ 22+ x5+ x2+ xZ,

@ = A x2 + Na2 + Ax2 + A+ Axd; (1.10)
2. [2111] Q=2xx,+ x5+ x2+ %2,
P = 2N, %, %, + 22+ A2+ A x% 4+ A x?; (1.11)
3. [311]  Q=2x,x, + 22+ x2 + %,
@ = A, (22, %, + X22) + 2%, %, + A %2+ A xZ; (1.12)
4. {221]  Q=2xx,+ 2x3%, + %2,
P = 2h 5,5, + 22 + A a0 x, + 42+ AxE; (1.13)
5. [41]  Q@=2x,x,+ 2x,%, + 2%,
@ = 20, (2,5, + X,%,) + 2%, %5 + X5+ AgxE; (1.14)
6. [32]  Q=2xx,+ 2x,x+ %3,
& = A, (22,0, + x2) + 2x,%, + 2N X %, + 42 (1.15)
7. [5] Q=2x,%, + 20,%, + xZ,
(1.186)

@ =2, (20, %, + 2x,x, + A2} + 20, %, + 2%,%5.

The pairs of forms for a degenerate cyclide can be ob-
tained from these formulas, e.g., the quadratic forms
2, ® corresponding to the configuration [(11)111] are
obtained from (1. 10) by putting A, =2,, and so on. Each
type of cyclide is then associated with one of the seven
types listed or one of the corresponding degenerate
forms, The corresponding equations defining the cyclide
are =0 and $=0. The types of cyclides of particular
interest here are those belonging to a confocal family.
The most general such family is associated with the
configuration [11111] and is given by the pair of
equations,
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— 2 2 2 2 2
Q=xi+x2+x2+x;+x2=0,

1.17
4,4 _

x2 % %
Loy 24 2y + =
A—e, h-—egg

&=
A-e, Xr-e, A-e,

0,
where X is the parameter specifying the family. For
the subset of pentaspherical space of interest to us
Egs. (1.17) may correspond to a number of different
real nondegenerate coordinate curves in £, ¥,y space.
These possibilities are,

(i) The coordinates x, are in fact the pentaspherical
coordinates and are given by (1.6) [or the substitution
p~—ip, g— ~iq, r— —ir applied to (1.6)]. To give a
real curve all the ¢; must then be real. Bécher in-
troduces a diagramatic notation for such a confocal
family of cyclides as follows. In the complex X plane

(1.17) is represented by N
imaginary fles e 18 & &
1 7

real axis

axis

(ii) Two of the quantities ¢, are mutually complex
conjugate, say e,, e,. The corresponding choice of
variables for x; is

R R et il

x,=V2(r+ip)s, x,=V2(r-ip)s, x,=2igs. (1.18)
Another associated choice is obtained by taking p — —ip,
q— —iq, v— —ir in these formulas. The notation for
such a family of cyclides is {11111] and the correspond-
ing diagrammatic representation is

kS

(iit) Two pairs of the quantities e; are mutually com-
plex conjugate, say e¢,, e, and e,, e,. The correspond-
ing choice of variables for x; is

x,=Vi (P =p2— @ +is%), x,=V—i(r2-p?-q°-is?
(1.19)
x,=V2(r+ip)s, x,=vV2(r—ip)s, x,=2igs.

Another associated choice is obtained by taking p — - ip,
q—=-igq, 7 ——7\1‘3:. The notation for such a family of
cyclides is [11111] with the corresponding diagram-
matic representation

le; e

s
|

The equations for a family of cyclides correspond-
ing to the configuration [(11)111] are readily obtained
from Egs. (1.17) by putting ¢, = ¢,. The corresponding
diagrammatic representation of this configuration is

Jes les s N
]

The equations of the remaining configurations 2—7 are
obtained as limiting cases of the general configuration
(1.17). This leads to equations which are more con-
venient than those found in Egs. (1.11)~(1.16). The
method is illustrated here for the [2111] configuration
and is explained in detail in Bbcher’s book. As an illu-
stration of the procedure we subject (1.1%7) to the

e, e,
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transformation x; ~va,; x; (a; real) and take

e,=e, +€ x,=x,+ex,, (1. 20)
where € is a first order quantity. Then by choosing a,

such that

a+a,=0, a,e=1, a=a,=a, =1, (1.21)
Egs. (1.17) become
Q=2xx, +x2+ x5+ x2=0,
oo M, 2% % L X X :0(1'22)
(A-e ) X-e Xr-e, A-e, r-e,

These are then the equations of cyclides of type [2111].
The coordinates x; in (1.22) have two interpretations:

(i) The e, are all real. The corresponding diagram-
matic representation is

’65 |e4 Jes ” €,

Here the two close parallel lines at e, signify the in-
variant factor index 2 in the [2111] configuration. The
choice of variables x, in this case is

x1:_282’ Xz:yz_pz_q23 (1-23)

X, =2ips, x,=2igs, x5=27S.

The variables x; are in this case a complex linear com-
bination of the pentaspherical coordinates given in
(1.6). An associated set of variables is given by the
transformation p — - ip, g — -iq, r—~—ir.

(ii) Two of the quantities e;, say e,, e,, are mutually
compler}\c conjugate. This corresponds to the configura-
tion [2111] and has the diagrammatic representation

e 1%l

The choice of variables x; is given by

X =-28%, x,=v% - p? - ¢P, (1.24)

x,=V2r+ip)s, x,=V2(r-ip)s, x,=2igs.

An associated set of variables is given by the trans-
formation p— - ip, q— —ig, vr— ~ir.

As we have mentioned, the expressions for all con-
focal families of cyclides can be derived from the gen-
eral system (1.17) by methods similar to those illu-
strated here to pass to the configuration [2111]. We
now list the equations for these families of curves and
their associated diagrams. In the case of the configura-
tion [221] we give the coordinates x, in terms of the
homogeneous coordinates p, g, 7 and s.

~ laNe)
1. [11111], [11111], and [11111]
Q=xZ+xZ+xZ+x2+x2=0,
3 {1.25)
A—e,

'es Je4 Iea ,62 |e1

] ’
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2 2
X1 X5

+
A~-e,

‘b:
A—e

+

() [11111]

~ 1€y
Gi) [finn] % lesles f ,
| s
~ ‘e {es :;el
(i) [11111] s i | )
l ie, le,
2. [2111] and [2111]:

Q=2x%,+ 22+ 22+ x2=0, (1. 26)
x2 25,4, X2 * x2
qD_(K—ex)Z )x—el K—23+K—e4+)\—65:0.

() [2111] %35 164 I | e
e,
(i) [2111] {es !
2
3. [311] and [3{1]
Q=2x%,+x2+x2+x2=0, (1.27)
_ x2 2%, Xy 2x1x3+x§ n x2 . x§ _o:
Tr-e) (A=) A-e A-e, A-—e,
@ [311] le, {es ]}HEI )
(i1) [311] i e
le, l
4. [221]
Q= 2y, + 2y, + X5 =0,
2 2 2 (1.28)
d—__N 2axy Xy 2% N5 .
(A=e)? A-e (A=) A—ey Ar-e5
() (221] les

J ‘es J_lel
| 1l
The corresponding expressions for the coordinates x;
in this case are

xy==~28%  x,=rFopi_g?

Xa=V2(r=p)s, x,=V2(r+p)s, x5=2igs. (1.29)
The associated set of coordinates being given as usual
by p~—ip, g ~-iq, ¥~=1irv, From Eqs. (1.10)—(1.186)
it is seen that § is always one of the types found in sys-
tems corresponding to the configurations [11111],
[2111], or [221]. The correspondence between the v,’s
in this list with p, g, », and s has now been determined

in all cases.
5. [41]

Q= 25, + 2x,%, FxE=0,

& x% 2%, | 200Xy T Ak 2xyxg 2050,
(A—e)t (A= e)? (A=e)? A-e
2
+ 25— (1.30)
A- ey
(1) [41] le5 J}_H %el
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6. [32]
Q= 2x; X, + 2x,%5 +X5=0, (1.31)
&= xf 21X, 2x1x3+x§+ x —
Tme)? (A-e)P r-g (x-¢e)
2X0%5 _ o
o
(1) [32] He4 H }el
7. [5]
0= 20,005 + 2x,%, +x2=0, (1.32)
o x¥ 2y, | XE 2y, | 20p%, F 2%0X,
Th0ce) Do)l (i—aX  (-e)F
+2x1x5+2x2x4+x§ =0:
A= €y ’
(1) (5]

|||||el
11

In the expression for ¢ in this last case the final term
is identically zero as it is proportional to 2.

As was mentioned earlier, the coordinate curves for
the cases in which brackets are inserted inside the
square brackets can be obtained from this list by the
appropriate substitution, e.g., [(32)] corresponds to
curves (1.31) with ¢; = ¢,.

Any two confocal families of the same type and con-

figuration are equivalent under the action of linear trans-

formations of the x; which preserve the form £ if their
parameters e,-', A and e;, A are related by the equations
BT _a)'+8
P yel+6 T T +8

a,B,7, 0 R, (1.33)
with ad - By #0. This equivalence is with respect to
transformations which are isomorphic to the orthogonal
transformations V which in our case are elements of
0(3,2).

We now turn our attention to the problem of relating
the coordinates x; in Egs. (1.25)—(1.28), (1.30)—(1.32)
to the parameters which specify an orthogonal family
of such surfaces. These latter quantities are the curvi-
linear coordinates whose coordinate curves are mutual-
ly orthogonal at the common point of intersection. The
problem of the ranges of variation of the parameters
and the number of inequivalent types of parametrization
for the real subset (1.6) are the subject of Sec. III.
Here we just give the form of the coordinates x; cor-
responding to each of the cases 1—7 outlined above when
the coordinate curves are all of this type. The corre-
sponding curvilinear coordinates are denoted by A
=H,p, V. For a coordinate system generated by cyclides
of the type [11111] the coordinate curves are given by
the equations

Qa=xi+ad+xl+xt+xi=0,

(1.34)
4
A—e

2 2 2
X3 x% x5 x2

¢ = +
A—ey A-—e; A—g

A—eszo’
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with A=, p or ¥. The corresponding expression for
the coordinates x; is:

1. [11111]

oxi=¢(e)/f'le)), i=1,...,5, (1.35)

where
—1/0=1ex%+ext+ex% + e +egxt
and
FN == e) (= e)(A = eg) (A= e) (A - ¢;),

e =(1 =N -N(p=-2.

The coordinates in Minkowski space can be found from
these expressions via the relations

- X ix ix
= 5 - 3 y= 4
>— —, -
Xy +ixg Xy 1% Xyt 1%,

(1. 386)

if the x, are given as in (1.6). We will see in Sec. III
that this need not always be the case, and we may be
required to permute the expressions on the right-hand
side of equations (1.6) so as to correspond to the cor-
rect signature as in (1.5). We now give the expressions
for the coordinates x; for the remaining six types of
families of cyclides. These can be deduced by the same
methods as used to deduce the form of the cyclides
[2111] from the general case [11111]. We again refer to
Bocher’s book for details. (Bocher has given the for-
mulas required to pass the configurations [2111] and
[311]. The authors have extended this to include all re-
maining cases. Only the results are presented here.)

2. [2111]

(h-—e)-e)lp-e)
e;— el)(e4— 81)(35 -e)’

(L-e)(V-e)p--e) ]
) H

0
56—1 [(63 - 31)(94" el)(es— 21

2o (p—e)v—e)lp—e)

axf:(

20%1 %, =

L N o o (1.37
ox? = (L=e)(v-e)(p~e,)
t T (e - e)¥e,—ees— e’
oxt— (1= eg)(v = eg)(p - e5)
P e~ e)(eg—e5)(eg - ey)’
where
- 1/0=2ex,%, + 5} + ex2 + e,x} + e 5,
o (L=—e)(v—e)lp-e)
M CREN | RN
_2 [w=alt=ale-a)
zgx‘xz_a_el[ = eles—en ) (1.38)
_1 P (u-eg)v-e)p-¢ )]
O(ZXIxa +x§) 2 %12 [ (194 - 91)(95 - 61; ’
o= (b -e)v—e)p—ey)

(e, - ey)%(e5— ¢y)
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3_(u — es}(v - e5)(p— ;) ,

T = e - ey ¥(ey - )

where

-1
— =6 (2%, +58) + 2,3, + eyl + egx?

4, [221]
(k=) -e)o-¢)
ox§ = (63‘161)?(@11@5) =
o [(p-e)v-e)(p-g)
Zoxlxzu_.gé_l[ (ea—lelv(ell—es) 1]’

2 (U—e)(v=ellp-e)

2= (e3— €)%(ey - €5) ’

_ 3@ (#—e)(v—e)(p—e)]
20x3x4—-'a_e—3[ (633— 21)2(635_ 64) 2 s
ox2 = tH= es)(v - e5)(p - e;)

T (e - e - )
where

~1/0=2e,%,%, + XF + 2e,%,%, + X2 + e5xk,
5. [41]
2_ (L-e)v—re)p-e)

o (e, e5) ’

20%,%, :'a‘ae‘i[(“ - 212(611 - Z;(p - el)],

(2%, + 22) :%ai:f [(u - e1)<(;/1 - e;s))(p - el)]’
o2y, + 2x,5,) :%aa_:f [(u - e‘)& - «25))@ - >] ’

2 (b=—e)(v=e)lp-e5)
5

s = (e;— ey)* ’

where

—1/0 = 2e,(x,x5 +x1%,) + 26, %5 + x5 + ex?,

6. [32]
.l 61(33(4”_—232(9 -e)
20,2, :a_zl[(u - el(L(&v__;;;(p - ei)] ’
o 2,0, + x2) :% 5%212 [(u - el()e(f:;,))z(p - ei)],
ox2— (b~ 64)((:4—— eet))(f —e) ,
2oy = a% [(.u - e4>((:4-_ i"l))(sp - q)] ’
where

—1/0= €)(2%,x5 +x3) + 2%, %, + 2eyx4%5 + X5,

7. [5]

oxf: (L —e)(v—-e)p-e),
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(1.39)

(1. 40)

(1.41)

20x,x2:aiel[(u —e)(vV—e)p-e)],

L 2 (1.42)
o(2x1x3 +x§) :Ea—elg[(li - 91)(V - el)(p - 81)],

20(x505 +xyx4) == 1,
where 0 is given by the last equation in this case.

These are the basic formulas for the pentaspherical
coordinates expressed in terms of the curvilinear co-
ordinates i, p, and v for all nondegenerate cyclides.
The expressions for the coordinates in the case of a
degenerate configuration are directly derivable from
these formulas. The explicit methods for doing this will
be discussed in Sec. IIl, where we evaluate all the pos-
sible inequivalent systems 1—7 and the associated de-
generate forms. Finally in this section we give the for-
mula expressing the line element ds? in terms of the
curvilinear coordinates {, p, v and the pentaspherical
coordinates x;,

1 f(p=-v{u-p) (v—u)v-p

dsz‘4os2<‘—“f(u‘> O I
(p—)p=-v) 2)

+ R dp (1.43)

with f(A) =113, (A - ¢;) as in (1.35). In each case o is the
quantity in the above list given for each configuration.
The quantity s is the homogeneous coordinate that was
introduced in (1.3) and can be expressed in terms of the
x; depending on the configuration in question. This for-
mula is basic to the classification of coordinate systems
which are inequivalent under the action of the under-
lying transformation group O(3, 2).

We summarize what has been done to this point. We
have given the equations required to pass to a subspace
of pentaspherical space having definite real signature
as in (1.5). The associated group of transformations
which preserve this subspace is isomorphic to O(3, 2)
the local symmetry group of (*). The corresponding
second order curves or cyclides in these coordinates
can then be classified into equivalence classes under
the action of this group of transformations. Those
curves of special interest are the families of confocal
cyclides and the coordinate systems to which they cor-
respond. An important feature here is that all families
of confocal orthogonal cyclides can be obtained as speci-
fied limits of the most general case corresponding to
the configuration [11111],

Il. THE TWO-DIMENSIONAL WAVE EQUATION AND
R-SEPARABLE COORDINATES GENERATED FROM
ORTHOGONAL FAMILIES OF CONFOCAL CYCLIDES

In this section we summarize the results that enable
(*) to have an R-separable solution. For more details
we refer to Bocher’s book® and also to Morse and
Feshbach.* The central result with which we will be
concerned is the form of the equation (*) when written
in terms of the cyclidic coordinates discussed in the
previous section. Of central interest is the case of cy-
clidic coordinates corresponding to the configuration
[11111]. The result is the following. If ¥ is a solution of
Jes P = B,0 and if we write
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ZIJZ‘/?O"“S(P(LL,V,P), (2.1

where i, v, p are cyclidic coordinates of the type [11111]
and

= 1/o=ex} + epxd + egx2 + ex2 + egx?

with S as in (1. 3), then ¢ satisfies the differential

equation
o%¢ % 9%
- +(p - -
(p V)g;z (1 P)W +(v H)W (2.2)
_5\
+ (k=) =)o - u)(%(u +vep) - %Lef) =0,
i=1
where
0 ad il
a—u':z'f(“’;_a—ﬁv av =2 fV
and
a2 3
3= fp Y
Here f(A) is as usual given by
FO) = (A= e (X = ) (A = eg) (X = e} (X - g5).
Equation (2. 2) admits a separable solution
9= B, (1)E,(v) Ey(p) (2.3)

with each of the separated functions satisfying an equa-

tion of the form
dE, | 3 /5 \ ., A B
- ——A=—|E
R )dxvfm [16 6 (,Z:le‘) M- 4] :
(2.4)

=0,

With this result all the separation equations for the co-
ordinate systems given in the previous section can be
obtained by taking appropriate limits in the above equa-
tions. Equation (2. 4) is an equation of the Lamé type
with six elementary singularities.” The quantities A
and B are separation constants.

l1l. CLASSIFICATION OF ORTHOGONAL R-SEPARABLE
COORDINATE SYSTEMS FOR THE WAVE EQUATION

In this section a systematic treatment is given of the
orthogonal R-separable coordinates of (*), which can be
constructed as limiting cases of general cyclidic co-
ordinates with configurations [11111], [11111], and
[11111]. For each coordinate system we give the ex-
pression for the corresponding pentaspherical coordi-
nates x; and the Cartesian coordinates f, x, and y. The
operators whose eigenvalues are the separation con-
stants are also given in each case and expressed in
terms of the generators of the symmetry group of (*)
which were derived in I. We also say what we can about
the solutions of the separated equations. Our procedure
is the following. For the completely cyclidic coordinates
listed in Eqs. (1.35)—(1.42) we must choose ranges for
the curvilinear coordinates in such a way that the dif-
ferential form (1. 43) when expressed as in (0. 2) must

satisfy
sgnF = sgnG = — sgnH. (3.1)

This ensures that the space is three-dimensional
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Minkowski space. The classification of all such param-
etrizations into equivalence classes under the relation
(1. 33) then gives the inequivalent coordinate systems
we need. For the general configuration [11111] the equi-
valence relation (1.33) allows us to interchange all the
e; in the way specified by these formulas. However, for
the remaining configurations such as [2111] only the
three unit indices can change under the relation (1. 33)
when classifying equivalence classes of this type. In
addition for each class of coordinate systems we choose
a standardized representative which has a simple form.
In most cases this will involve taking one of the indices
e; to be =,

The method of connecting the operators whose eigen-
values are the separation constants with the generators
of the symmetry group G=0(3, 2) is achieved by noting
that the generators I';; as defined in I are related to the
generators of the underlying O(3, 2) group which pre-
serves the pentaspherical space identity (1.1) with the
choice of coordinates (1.6). The relations are

Pia=Lyy, LUp=Ly, Log= Ly,

Pys=Lgp, Liy=-ilyy, Uyy=-ily;, (3.2)

Ugg=1Lgy, I's3=iLly, Ly=-iLg,

where
Ly=x;8;,-%,9;, i,j=1,2,...,5,
with the x; as in (1.6). By means of the relations (see I)

My =14, My =1y, My="r4, D=1y,

Po=D1 40, Ky=Ly=Ly, Pi=I;+1,,

Ky=Dyp= Ugs, Pa=1'3+ Lg5, K= 115~ Ly, (3.3)

the operators whose eigenvalues are the separation con-
stants in a given R-separable coordinate system can be
expressed as second order symmetric operators in the
generators of the O(3, 2) symmetry group of (*). In the
subsequent classification of R-separable orthogonal
solutions of (*) we will have occasion to introduce a
number of modifications of Bocher's diagramatic nota-
tion as well as some of the limiting procedures of in-
terest for the various degenerate configurations being
considered.

A further comment is in order here. In order to give
all the coordinate systems that are potentially of inter-~
est, we give in the subsequent listing, with the excep-
tion of systems of the type [11111], all the separable
systems of (*) which are inequivalent under the under-
lying £(2, 1) group. This gives a more thorough treat-
ment of these coordinate systems already considered
in an earlier article.® In the concluding remarks we
indicate which of these systems, which are not equi-
valent under E(2, 1), are equivalent under the symmetry
group O(3, 2) of (*),

We now proceed to the classification of the coordinate
systems of interest.

A. The configurations [11111], [11 111], [1" B 1] and their
degenerate forms

~

1. The configurations (11111], [7’;777] and [ﬁ777]

Here we give those configurations of the form (1111 1]
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which are inequivalent under the procedure outlined in
the introductory paragraphs of this section. For confi-
gurations of this type we can transform the quantities
e, via (1. 33) to be

e =2, e;=a, e;=b, e=1, e;=0.

In addition to Bocher’s diagrammatic notation for such
a configuration, as given in Sec. I, we put the sign of
the expression ox? at the bottom of the vertical line in
the diagram of the [11111] configuration. From the for-
mulas (1. 6) the arrangement of these signs indicates
how the choice of pentaspherical coordinates should be
made. This involves a permutation of the quantities on
the right-hand side of (1.6). In each of the inequivalent
parametrizations for the configuration [11111] a specific
choice of the x; is made to within a permutation of those
x; whose squares have the same sign. This is sufficient
for our purposes as all coordinate systems that are re-
lated by such permutations will be equivalent and re-
lated by a group transformation. The two additional op-
erators A, B whose eigenvalues are A and 5, respec-
tively, as in (2.4), have the form

_ _(w+p)  * (b+p)  2°
T(w=pp-v) ot v-pv-p) aF
+ (p+v) 2%
b-p- 1w au*
(3.4)
B vp a2 + Lo 3
“wop (- ad v -plv - 3t

+ uv 22
lo-v)p- 1) 8u?

when acting on the functions ¢{u, ¥, p) as in (2.1). The
part of the solution of (*) that gives the R-separation
(called hereafter the modulation factor following Morse
and Feshbach) is from (2.1), v2o'/%s. Corresponding to
the configuration [11111] being considered in this sub-
section we have the following inequivalent possibilities.

(a) [11111]

b |a
p | |
+

o | |-
-!_vl H‘_

For such a configuration the pentaspherical coordinates
are

(L-a)v-a)lp=-a)

of=—1, og=- (a-bYa=Da ’
o (p=0)v=0)(p=-0)
ng—- B=a)(b-1)b , (3.5)
(b-D¥=-D{p-1) _ kvp
=TI De-n 0 T

The coordinates in three-dimensional Minkowski space
are given by the formulas

-x, 1 ((u—a)(V—a)(p—a)> 1/2
(a=b)(a-Da ’

"0, +ix,) R

iy 1 (ut--l)(p--l)(l—V)>”2
xi(x1+4ix5)-§< (a-1D(B=-1 ’ (3.6)
o ixg J((u-b)(p—b)(v-b))”z
V=G, +ixyg R\ (a-0(@-1b ’
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where R=1i(1 +V gvp/ab). The modulation factor is
V2ot/ts = (1 +V pvp/ab)t /2,

The operators A, B defining the eigenvalues of the sep-
aration constants (we refer to these as basis operators
subsequently) are

A=bM2y = M2, — aM, - H(a + 1)(P, + K,)?
+50+ )P+ KD +5(a+b)(Py +K)?,

4B=b(P +K)? - a(Py+K,)? + ab(P, + K,)? (3.7
and the separation equations have the form
d dE; 4 .,
Vhixinghmd—)\'_(mx +AX+B)E, =0 (3.8)

with () =x(A=1)(A=b)(A=a) and A=,V or p for i

=1, 2, or 3 respectively just as in (2.3). Equation
(3.10) is a standard form of an equation with five ele-
mentary singularities (see, for instance, Ince, Ref. 7,
p. 500). It should be noted here that the form of the pen-
taspherical coordinates (1.6) when subjected to the
transformation p = #p, q¢ - —ig, v ——1iv gives no new
information, i.e., exactly the same coordinate system
results.

(b) [11111]
o1 o o |=
| | v ] o]
+ - + + -
The pentaspherical coordinates are as in (3. 6) with the
three-dimensional Minkowski space coordinates given
by

t=wx,y/(xy Fixg), x=ix,/(x, +ixg),

v =ixy/(xy +ix5). (3.9
The modulation factor v2o!/S is the same as in (a).
The basis operators are
A=aM, +0ME, - ME,+5(a+1)(Fy +Kp)°
+§'(b+1)(PU—-K0)2+;;-(a +b)(P1—K1)2, (3.10)

—4B=b(F, +K)? + a(Py— Kp)% + ab(Py+ K ()2,
and the separation equations have the form (3.10).

(¢) [11111)

g Jo b p o |e
P T

g o b o Ja |-
S LT I

The pentaspherical coordinates are as in (3. 6) with the
three space coordinates given by

t=—xy/(xy Hixg), x=ixg/(xy +ixg),

(3.11)
vy =ix,/(x, Tixg).
The modulation factor is the same as in (a). The basis
operators are
A= aM? —~ bMZy = M3y — 5 (a+ V(P + K)?
FHO 1) (P, +K,y)% = S a+ D) Py + KR, (3.12)
4B =b(P, + K, — a(P,+K)? — ab(Py + Ky)?,
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and the separation equations have the form (3. 10).

(@ [11111)

. o p @ e
(1) ) ’ o E; m l
+ + -
Gy o 1 ]
vou | i |
+ + -

The pentaspherical coordinates are as in (3.6) with a
=a+iB, b=a-1iB, a,B< R. The three space coordi-
nates are given by

. (x5 +2,) - 1{xy — %,) . %4
V(e +ixg)’ T V2(x tixg)’ (%, +ix5)

(3.13)
The basis operators are
24 = (M%) = M2,) + B(My My, + MypM )
+ (a+ D[P, +K,)% = (Py+ K] + a(Py +K,)?
— (BHDUP, +K)(Py+ Ky) + (P +K)F, + Kp)),
(3.19)
4B = a[(P,+ K2 — (P, + K2 + (o + BO)(P; + K;)?
+Bl(Py + K)(Py+K,) + (P, +K,) (Py +K()].

The modulation factor is

\/EO'I /4s :{1 + [uvp/(az + BZ)]I /2}1 /2,

and the separation equations have the form (3.10).
~NoA

(e) [11111]

c a

[0

b

14

: i
o 1
ld ‘b

The pentaspherical coordinates are given by
_(p-a)v-a)(p-a)
(a<~d)Xa-c)a-a)’

{(u=~b)(v->0)p-1b)
G e Py s e

_ (k=o)v=-c)p=-0) _
oy =~ (c-a)c=D)c~-dad), oxg =~

where a=ao +if, b=a~iB, c=y+ib, d=y-1id with
a, B, 7, 5 R. The three space coordinates are given by

t=— (xy+xg)/[(xy+xg) +iv2x,],
x =g = x5) /lilxg +xg) = V2],
v= (x5 - x4)/[i(x2 +x3) - "/_ixl]y

2= 2_
oxi=-1, oxz=

(3.15)

(b =) -d)(p-d)
(d=c)(d=a)d-0b)’

(3.186)

and the modulation factor is
V2a1 /s = [(= xp = x5) /2 = ix JH /2,

The basis operators are

A=28[(P, - KMy +My(Py=K)] +B[(P, = K)(P, - K,)
Py — Kp)(Po— Ko) | = 4v(Myp,M oy + My My,5)
- ZV[sz(Pz -K,) +(P,~ Kz)Mlz]
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+2(v - a [§(Py - Ky = M%a],
B=2[(a+8)2+(8+06)°|[ME, +3(Py— Ky)?

+ M +5(Py = Kp)2 + 5 My (P = K,) +5(Py— Kp) M |
- 286[(P— Ko)My, + M,(Py - K) ]
+4C¥7[(P1 - Kl)a— 4M%z] +[1/(Q + 'Y)]

{2(a+ (67— aB) + (B~ 8)(a®++* - g2~ 6%}

*{[(Myy +3(Py— K) (K, - Py) ~ My ]

+[3(Ky = Py) = My [My, +5(Po - K ]

+{2(a+ N0y + af) - (B +8)(aP + ¥~ 7 &%)}

{[3 (K= Po) = My, |[3(Py - K3) + M) +[5(P = Kp) + M)
X[3(Ky= Po) = My, ]} + 20( - 33)[5(Py - K1) ~ M5, ] .

(3.17)

2. The configurations [(11)111], [11(11)1]

Here we must digress briefly to explain how the pen-
taspherical coordinates for the configuration [(1D111]
can be obtained from the formulas (1, 35) for the general
configuration. To find the pentaspherical coordinates
for the configuration {(11)111] for which say e; =e,, we
proceed as follows, putting

ey=e,+€, r=e,+eN,

where for definiteness we take A=p. The resulting ex-
pression for the pentaspherical coordinates is

2 (1~ 31)(1/- &) ’
7= (e5~e))(e, ~ e)(e5~ ey) -0,
2_ (1 - 61)(1/— 61) 1
T2 ey = eleg— el —ep)
ox? (k- e (v ~ eg) (3.18)

3 (€1 - ey)(ey - e3)(e;— e5)’

(L~e)(v-e)
(e, — ey){e;— eg)(es— ¢,)’

(1~ eg)(v - )
(el - es)(ea - 85)(84 - es) )

2_
oxi=

The coordinate curves corresponding to the new cur-
c12 . !
vilinear coordinate p* are

/o +x2p = 1) =0, (3.19)

This defines a family of real curves for 0<p’ <1 if
sgn(x?/x% = - 1. Otherwise for a real curve we must
have sgn(x?/x3)=1. The diagrammatic notation for the
family of degenerate cyclides specified by the curvilin-
ear coordinates 4 and ¥ is

/ 21

’

les 194 |e3

| f

The method of obtaining other degenerate forms cor-
responding to a configuration [(11)111] is to generalize
the procedure outlined here to the case of two adjacent
parameters ¢;, ¢€;.,, becoming equal. The diagram re-
presenting the curve (3.19) is

o b N
o | »
where p' may be in one of the regions indicated accord-

ing as the relative sign of 2 and x% is + 1, as we have
discussed above. The separation equations for the func-

E.G. Kalnins and W. Miller, Jr. 338



tion zl)’(u, v, p’) are given by (2. 4) with ep=e,and A= [, v,
For p we obtain

(e, — ey}ey — e) (e, — eV 1p' o = 1)1 d—cf)—,\/!p'(p T .W%%,

=[L e3(e, + 3¢, + e, + 3e;) +LAe, +1BE,.

For all the classes of inequivalent coordinate systems

of the type [(11)111] the quantities e, will be standardized
tobe 0,1, 2, and =, This greatly simplifies all the cal-
culations. For instance, in the example we have pre-
sented here this standardization can be achieved by
taking

e =%, ey=a, e¢=1, e=0,

The resulting standardized form then gives the following
expressions for the pentaspherical coordinates:

- V-
Uxfzp’_l, o-xg:_pl’ o-xgz(i_i)(—a)

ala-1)
s (B=DE-1 _, w 3.20)
S o R
The separqtion equations are
d dE;
vpixiﬁ\/p()\)ﬁ_(Ax+B)Ei:oo (3.21)

A=u, v and i=1, 2 respectively, and

T d 7 @ 1 —
Vip(p —1)1%—7\[|p (o —ﬂldp,—(ﬁA)Ea—o.

Here p(A) =A(x = 1)(A - a). Equation (3.21) is a form of
Lamé’s equation (see, for instance, Ince, Ref. 7,

p. 502). The basis operators A, B whose eigenvalues

are the separation constants A and B respectively are
in this case

- d d
A=—i=Y 10" -1 gm0 0" - Vg7

1 d 9 d 2
(V A -87;‘/?(#55;— MVP(V)ﬁ‘/P(V)g;)-

(v-un)

(3.22)

B=

acting on ¢,

We now proceed to the evaluation of the inequivalent
types of coordinate systems of type [(11)111] and
[11(11].

(a) [(11)111]

0 1 la NS ,
N 3
+ + - —-u -

0 t i

w !

The pentaspherical coordinates are obtained from (3. 19)
subjected to the transformation

p'=u', vev, un-p.
The three space Minkowski coordinates are given by

== xg/lix, +x,) = (1/RWvp/a,

x =1x,/(ixy +x,) = (1/R) cos¢,

v=1xy/(ixy +x,) = (1/R) sing,

(3.23)
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where

o s (e

and we have put ¥’ =sin’¢. The modulation factor is

V2ollig=Rl/2 (3.24)
and the basis operators are
4B= (P, +K)? = a(P)~K)?, A=-1_M, (3.25)
(c)T[(ll)lll]
0 (i1) [1 la @) ®
p,v |p,U ’
T -
0 1 %0
!
I

The pentaspherical coordinates are as in (a), The three
space coordinates are given by

b=y /iy +x5), x=ix /(ix, +x3),
(3.26)
v =1ix,/(ix, + x5)

The modulation factor is

Bt/ = [<%)1/2+ (W'(‘lz)f"l; 1))1/2]1/2 3.27)

and the basis operators are,

4B=- (P -K)*+4aD?, A=_%- M, (3.28)
(@ [T1(11)1]
0 a o ,
VAN
M/
0 1 /=
u ZON
The pentaspherical coordinates are given by
2oy’ sy =P d-a)
OXy=H ‘1, sz*"“a st— a(a-b) H
2 (p=0)(v-b) 2 PV (3.29)
=T 0 5w
The three space coordinates are given by
t=V2xs/R, x=iV2x /R, y=iV2x,/R, (3.30)

where R=1i(x; - x,) - (¥; +x,). The modulation factor is

\/501/452\/2_'{21{8 [(i(p_;(;)_(—p.b_';i)>1/2]}l/z (3.31)

and the basis operators are
B=a(P K, +KP,) +28(P} - KD,
A=_% - M, (3.32)

Hereasusual a=a+i8, b=a-iB, a,BcR. The sep-
aration equations have the form (3.20) and (3.21) with
p(N) =12 -a)(x-b) and a is replaced in (3.21) by ab.

3. The configuration [(171)(11)1]

There is only one such coordinate system of interest
here. The diagrams of this system are
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o N/ 1 -,
[V ZN
+ +p'+ _p.'_

0 11

K—
0 |1 ©
I><
Jol

The pentaspherical coordinates are given by

od=p'-1, oxd=-p/, ad=(1-»(1-p),
(3.33)
2

oxi=(1-v)p’, oxi=v,
The three space coordinates are given by
t=ix,/(ixy +x5), x=2x,/(ix; +x5), (3.34)
v =x3/(ixy +x),
and the modulation factor is
VZollts= (V1= I +Vv)/2,
If we write 1’ =cos®p, v =cos®, p'=cos?6, then
t=cos¢/(sind + cosy),
X = siny cos8/(sin¢ + cosy),

y = siny sine/(sintb + cosy).

(3.35)

(3.36)

The separation equations for this system of coordinates
are given by

d dE, B
vpiu)gﬁ plu —E-(A#‘FB)EI—O,
where Vp(p) = u(p - 1).

Equation (3.37) is a form of the Legendres equation
with spherical harmonic solution,

(3.37)

d°E, d?E,

W+BE2:0’ W+AE3:O. (3.38)
The basis defining operators are
4A=(P,-K)? B=DM:,. (3. 39)

This completes the classification of inequivalent coordi-
nate systems of type [11111] and its degenerate forms.
These are the only coordinate systems which will prove
to be strictly R separable in the classification presented
in this article.

B. THE CONFIGURATIONS [2111], [21’31 1] and their
degenerate forms

1. The configurations [2111] and [27AI 17

Here we give the configurations of the form [2111]
and [Zﬁl], which are inequivalent under the equivalence
relation discussed in the begining of this section. By
applying a transformation of the type (1. 33) to the indices
e; for the configuration [2111] it is always possible to
choose these numbers in the standard form

e =% e,=a, e=1, e=0 (8. 40)

with e; the number associated with the invariant factor
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index 2. The two operators whose eigenvalues are the
separation constants are given as in (3. 5) with f(»)
=xr-1)(x-a).

The separation equations with the choice of ¢; given
above are

\/f(x)%\/fm”;—%- (AX+B)E, =0

with f(A)=AMA-1)(A-a) and A=p, v, or p for i=1, 2,

or 3 respectively. This is Lamé’s equation with four
elementary singularities. For the configuration [2{11]
the separation equations are as in (3. 41) with f(})
=MX=a){(A-D), wherea=a+iBand b=a-iB, a,BcR.
We now give the inequivalent coordinate systems.

(3.41)

For the choice of e; given in (3. 40) there is no modu-
lation factor in the R-separated solutions. The solutions
of (*) of the type [2111] are therefore separable.

(a) [2111]

o0

a ||
A

The pentaspherical coordinates for this configuration
are given by

oxi=-1, 20mx,=p+v+p+a+l,
oxgz(u—a(ZEZz;z;(p—a)’ (3.42)
ot = {B= I)El{:i;(p— . Ox%z# .

The three space variables are given by
2= x2/xi= (1 -a)(v-a)p-a)ala-1),
W=xl/xi=(L-1)~-Dp=-1)/(a-1), (3.43)
Vo= /i =~ wvp/a,

and the basis operators are
A=P%— (a+1)P}- aP} + M}, - M5y - M},

(3.44)

B=aP%+aM%, - M%,.

For the remaining inequivalent systems of type [2111]
we give the corresponding diagrams and the transforma-
tion which relates the three space coordinates given in
(3.43) to each system. The expressions for the opera-
tors A, B can be obtained from (3. 44) via this substi-
tution. In each case the pentaspherical coordinates are
given by (3. 42).

(v) (2111]
|0 |1 |a e
v | [ o ] po ]
- + + -
(@)=(), t~x, x—=iy, y~£
() [2111] | ‘
. 0 1 ‘a ||°°
6] !
[ Fove | v ]
+ - - +
(i1) |0 |1 |a [
I A [
+ - - +
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(@)~ (c), t—ix, x—y, y—it.

(@) [2111]
(1 |0 | 1 la ke
| [ v,p| &
-+ —_ -
G o |1 |a o
l [ v, 0, 1]l
+ - + -
(a)“(d): t—~x, x=1t, y—iy.
e) [2111]
[0 |1 | @ || = ,
v I o0 ] |
- + - -
(@) ~(e), t—ix, x~it, y—-y.

In all the above systems the choice of pentaspherical
coordinates is made in two ways. If the net signature of
the terms ox? from (1.37) for i=1, 2, 3, 4, 5 is plus, then
the form of the x;’s is as in (1. 23). If the net signature
is minus, then the required form of the x; is obtained
from (1. 23) via the transformation

p-’—ipy q-'_iqv Y——ir.

(@ [2111]

@ |0 N |l :
| vi ok
+ b -
(ii lo e oo
v, 0| i P
+ b -

The pentaspherical coordinates are given by

oxf=o1, 200x,=H+v+pta+d
2 (W=a)v-a)p-a)
3= ala <= b) ’
2 (M=D)¥~blp=b) P
oxé= ) , OXg=T, (3. 45)

where a=a +i8, b=a—-i8, aB < R. The three space
coordinates are given by

(3. 46)

this follows from the use of formula (1. 24) relating the
x;’s to p,q, 7, and s. [More exactly the coordinates ob-
tained from (1. 24) via the transformation p — ~ ip,

q —-1q, ¥——1ir.] The basis operators are

A= a(P%- PE~P% +28P P, + M, _

fHix=iV2x3/%y, ¥=1ix5/%;

M%)l - M%z,
(3,47

I;:._ (a2+BZ)P§+ oz(Mfz— — B(My oMy + MpM,,).

The term a(P% - Pf - P3) is included in the above expres-
sion for A so as to correspond to the correct operator
derived from equations (3. 5).

(g) [2111]

|oo

|
ol

lo ta
vi p |
b
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O ~(g), t=x, x~t, y—iy.

2. Configurations having a radjal coordinate in three
space derivable from configurations of the form
[2111] and [2111]

Such coordinates can be derived in a straightforward
manner, which we illustrate in detail for the first sys-
tem of this section.

(a) (1) | H
a
v [ oo 1 1 ﬁl
- - +

For this diagram write y =e, + [I in formulas (1. 37) and
then take e; ~=. The resulting pentaspherical coordi-
nates have the form

= 2 _(v—alp-a)

2

oxy =i, 20xx,=1, oxj= ,
ala=1) (3.48)
(v-1p-1) vp
e
and the three space coordinates are given by

S (ZY VRN

Xy ala=1) (3. 49)

ﬁzy((v-1><p-1>>1fz s (=vp\
xl (a—l) > xl a ?

where ¥ =1/, The basis operators are given by

- d
A:ﬁ (x/Piv)E;vP(v) vPipi v P(p) d)
=5 -D? (3.50)
and
- d d
(p <DVPZV P(v) —VVP(P)d—pVP(p;;I—é>
=My - aMy,,

where P(A) =A(A - 1)(x - @). The separation equations
have the form

d dE;
L+ (AN+ B
P )d7\ P(r) =+ Py (AXx )E; =0, (3.51)
r=v,pand izl, 2, respectively, and A=3j(j + 1),
d? E3

Equation (3.51) is a form of the Lamé equation and the
solutions of (3.52) are » and !,
(i) lo 1 | a ||

N B Y
+ +

=l

+
(1)~ (i1), t—-it, x =ix, v ~iy.

(d) (1) | o j1 | a
v [ »l I
+

- + +

(@) (-0 @),
E:M%1 +“M%z-

=

t_'xs X =iy, v~1,
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ko)
+==
I

(b) (1) — (b} (id),

t—it, x=ix, y—iy,

(c) (0 : |0

[
p || E

Here as usual a=a +i8, b=a-1iB8, a,BcR. The pen-
taspherical coordinates are given by

ox}=p, 2om,x,=1, (3.53)
z_(V‘a)(P‘a) z__(V-b)(p—b) 2_2
Oxy = ala—0) ' OXy = - X5 =720
and the three space coordinates are given by
v-a)p-a s _ VP
+ —_— ===
(t+ix)=22=V27» (a AR Y o b
(8.54)

with ¥2=1/p, The basis operators are as in (3. 50) with

P{3)=Mx=a){x~-b). In particular
B= (M}, - = B(MopMy, + MypaMp), (3.55)

and the separation equations are as in (3.51), (3.52)
with appropriate changes in P(A) as above.

(ii) \a

o ||
ib vl
( (1 ( (11) t—it, x—=ix, y—~iy.

The three space parametrizations corresponding to
(a), (b), and (c) in this subsection are recognized as
the three possible Lamé bases for the group O(2, 1).
These bases have been discussed by the authors® and
Macfadyen and Winternitz. 19 The results presented in
this subsection give the parametrization of these bases
inside and outside the cone #* - x® - 1%2=0,

i3

3. Degenerate systems of the type [21(11)]

The coordinate systems of this type are chosen in such
a way that the parameters ¢; are ¢; ==, with the re-
maining free parameters 1 and 0

(a) [21(11)]

The pentaspherical coordinates are given by

O.xlzz— 13 ngle:— [.L—L/+1, (3 56)
== (b= -1(1-p",
oxf=— (k-1 -1p’, oxf=ur.
The three space coordinates are given by
t=ixs/xy, X =Xg/Xy, Y=X4/%, (8.57)
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With i =cosh?4, v=— sinh®B, p’=sin’p, the three space
coordinates assume the form
t=coshA sinhB, x=ginhA coshb coso,

(3.58)
v = sinhA coshB sin¢ .
The separation equations have the form
1 d m?
coshd dA COShA (c ShZA K) E =0, (3.59)
1 d dE,
- 24 -
sinhB dB dB (s‘—z—mh K) 2=0, (3.60)
and
d2E3
+m?E, =
gt T E=0 (3. 61)

where (*) has the solution E(A)E,(B)Ey(¢). The basis
operators A and B whose eigenvalues are —~ m? - K and
~ m? respectively are

A =My + My +p} +p3
P33P, KRy + 1),
B=2M2,.

(3.62)

The separation equations (3.59), and (3. 60) can be
identified with Legendré’s equation. The linearly in-
dependent solutions of (3.60) are P](coshB), Q7 (coshB),
where K=~ j(j +1). The solutions of (3,59) can be ob-
tained from those of (3. 60) by putting B—-A +in/2,

0 (i) \ 1 @ )=~
Py 1 P, b H

() [21(11)] |
! N

(iif)
P, K

There are three cases to consider here as indicated
in the above diagram. We put

(1) L=cosh®4, p=cosh?B,
p=cos?B,
(iii) u= - sinh®4, p=- sinh?s,

(ii) 4 =rcos?a,

with V'zcosqu in all cases. The resulting three space
variables are in these cases:

(i) t=coshA coshB, x=sinhA4 sinhB cos¢,
v = sinhA sinhB sing,

(i) ?=cosacosf, x=sina singcoso,

3.63
¥y = sina sinB sing, ( )

(iii) #=sinhA sinhB, x=coshA coshBcoso,
v = cosh4 coshs sing.

The basis defining operators are

A:M(zn'*'M%z-Pf'Pg
== PJ— 5(PyK, + K,Py+ 1),
B=12,.

(3.64)
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(¢) [21(11)]

W_J0NA =,
EANEL
o

AT K

by putting ¢ =cosh?4, v=cos?a, p'=- sinh?®B, this
system gives the three space coordinates

=sino sinhA sinhB, x =cosa coshd,

3.65
3y = sina sinhA coshB. ( )

(id) N\
AN P | H

With 1 =cosh?4, p=cos®a, and v'=- sinh®B the three
space coordinates are

t=gina coshA sinhB, x=cosa sinh4,

3.66
¥y = sina coshA coshB, ( )

The basis defining operators for these coordinate
systems are

A:Mﬁ1—M%z+P%—P§, f321\/[&02-
() [21(11)]

(3.67)

10

A4 i
B N

o 1 N
ol AN

With p=cosh?4, v=- sinh?B and p’ = - sinh®C the three
space coordinates become

= sinhA coshb coshC, x=coshA sinhB,

(3.68)
v = sinhA coshB sinhC.
The basis defining operators of this system are
A:M%n—Mfz"’P%—Pi B=M,. (3.69)
(e) [2111)]
o0

(ii)) |0 (i) N\ 1 (i)

p, u | P, 1 N Py 1

There are three possible cases to consider here:

(i) w=cosh®4, p=cosh?B,

(i) u=cos’a, p=cos?8,

(iii) p=- sinh?4, p=- sinh®B,
where in all cases »’'=— sinh?C. The resulting coordi-
nate systems in three space are

(i) ¢ = sinhA sinhB coshC, x =coshA coshb,
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y = sinhA sinhB sinhC,

(ii) =cosa cosp coshC, x=sina sing,

v =cosa cosB sinhC, (3.70)
(iii) #=coshA coshBcoshC, x = sinhA sinhB,
vy = coshA coshB sinhC
and the basis operators are
A=M - M%,—P3+P% B_p,. (3.71)

4. Coordinate systems containing a radial coordinate in
three space and derivable from the configuration

[21(11)]

These systems are derivable in exactly the same
manner as those of subsection 2.

WO Nso
AN

The pentaspherical coordinates are given by

OX%Z ‘_J" 20% %=~ 1, O'X%: (1-v),
oG=v(l-p), ork=vp, (8.7
With v =~ sinh®4 and p'=sin%a, &=1/7 these formulas
give the three space coordinates

t=x,/%,=7coshA, x=ix,/x,=vsinhA cosa,

¥y =— i%5/x;, =7 sinhA sina. (3.73)
These are just the familiar polar coordinates inside the
cone t* - x®— y2=0, The basis operators are

A=i_D¥ B=M, (3.74)

The separation equations are
@B VAE jGHY) g g
ar T rdr . A~ v

1 d m?

. dE .
it 3 A 1 (g +0 V) £a=0, (379

d*E.
7(1—)2 + szS = 0,

where E,(v)E,(A)E,(¢) is a solution of (*). The second

of these equations is just a form of the Legendre equa-
tion with solutions P}'(coshA), @['(coshA). The other two
equations have the elementary solutions E; =7, /-1,
and E; = exp(+ime)

(i) N\ 0 1
VZON

l
-p'= + +

o 1
[ o
The three space coordinates for this second configura-

tion are obtained from (3. 73) via the transformation
coshA = sinhA,
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® @ N\ 0 L =,
ZZAN ! =
pl
lo 1 -
K
NG S (N
ZON 7
p
[0 [1 w0
X

The system given by diagram (i) yields the three space
coordinates

t=7sinhA coshB, x=7sinhA sinhB, y=7%coshA,

(3.176)
where
v=- sinh?4, p’'=sinh®B, and p=1/7%
The defining operators are
A={_p? B=M. (3.77)

The coordinates (3. 76) are the familiar hyperbolic co-
ordinates inside the cone #* - ¥~ y*=0, For diagram
(ii) the only change is in the three space variables sub-
jected to the transformation sinhA =coshA.

5. Coordinate systems corresponding to the configuration
[((21) 11]

To obtain the expression for the pentaspherical co-
ordinates corresponding to [(21)11] requires the
substitution

eg=e +€, A=¢ +e+e (3.78)

into (1.37). Here € is a first order quantity and for de-
finiteness we may take A= i, The resulting expression
for the pentaspherical coordinates is

2__ (p—e)v=e) ,
VT (e - e)(es— &)

3 [( (p—e)(v~ el)]

20X Xy == =
e dey | (ey - es)(es~ @)

ax.

_ (p—e)lv-e) .
(es-e)es—e)’
(3.79)

(p-e)v—-e) w

_ (p—edlv-e)
(e—e)(es—e) "’ e :

2
OXq = =
3 £ (e - e)¥(e5- ey)

OX?: (p = ey - e )
(e — e5)*(eq— €5)
The resulting coordinate curve for the coordinate u'is
xE+x2/u'=0, (3.80)
The diagram corresponding to such a curve is
|0 N
T N

while the diagram representing the coordinate curves
of the curvilinear coordinates p and v is

’

I

|es les IV e .
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The inequivalent classes of coordinates of this type are
now given. In each case the ¢; can be standardized as

usual to be
e =, (3.81)

(a) [(21)11]

ey=1, e5=0.

From formulas (3. 79) the pentaspherical coordinates
for the coordinate system are given by
oxi=1, 200 %,=1-v-p-y’,

. s \ (3.82)
oxi=p", oxg=(1-p)v~1), oxg=vp.

With v=— sinh®4 and p =sin®« this gives the three space
coordinates

t=ixy/x;=K, x=x,/% =coshAcosa,

¥ =x5/%; =sinh4 sina, (8. 83)

Here K =v'u’. The separation equations have the form

2
Z—fg +(= T sinh?A + V)E, =0, (3. 84)

E

)%
2

+(= P sina ~ VE,=0, (3. 85)

dZ

txy

+72E3:O, (3-86)

3

and the basis operators /i, B whose eigenvalues are the

separation constants V, - 7 respectively are
A=M,- P}, B=Pi (3.87)

Equations (3. 84) and (3. 85) are easily seen to be forms
of Mathieu’s equation. Here as usual
=E\(A)E,(a)E4(K) is a solution of (*).

() [(21)11]
Gi) o G |1 ()

v,p v,p v,p

K N

l ’

m

There are three cases to consider here. If we choose
(i) p=cosh?4, v=cosh’B,
(ii) p=cos’a, v=cos®8,
(iii) p=sinh?4, v=- sinh’B,

with u’=K? in all cases, then the resulting three space
coordinates are

(i) ?=sinhAsinhB, x=K, y=coshAcoshB,
(ii) ¢=sina sing, x=K, y=cosacosg, (3.88)
(iii) #=coshA coshB, x=K, vy =sinh4 sinhB.
The basis operators in this case are
A=My~ P}, EB=P. (3. 89)
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(e) [(@1)11]

lo |1 L .
U |

o N
IR
If we put p=cosh’4, v=-sinh®B, and p’=K?, then the
three space coordinates are

t =sinhA coshB, x=K, y=coshdsinhB (3.90)
with basis operators
A=)2,+ P}, B=Pl. (3.91)
6. Coordinate systems corresponding to the
configuration [(21)(11)] and [(21) 11]
@) [ena1)]
0 | A
v pr /J-l
|0 |t =,
T
lo NS
| /N
The pentaspherical coordinates are given by
ox3==1, 20xx,=p" -,
(3.92)
oxi=—pu’, oxi=v(l-p'), oxi=wvp’.

Set
y==7? p’=sin2¢, and p’=- K°,

The corresponding three space coordinates are given
by

t=xy/x1=K, x=ixy/xy=7cos¢,

y =ixg/x; =7 sing. {3.93)
The separation equations are
1d é_EJ) (m2 z) _
rdv(y e }7+S E;=0, (3.94)
dE, o, dEy op. _
d—d)%wn E,=0, —EE%SE;;—O. (3.95)

The corresponding basis defining operators /i, B with
eigenvalues — m®, — §? respectively are

A=M, B=P. (3.96)
Equation (3. 94) is a form of Bessel’ s equation.

(b) [(21)(11)]

N,

@) o @ NI .
)l N

I m
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For the case (i) with u’=K?, p’=—sinh®4, and v=—7»
the three space coordinates are
t=rsinhA, x=K, y=7coshA, (3.97)

For (ii) the three space coordinates are as in (3. 97) with
coshA =sinhA, The basis operators for this system are

A=My, B=P (3. 98)
() [eD11]

ia |/

Eb v,p 4“

lo N

|
This is the only coordinate system of this type. The
pentaspherical coordinates are given by

oxi=—1, 20x,=b+a-v-p-p’,

Oxézu', (3.99)

This corresponds to a choice of three space coordinates:
(x+it) =V xy %y, v=ixy/x;=K, (3.100)

where K=V p’, The separation equations have the form
(3. 51) with PQ)) =(x~a)(x~ b) and

LE; pp,-o (3.101)
dK + 3 =Y. .
The basis operators /i, B are

A=- MY+ a(Pi- P)- PPy, B=P (3.102)

7. Coordinate systems on the cone t* - x* - y%=Q that can be
obtained from the configuration [2111] and its
degenerate forms

The method for obtaining coordinate systems on the
cone is similar to that for obtaining the coordinate sys-
tems with a radial coordinate in three space. The meth-
od is illustrated for the first coordinate system of this
subsection.

@ o J1 de |l -
l | v es

+ - + +

The pentaspherical coordinates for such a diagram are
obtained from (1.37) by putting u=e,+g, p=e;+p and
making the substitutions x; —~e;x; (£=3,4,5) and x
—elx,, x; = x,. Then the pentaspherical coordinates
assume the form

oxf=1p, 20%%,=0, axi=-a)/ala-1),

(3.103)
axi=(1-v)/{a=1), oxi=v/a.

The corresponding choice of three space variables is
t=ryv-1)/{a=-1), x=rvv/a,
v=ry({v=a)/ala-1),

where ¥2=1/1ip. The separation equations here are
given by (3. 41) for the variable v and

(3.104)
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®E, dE,

72_?_+»r—._](7+1)E =0, (3.105)

The basis defining operators A, B corresponding to the
separation constants j(j +1) and B are

A=L1_D? B=M?%-aMs, (3.108)
() lo 1 |a | =
r, | l 123
+ + - +

The properties of this system are obtained from those
of (a) via

(a) ~(b), t—ix, x~y, y—~it,
(C) ﬁ;a ‘[0 J .

ib

v TEp
The pentaspherical coordinates are

)/a(a - b},
(3.107)

oxf=pp, 20%x,=0, oxi=(v-a

oxZ=(v-b)/b(b~a), oxi=v/ab.

The corresponding three space coordinates are
(x+it) =iV2x, /%y, v=i%5/%. (3.108)

The separation equations are given by (3.41) with P(3)
=x(A-a)(x=b) and (3.105), where as usual ¥*=1/up.
The basis defining operators A, B are

B = Ol(Mfa - Mﬁz) - B(MOZMIZ +M12Moz)-
(3.109)

~

A:%—Dz,

(d) 0 [1 =,
5

o0

The pentaspherical coordinates are

oxf=[p, Zowyx,=0, oxi=-1,

oxi=(1-v") oxi=v", (3.110)
The three space coordinates on the cone are
t=v, x=7cos¢, y=7sing,

where 1/Gp =7 v’ =cos?¢. The separation equations
are (3.105) and the third equation of (3.75). The basic
defining operators are clearly

A=i-D? (3.111)

The three space coordinates are
t=7coshA, x=vsinhd4, y=z7

with the basis defining operators
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A=i_D% B=M,. (3.112)
C. The configurations [311], [371], and their
degenerate forms

Here we give the configurations of the form [311] and
[31 1] which are inequivalent with respect to the by now
familiar equivalence relation. It is possible to standard-
ize the parameters ¢; such that

=2, =1, ¢=0, (3.113)

where, of course, ¢; is the parameter associated with
the invariant factor index 3. The two operators whose
eigenvalues are the separation constants are given as
in (3.5) with fAX) =x(A-1). The separation equations
with the above choice of the ¢, are

77 o (L) - (ar+ BIE, =0

with f(A) as above and E;(u)E,(v)E4(p) as the separable
solution of (*). For the configuration [311] the separa-
tion equations are as in (3.114) with AN = - a)(X - b),
where as usual a=b*=q +i3, o,8cR. We now list the
inequivalent systems of this type.

(3.114)

(a) [311]
@ |0 |1 Il =
l p’ V, /J' i m
+ + -
(i1) |0 |1 W=,
o —
+ + -
(iii) 10 |1 )} =
+ + -

The pentaspherical coordinates are given by

oxf=-1, 20x%,=u+V+p,
of2xyx, +xd) =v+u+p—(ur+pup+vp)-1,  (3.115)
oi=—(u-1D(F-1(p-1), oxi=pvp,
The three space coordinates are given by
2U=2%,/% == [L—V=p, (3.116)

The basis operators are

y=x5/%y=v uvp.

X =1%x,/%,

A:P0M20+Mzopo-PMoz' 02P1+P§+Pf,
:—Mfz +PE+P,My, +My,P,. (3.117)
(b) [311]
W __|o | 1 ||
l ol
+ - -
(i) _ |0 | 1 [
L o
+ —_ .
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The properties of this system can be deduced from
those of (a) via the transformation

(a)-’(b)> t_’y) X ~ix, y~t.
() [311]

(@)~ (o), t—it, x —ix, y—iy,

(d) [3ﬁ] a

1
1
I
'
]
1
'

ov,u M

b

The pentaspherical coordinates are given by
of==1, 2oxx,=p+v+p,
o{2x1%5 + x3) = pp +vp + v~ (a+b)(u +v +p)

+a? + ab + b2,

og=(L-alp-a)(v-a/(b-a),
oxi=(u=b)p-b)(v-0)/(a=-1b),

where a=a+i8, b=a~-1i8, o, c R. The three space
coordinates are given by

(3.118)

(x+it)=iV2x,/x;, y=-2x,/%, (3.119)
with the basis operators given by
A=MypPy +P My, +MpPy+ P oM, + 2aP%
+ a(P%-P%) < 28P,P,, (3.120)

B= @(MypPy + P My, + Mo Py + PoMg,) + B(M Py + P M,
= My3P o~ PyMy,) + (o + B2 P% — M5
+(a? < B%)(P% - P2) - 4aBPP;,.

1. Degenerate systems of type {3(11)]

The coordinate systems of this type are chosen such
that the free parameters e, and ¢; are = and 0
respectively.

() [3(11)]

The pentaspherical coordinates are given by

e (3.121)

o(2xy %5 +x2) =~ up, oxf=pp(1-v'),
oxd=ppv’,

The three space coordinates are given by the formulas
t=2x,/%), x=ix,/%;, ¥=ixs/%,, (3.122)

Translating ¢ by +3 and putting ¢ = £%, p=7?%, and v’
=gina. We obtain the more familiar form,
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t=+3(8+1P), x=Encosa, y=ENsina. (3.123)

The separation equations for this system assume the
form

&#E, 1dE, . mé
i T (‘7 ‘V>E*:0’ (3.129)
where A= £, nand i=1, 2 respectively, and

a2

—d—gjza- +W12E3 =0.

Equation (3. 124) is Bessel’s equations with linearly in-
dependent solutions J,(g»), Y,{(q)). The solutions of the
third equation are E,=exp(+ima). The basis operators
A, B whose eigenvalues are g% and - m?, respectively,
are
A=MyP; +P,My + MyP, + P;My=P D +DP,,
B :M122~
(o [3(11)]

(3.125)

The three space coordinates in this case are
y=(x/% ~5) =235 (E8+ 1%, t=1ix,/x, = EncoshA,
(3.126)

where p= £, p=7?, and v'=-~ sinh®A. The resulting
basis operators are

A=MP o+ P M+ MpPy+ P My,

X =%5/%y = ENsinhA,

B:Nl%‘. (3 127)
(c)
N0 |
AN N
v
lo |1 w

This system corresponds to the choice of three space
coordinates
t=1ixs/x, = Ensinhd, x= CEN -3 =3(8~17)
¥ =2x,/%, = EncoshA, (3.128)

p=¢&, p=-1%, and v =~ sinhd. The basis operators
are

A=MPy+P,Myy + MyP +P My, B=M2, (3.129)

2. Degenerate systemns of type ((31)1]

The formulas for the pentaspherical coordinates cor-
responding to the degenerate configuration [(31)1] are

obtained from these of (1. 38) via the substitution
g=e,+e, A=g +e+ed, (3.130)

where for definiteness we can take A=v, The resulting
expression for the pentaspherical coordinates is

E.G. Kalnins and W. Miller, Jr. 348



2 _(k-e)o-e) mlxz:a_ael(.(u-elxp—eo),

= (es—¢y) (e5-e)
(3.131)
124 f(u=e)p—e))  (L-e)lo—¢) ,
0(2x1x3+x§):—2-a—ef< (015—81)1>+ (615—61)1 [
(L=e)p-¢) : _(p=-e)lo-e)

The coordinate curve for thecoordinate v’ is
x2+x3/v' =0, (3.132)

and the diagram corresponding to such a curve is

lo °° :
v v’

while the diagram representing the coordinate curves
of the curvilinear coordinates L, p is

lés JU/el
| Al
V’
The inequivalent classes of this type are now given. In

each case ¢, and e; can be taken to be « and 0,
respectively.

(@) [(31)1]

o

o0

4
Al

4

i

v,p
(ii) 0 (i) >Kw
u’ !

The pentaspherical coordinates are given by

oxi=-1, 200 %,=-V-p-1,

(3.133)
o2y %y +xd) =—p'—vp, oxi=p’, oxl=vp,
The corresponding three space coordinates are
(D) t=ix;/x,=£&m, x=ix/x, =k,
y=(%/% —2) =£5(E +7P),
(3.134)

(1) ¢ =23/, - 5 =2 358+ 1),
x=x/% =k, y=ixg/x;=§n,
where p= £, v=77, and k=(Iu'1)/%, The separation
equations are

#E,

WHQ_ TOY)E; =0 (3.135a)
for A=§,n7and i=1, 2 respectively, and

#E.

—A T, = (3. 135b)

Equation (3.135a) is well known to have solutions ex-
pressed as parabolic cylinder functions. The basis op-
erators A, B whose eigenvalues are the separation con-
stants @ and - 7%, respectively, are

‘&=M02P0+P0Moz, E=Pf- (3.136)
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o0

(b) 0

W
y Al
l—i’

0 AV
A

m

In this case the three space coordinates are given by

t=ix4/x1 =k, x:(xz/x1 _%):%(gz_ 772)’

y=ixg/x; = £7 (3.137)
with v=#, p=—17?, and 2=(r')'’%. The basis operators

are

A=M,,P,+P,M,, B=P2, (3.138)

D. The configuration [221] and its degenerate forms
1. Systems of the type [221]

The inequivalent coordinate systems of type [221] are
given in the following list. In each case the three free
parameters €;, €3, and ¢; are standardized to be », 1,
and 0, respectively.

(a) [221]
(1) 0 |1 e
vp | B T
+ + -
(i) 0 | 1 | e
o |
+ + -

The pentaspherical coordinates are given by

oxf=—1, 200%,=—p-v-p+2,
(3.139)
o= (- (- 1(p- 1),
20x %5 =L +V+p— uvp~2, oxZ=pvp,
A suitable choice of three space coordinates is
t+xf=-xd/d=(u-D-Dp-1),
o= 2 /xE=p v tp - prp=2, (3.140)

Yy =%ix;/%; ==V uvp,

The separation equations have the form (3. 51) with
p(M=Ar(x~1)% i.e., the associated Legendre equation.
The defining operators are

A=2(P;-Pi-P P, + M, - MY - M2,
% 3.141
B:P§—2M%z-Mleoa-MoaMlzn ( )
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@ ]o [] 1 | =
V,pl L f
+ - -—

(ii) 0 || 1 =
Y N p’ﬂll
=+ - -—

(iii) |0 111 [|

i v, o, l 1l
+ - -

This system is related to (a) via the transformation
(a) = (b), t—ix, x—it, y =y,

(c) [221] o 1 e

v p,u” I

(@) ~(c), t—it, x—~ix, y—~iy,

2
@t 0y =

|
s,

3

(@)y—~(d), t-x, x~t, y~—=iy.

2 Coordinate systems corresponding to the
configuration [2(21)]

Here the two free parameters ¢, and ¢; may be taken
as 0 and © (not necessarily respectively, as will be
seen).

(a) [2(21)]

0l | )
V0 }
()] o0 BN -

o] VAN
The pentaspherical coordinates are given by
oxi=-1, 20oxx,=-V-p, oxt=-vp,

(3.142)
20x0, =V +p~pn'vp, oxE=2vpu’,
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A suitable choice of three space coordinates is

(t-x)2=x%/xE=vp,

(2~ x®) =2x,x, /x}=p'vp-v —p, (3.143)
y=xix;/V2x, =2V 'vp.

The separation equations for this system are of the

form (3.51) with p(A) =A% for the variables v and p.

This equation can be related to Bessel’s equation. The
separation equation in the variable u' is

ull /z_fi___ (“’1 /ziE—:;)‘FBEa:O.

ar m (3.144)
The basis operators fi, B are
A=ME - (P, +P)%, B=(My,~My)?. (8. 145)

For (ii) the results follow from (i) via the transformation
(D) = (i), t=x, x—~t, y—iy.

This does not change the operators A and B but gives
new expressions for the three space coordinates.

(b) [2(21)] % e,

Al ) Il

i

(i} 0 (1) o
u;l ? %

(o) (1) and (b) (ii) are obtained from (a) (i) and (a) (i1,
respectively, via the transformation

t=it, x=—ix, y—1iy.
2(2
(C)[ ( 1)] HO \“ o
H v,p
“/
(i) |0 (1) \/\é o
W Iy

The pentaspherical coordinates in this case are given
by
oxd=vp, 20xx,=v+p, oxi=-1,
.14
2050, = —v-p, ox=pu’. (3.146)

For (i) a suitable choice of three space coordinates is

(t—x)Z:—xf/xgz vp, (3.147)

(2= =— 2xy%,/xE=v+p, ¥ :iixs/xazi(u')‘/z.

The separation equations for this system are of the
form (3.51) with p(A) =28, A=v, p. This is a form of
Bessel’s equation. For the variable u' the equation has
the form (3. 144) and the basis defining operators 4, B
are

A=M3 —(P,+P))?, B=Pi (3.148)
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The corresponding properties for (ii) are obtained from
those of (i) via the transformation

t—-x, x=t, y=—=1iy.
() [2(21)] “0 \“ o
ST N
“.I
(i |0 (1) >!< =
ul I ul

(@) (i) and (d) (ii) are obtained from (c) (i) and (c) {ii),
respectively, via the transformation

t—it, x—ix, y=-iy.

3. Coordinate systems having a radial coordinate in
three space and derivable from the configurations
[221] and [2(21)]

(a) (I K 1
v P

A=
It

L F

(i o 1 Jl o
v P Trﬂ
- + +

The pentaspherical coordinates are given by

Oxf:l'_)" 20’51’52:1’ 0"%:(”—1)(9-1),

(3.149)

200,%, =~ 1=vp, oxi=vp,

For the case (i) a suitable choice of three space coordi-
nates is given by the equations

(¢ +x)2=xf/xf=r*v - 1)(1~p),

xE+yia BB=2x, /%, =72

(3.150)
vi=xt/xf=r%p,

where ¥2=1/. The separation equations have the form
(3.51) with p(A) =(x=1)%x and A=p, v and the first of
equations (3. 75) for the radial coordinate. The equations
in p and ¥ are associated Legendre function equations.
The basis def1n1ng operators 4, B are

A=1_p2 B:2M12+M12M20+M20M12. (3.151)

System (ii) is related to (i) via the transformation

t—~it, x—~ix, y-—1iy.
(b) (1 [0 ]2 | =,
l v.p Il | I
+ + +
G __}o |1 | =
o I

The coordinate systems (b) (i) and (b) (ii) are related
to (a) (1) and (a) (ii), respectively, via the transformation

t—=ix, x—it, y—-9y.
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(C) (1) u/D “ao ’
A - Iz

|0 v’ Xw »
l
|

=
(if) /o
il

oy W

The pentaspherical coordinates are given by

=T - 2_
oxy=[, 2o0x,=1, ox3=p,

(3.152)

z
2oxgx, =~-v'p~1, axf=vp.

A suitable choice of three space coordinates for system
(i) is

X—t=xy/%=7e", x¥-1¥=_ 2xx, /%%,
=73(1+5%%), y=x,/%= (3.153)
where s=vv", vp=¢° and 1/u=72, This system cor-
responds to horospherical coordinates on the unit hyper-
boloid. The separation equations are

012121 LB
da? ' da

d*E.
d_2§+BE =0,

7’86

—(e®B+A)E, =0,
{3.154)

the equation for E,(r) being identical with'(3.105). The
basis operators A, B are

A=} -D? B=(My-Mpy)>. (3.155)
System (ii) is related to (i) via the transformation

t—~it, x—ix, y-—~1y,

4. Coordinate systems on the cone t? -x? -y? =

obtainable from [221] and its degenerate forms

The method of obtaining such coordinates follows along

‘the lines outlined previously. Consider the diagram

10 -

|| 1 |

The pentaspherical coordinates are given by

oxf=[p, 20xx,=0, oxi=v-1,
200, =~ v, oxl=v, (3.156)
A suitable choice of three space coordinates is
(t+x)P2=-x2/x2=1F1-v), yi=xt/xi=+v,
(3.157)

Wy o =22,/ =0,

where 1/[I5=7%. The separation equations are given by
(3.51) with P(x)= (» — 1)®x for the coordinate » = » and
for the radial coordinate the equation is (3.105). The
basis operators are
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A=g-D% BZZMfz*'Mleao‘*'MzoMm (3.158)
G |0 B e
| E—

This system is related to (a) via the transformation

(@) =), t—ix, x—~it, y =y
(c)

-0 |

’ |

o0

| =

Hop

K
|

The pentaspherical coordinates are given by

v

2 . 11n - — —
oxd=pp, 20%%,=0, oxi=-1,

206, =-v', oxi=v', (3.159)
A suitable choice of three space coordinates is
tmx=ixy/% =7, 2-xP=-2x%,/x3=7,
(3.160)

v =2x5/%, = r(v)/2,

The separation equations have the form (3.51) with
P(N)=2%. The equation in the radial coordinate is
(3.105), and the basis defining operators A, B are

A=L_D% B=(My-M,? (3.161)
E. The configuration [41] and the degenerate form
[(41)]
1. The configuration [41]

The inequivalent coordinate systems of type [41] are
given in the following list. In each case the two free
parameters e; and e; can be chosen to be © and 0,
respectively.

(a) [41]
(1 |0 ©
V | p’ IJ'
(ii) 10 o
v, p, 4

The corresponding pentaspherical coordinates are

oxd=—1, 20%x,==(L+v+p+2),

o(2x,x, +x2) == (vp+ pr+pp+p+u+r+1), (3.162)
20(x, 5, + X%5) = pvp, oxi=— uvp,
A suitable choice of three space coordinates is
2(t +x) = dxy/xy = pv + up +vp — 3 (UE + 2+ p?),
2x =1y =2(xy/x - )= +V +p, (3.163)

yzz_xg/x%:_ uvp.

Here the second equation has been subjected to a transla-
tion. This is merely a convenience, The separation
equations for this coordinate system have the form

(8.51) with p(A) =x. The solutions are expressible in
terms of Bessel functions, The corresponding basis
operators are
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A=(Py+P)M;o+Mo(Py +P) = 2Py(My, - Myy)
- Z(M12 - Mzo)Pz" (P1 - PO)Z, (3.164)
B= (M1z - Mao)2 - Pz(Mlz +M20) - (Mlz +M20)Pz-

(b)
(@) 0 ©

V,p, 1

(ii) 0 o

v,p i

This system is related to (a) via the transformation

(@) =(b), t~x, x=1, y—~iy.

2. The degenerate case with configuration [(41)]

The pentaspherical coordinates corresponding to such

a system are obtained by making substitutions
e;=e +e€, A= +e+et), (3.165)

where A=y, say. The resulting expression for the pen-
taspherical coordinates is

ox¥=—(v-e)p-e), 200x,==(-¢)-(0-2¢),

o(2xy0, + 23 =1, 20(xxy +x,05) = 'V = e)p- &),
oxZ=p'v=e)(p-e). (3.166)

If we further specialize to the case ¢; ==, these equa-
tions simplify to

oxd=o1, 20%x,=p+v, o(2xx, +x3)=pv,
2003, +¥px,) =~ p, oxd=p’. (3.167)

The one coordinate system of this type corresponds to
the diagrams

||L|ﬁ° |

[4

v, p i

o N/ =
| L /N

A suitable choice of three space coordinates is
(v—t)=—4xz/x1=2(P+V), (y+t):2ix3/x1,
X=ixg/x, =k. (3.168)

The separation equations have the form (3.51) for the
variables v, p with p(}) = const and (3. 135b) in the vari-
able #. The basis operators A, B are

A:MUZ(P0+P2) +(P0+P2)Moz+(P0"Pz)2»
(3.169)

oo

=P,

Ll

F. The configuration [32] and associated coordinate
systems
1. The configuration [32]

As usual in the classification of inequivalent coordi-
nate systems the two free parameters ¢; and ¢, can be
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standardized to be 0 and © (not necessarily respectively).

(a) [32]

f

, M b, 1

The pentaspherical coordinates are given by
oxf=pvp, 20%,X,=— (v + up +vp), (3.170)
026X, ¥ ¥ =~ p—v-p, oxi=-1, 2ox,=u+v+p.

The suitable choice of three space coordinates is

(t=x)2=x}/x2=—pvp, 2y(x—1t)=2x;%,/xf=pv+vp+pp,
o yi=_x/x,=p+v+p, (3.171)

The separation equations are given by (3.51) with p(A)
=23, The corresponding basis defining operators are

A :M%Z" M%l - M%Z - ZPZ(PO +P1)J
B=My(My, = M) + (Myp — Moa)My = (P +Py).
() [32]

(3.172)

e e
v, ol M

This system is related to (a) via the transformation
(a) ~(b), t—~it, x~ix, y—~iy.

(c) [32]
(1) 0 o=
vV, p, 1 I
(11) |
v,p p !

The pentaspherical coordinates are given by

=1, 20%0,== (L+v+p),

3.173)
o205y + ¥8) = — pv — pp - vp, (

-2 __

OX; == UVp, 20Xyx5= UV + Lup+Vp.

The suitable choice of three space coordinates is
{t=xP=x3/x2=pvp, 12—xf=-2xx;/x2=pv+pup+vp,
2y =2x,/x,=p+V+p (3.174)

with the pentaspherical coordinates chosen as in (3. 173).
The separation equations are (3. 41) with f(A) =2 and
the basis operators are

‘[1: (P0+P1)(M12 +M02) + (M1z +Moz)(Po +P1)
+3(P0+P1)2 (3.175)
B= 2Py + P (M, — M) + 2(Myy — M) (Py +Py) + M2,

(@)

P, 1

(e) ~(d), t—~ix, x=it, y—y.
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2 Coordinate systems of type [32] corresponding to a
radial coordinate in three space

(a) (1)

0 % )
v P m
(ii) 0 el
v, p b

The pentaspherical coordinates are given by
oxt=vp, 20%x,=~V-p,

o(2xyx, +xD) =1, oxd=[1, 20%%5=2. (3.176)

For (i) this corresponds to a choice of three space
coordinates
(t=xP=cx/xi=—vpr? 20(x =8 =2xx,/%%= (v +p)r?,

2y = x/x,, (3.177)

The separation equations are given by (3.51) with p(2)
=A% for A=V, p and the equation in the variable 7 is
(3.105). The basis operators A, B are

A=i_D?
B =My (My; — My) + (Myp = M) My, (3.178)
The corresponding results for (ii) follow via the trans-
formation ¢ —it, x —ix, y =iy,
3. Coordinates on the cone arising from the
configuration [32]

There is one case to consider here.

(a) }

|| 0 ||
Il v 11

m

ol

The pentaspherical coordinates are given by
o=y, 20 %,=-1, o(2x,x, +x3 =0,
oxd=0p, 20x05=0, (3.179)

The associated choice of three space variables is
(=2 =xf/xf=vr?, 2y(x=1)=2xx,/x== 42,
o x? _y? =/, = 0. (3.180)

The separation equations are (3.51) with p(A) =28
for A= and (3. 105) for the variable ». The basis
operators are

A =3 -D?
B= My (Mg = M) + (M5 = Mop)Mg. (3.181)

G. The configuration [5)

There is only one coordinate system for such a con-
figuration and it has the diagram

o0

v, P,

The pentaspherical coordinates are given by
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=1, 2owyx,=—(L+v+p), (3.182)
o(x3 +201%65) = v + up +vp,  o(2x,x, +2x,%,) = pvp,
This gives the three space variables
2t —x)==2x,/%,=u+v+p,
2(t+x) == 2xy/x; == puvp +1{V¥(p + p) + p¥(u +v)]
+pE@ +p) - (P + 03+ p%)], (3.183)

4y =4y /%, = uv + up +vp ~ (Ut + 2% +p?),

The separation equations are (3.41) with f{A)=1. This
gives the product of three solutions of Airy’s equation.
The resulting basis operators are

A=8[2(P, - Py)%+ (P, +P)) (M, + M,
+ (My + My)(Py + Py) = PoMy o~ My P,), (3.184)
B=My(Py+Py) +(Py+P)My +4P,(My, - My, Py +P))
+4(Myy ~ My, — Py +P)P,.

H. Cartesian coordinates

The defining coordinates £, x, ¥y can be incorporated
into the scheme we have used here in the same way
that Bocher has done for the Laplace equation in three
space. The diagrams for such a coordinate system are

0 N/ ot )
X 7N

0 N\ ® s
v! /N
0 N ®

AN

P

The expressions for the pentaspherical coordinates are

of=-1, 200x,=-pu'-v'=p,
o=p', oxi=v', oxk=p’, (3.185)
where the x; are as in (1. 26). The separation equations
are obviously of the form

aE,;

—F+KE =0

7i) (3.186)

with basis defining operators any two of the operators
P?(i=0,1,2).

IV. CONCLUDING REMARKS

In this paper we have made a detailed study of the
orthogonal coordinate systems in three-dimensional
Minkowski space for which the two-dimensional wave
equation (*) admits an R-separable solution. The method
for doing this is due to Bocher and involves the use of
pentaspherical coordinates. The direct relation between
pentaspherical coordinates and the symmetry group of
(*) was clearly demonstrated. The utility of the method
over alternate ways of finding separable solutions of
differential equations such as the classification of dif-
ferential forms'! is clear. Not only can the coordinates
be found, but the separation equations and modulation
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factor can be determined from the key formulas in Sec,
II.

As mentioned in the introductory comments of Sec.
III, we have given a list of coordinate systems, some
of which are equivalent under the action of the O(3, 2)
symmetry group of (*) but not under the action of the
E(2,1) subgroup. The coordinate systems corresponding
to the configurations [21(11)], [(21)(11)], and [3(11)], in
which the coordinate curve for a contracted variable 2’
has a diagram

|0 11

AN
@ ! !

(ii)a’ N

are equivalent under the O(3, 2) group action to one of
the nine classes of coordinate systems which have a
radial coordinate. This reflects the fact that the oper-
ator B as in (3. 21) with X" =p’ can always be chosen to
be — 1 + D2, Further, for the systems corresponding to
the configuration [32], those which have ¢ ==, ¢,=0
and ¢, =0, ¢,=% are equivalent under the action of
O(3, 2) but not under the E(2, 1) subgroup. Similar com-
ments apply to the systems with configuration [2(21)].

No attempt has been made to firmly establish that all
inequivalent classes of orthogonal R separable solutions
of (*) have been found. This topic will be the subject
of subsequent work. Taking into account the equivalent
systems as indicated in the preceding comments, we
have presented 53 coordinate systems inequivalent un-
der the O(3, 2) group action. In addition all the coordi-
nate systems except those belonging to the configuration
[11111] give separable solutions of the Helmholtz equa-
tion 8,9~ A, =K%P. There are 53 such systems. All
the coordinate systems in Secs. 1—4, 6 of I are re-
presented here. In particular the nine coordinate sys-
tems of the Euler—Poincaré—Darboux (EPD) equation.
In subsequent articles it is our intention to look at the
EPD equation in detail and to examine solutions of (*)
which are R-separable but not orthogonal.
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Tb) [(11)111] t=ixy/(xs+ixy), x=x,/(x5+ix),

(P1)
0 \1 k \/ " y=x3/ (x5 +ix).
v ‘ K /\ The modulation factor is
— ’ —
+ * * p V2al/ds=(Sipfa+Vi=p )2,
0 ]1 XV‘” The basis operators are
p’ ‘ /‘\ 443=a(P2+K2)2+(P1+K1)2,
The pentaspherical coordinates are given as in (3.20). The R (p2)
three space coordinates are given by 4B==1~(Py— K.
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Lie theory and separation of variables. 10. Nonorthogonal
R-separable solutions of the wave equation d,,y =A, {

E. G. Kalnins

Centre de Recherches Mathématiques, Université de Montréal, Montréal 101, Québec, Canada

W. Miller, Jr.
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We classify and discuss the possible nonorthogonal coordinate systems which lead to R-separable solutions
of the wave equation. Each system is associated with a pair of commuting operators in the symmetry
algebra so (3,2) of this equation, one operator first order and the other first or second order. Several systems

appear here for the first time.

INTRODUCTION

This paper is one of a series'™ investigating the
relationship between the symmetry groups of the princi-
pal equations of mathematical physics and the coordi-
nate systems for which the corresponding equations
admit an R-separable solution. We recall that a solu-
tion ;b(xl,xz,x3) of an equation in three variables is R-
separable if it can be written in the form

Py, %5, %5) = exp[Q(xl, X2 x3)]A(x1)B(x2)C(x3),

where ¢° contains no factors which are functions of one
variable. The factor ¢° is called the modulation factor.
The last two papers in this series®® have dealt with a
study of the wave equation in two space dimensions

B, 0 =059, *)

In Paper 8° of this series (hereafter referred to as I)
we have given a detailed treatment of the symmetry
group of (*) which is locally isomorphie to O(3,2). In
that article are also discussed the principal equations
contained in (*) when a generator of the Lie algebra is
diagonalized. The resulting coordinate systems were
called semisubgroup coordinate systems. In Paper 9°
(hereafter referred to as II) of this series, we com-
plemented the contents of I with a detailed study of the
orthogonal R-separable solutions of (*). This was
achieved using pentaspherical space and families of
confocal cyclides. The methods were principally those
developed by Bbcher.'° In this work we supplement the
contents of I and I by looking for R-separable solutions
of (*) which correspond to coordinates which are
nonorthogonal.

If
ds? = di? = dx? — dy?

1=-9

=gt dx, dx,
is such that g/ #0 for at least one pair of indices i#j
and (*) admits an R-separable solution in the variables
x,,%,,%,, these coordinates constitute a nonorthogonal
R-separable coordinate system. It is the purpose of
this article to classify such coordinate systems. The
contents of the paper are divided into three sections. In
Sec. I we classify all coordinate systems in terms of
their differential forms. This is done in detail by ele-
mentary and straightforward methods. The separation
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equations for each system we find are also given here.
In Sec. II we give the coordinate systems in Minkowski
space which correspond to the differential forms given
in Sec. I. We also give the operators which specify

the separation constants in each system. These are the
operators associated with each system. Finally in Sec.
IIT we look at the properties of coordinate systems which
are specified by elements of an SL(2,R) subalgebra of
the symmetry group of (*). This corresponds to the
SL(2,R) algebra in Sec. 7 of Paper 8 of this series.

|. THE CLASSIFICATION OF SEPARABLE
NONORTHOGONAL COORDINATE SYSTEMS

In this section we give a classification of the non-
orthogonal coordinate systems for which (*) admits an
R-separable solution. As opposed to the sophisticated
methods used in II, we proceed in a straightforward
manner here. These techniques have already been used
previously.

We use the conditions of R-separability together with
the requirement that the space be flat. The first re~
quirement reduces to a number of special cases in
which the metric g/ has a prescribed form. For the
space to be flat means that all the components of the
Riemann curvature tensor are zero. The solution of
these two constraints then gives us the list of possible
nonorthogonal R-separable coordinate systems for the
Laplace operator in a flat space. In each case we ob-
tain a specific form for the metric tensor gi/. Each of
the nonorthogonal R-separable systems that we find
corresponds to a prescribed coordinate system in
Minkowski space with coordinates /,x,y. This reflects
the fact that the only other candidate space satisfying
the above conditions is Euclidean three-space, which
does not admit nonorthogonal R-separable solutions of
the Laplace operator.

A few words about our definition of R-separation are
in order. More specifically we consider at first pure
separation. A solution of (*) ¢(x,,x,,x,) in three new
curvilinear variables u, v, p— xy,%,, X3 is said to be
separable if § =A(x;)B(x,)C(x3) and each of the factor
functions satisfies a second or first order ordinary dif-
ferential equation. By a nonorthogonal coordinate sys-
tem we shall mean a coordinate system for which at
least one g*/ (i#7) is nonzero. Here g*/ is the metric
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tensor expressing the line element ds® =g/ dx;dx,. For
such a coordinate system the wave operator has the
general form

AZatt—A2=Eaifaij+lEaiai’ 1.1
where i,7 =1,2,3 and at least one a;; ({#5) is nonzero.
From this general form it follows that at least one of the
separation equations must be of first order. The defini-
tion of separable coordinates for such a coordinate sys-
tem that we adopt is that for at least one of the variables
whose separation equation is first order the wave
equation Ay =0 can be rewritten as a function of the
single variable on one side and a function of the re-
maining two variables on the other side so that one vari-
able “separates.” The equation in the remaining two
variables separates in the same manner. (There are
other more complicated ways for variables to separate
which do not fall within this definition; see Sec. III. In
this sense our results are not entirely complete.) In
addition the coordinate functions

x=Glx;), y=H() (=1,2,3)

are real functions of the x, only. For the case of R-
separation the above definition carries over to the re-
duced wave equation, which results when the modulation
factor e9 is extracted. The function @ may, however,
depend on the separation constants. For each coordinate
system the two separation constants [, and [, are the
eigenvalues of two operators /, and /, which are ex-
pressible as at most second order symmetric operators
in the enveloping algebra of the O(3,2) symmetry group
of ().

t=F{x,), 1.2)

We now proceed to the solution of our problem and
examine the conditions which will permit a separable
solution of (*). Recall that if we rewrite (+) in terms of
the variables x, the equation assumes the form

A =084, — By = 41,0130 + By 050 + Aggdgsd + 2150150
+ 0130150 + Gy30,50 + 0,0, 0 + ap0,0 T a33,0=0.
(1.3)

Here A is the Laplacian corresponding to the contra-
variant metric tensor g/ in the differential form:

(1.4)

The expression for A in terms of the metric tensor and
variables ¥, is

ds® =gt dx dx; .

(1.5)

where g=det(¢"’) and g,, is the covariant metric tensor
of our original contravariant tensor g*/. (Note: In this
article we prefer to write all our results in terms of the
covariant variables x,, x,,x, as a matter of convenience.)

It is now the problem of separation of variables for
the equation Ay =0 that is our concern. From expres-
sion (1.3) we find four possibilities.

(1) A1l the separation equations are first ovder: From
(1.3) and the fact that a,, =2g,, (i+#j) and a,,=g,, we
have g,, =g,, =g;,=0. Equation (1.3) then assumes the
form
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@150100 T @130 15Y T ApgBp39 + @0, + ;0,0 + 03339 =0.
1.8)

If the separation equation for the variable x, is 8 dC/dx,
+yC=0, then (1.6) reduces to the form

150150 + 510,01 b0, +0,0=0,

where ¢ =A(x;)B(x,). The condition that this equation
admit a separation is that either a,,=0 or », =0, say.
From the possible forms of the first order separation
equations the condition b, =0 requires a;;=a,=0. In
any case the covariant metric g;; is singular and there-
fore inadmissable.

(2) Exactly one separation equation is of second ovder:
If this equation is in the variable x,, then g,, =g,,=0.
The resulting equation has the form

33033% + @130 15% + 130,30 + Apapg¥)

+a,9,) + a0, + ad,9=0. a.n

For a separable solution of (1.7) it is necessary that
either a;3=0 or a,3=0. We cannot choose a;; =0 as this
would imply g4, =0 and hence a singular metric tensor.

(3) Two of the separation equations are second
ovdev: If these equations are in the variables x,
and x3, then a necessary condition for the separation of
{with @, =0 by hypothesis)
g090Y + Ag3033Y + 190198 +aAy3013Y + y30ps¥ + 40,9
T ay9,9 +a30;9=0 (1.8)
is that a,;=2g,3=0.

(4) All the separation equations ave second ovder: This
case is of no interest for this work as separation of
variables now implies that a;;=0 for ¢#j. This is the
case that has been treated in II and corresponds to
orthogonal coordinates.

We now proceed to those cases of interest by taking
special choices of the contravariant metric g/, We
enumerate the possibilities.

{1) R-separable differential forms in which one
nondiagonal element of the covariant metric
tensor is nonzero

(A) Pure separation

The most general such form of the metric tensor is

y [a b O

g'’=1n 00}, (1.9)
6 0 c
-

corresponding to the covariant metric tensor

0 1/n 0

gii= |1/h —a/B* 0 (1.10)
K 0 1l/c

The wave equation assumes the form
Ayp000Y + @ 530339 +a 1385 +@ DY + Ay + a3 =0
(1.11)

We consider first the x; dependence of the metric co-
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efficients a, %, and ¢. In order that the x; dependence
separate out in an equation of the form T (x,)3,A4 (x,)
=KA(x,), the coefficients in (1.11) must satisfy the
constraints

Ay =F(x)dy, ag=F(x)as, a=F(x)a,,
ay=Fx)a,;, ay,=GCGx)d,, a=GCx,)ay, (1.12)
where the functions 4;; and @; depend upon x; and x; only.
These conditions imply i = 1/G ()] 2 (xy,%;). By suitable
redefinition of x; we can take G=1. The remaining con-
ditions imply ¢ =&F(x,), a=F(x,)a. There are then two
cases to consider, (i) F(x,)=constant. (ii) F(x,) not a
constant. In the latter case the form of F(x,) can be
found from the requirement a,=F(x;)@,. This means
F'(x;) < F%. We can therefore take F =1/x, without loss
of generality. The two cases to be considered are then
specified by

(1) h=h(xy, x3), a=alx,,x;), and ¢ =c(x,, x3),
(2) h=h(xy, %;), a=a(xy,x,)/%;, and ¢ =c(xy, x3)xy,
and will be considered separately.

(1) The equations which ensure that the space is flat
are obtained by equating the nontrivially zero com-
ponents of the Riemannian curvature tensor R, ;,; to zero.
For the case (1) these equations are

he ashy

2R 991 =ap,~ 2—3‘ 7 =0, (1.13a)
hya;  aayc asCq ah’

2R 33 =ag - A —zz—ZZh ~ o +§l‘§' =0 (1.13b)
Ry g%_

2Ry330=Cg — PR =0, (1.13c)

hoh h

2R3221="h32+“2—Lh + 5 =0, (1.13d)
s Cya

2Rgiy=ag, - Lo "‘—3'220 =0, (1.13e)
a,c X

2R2331=h33‘—’”22h2 ‘%3%&—5}‘;1 =0. (1.13f)

For this case we consider two possibilities: ¢;#0, ¢, =0.
If ¢, #0, then equation (1, 3) has the form

a 1 2l
- T et 333¢+< +az> 029 + 3330 — 2hc¢ 0,

(1.14)

where ¢ =B(x,)C(x;) and 3:A(x,) =l A(x;). Multiplying
(1.14) by ¢, we obtain the separation condition

eo/h =17 () +gx3) r(x).
From (1. 13c) we have
co/h =5 (x5)ct/?
and
h=2f,v/s?.
Now % # 0 which implies f# const. Accordingly we can

define a new x, variable x, =f so that z=h(x;). From
(1.13d) we then have .2;=0. Therefore, =1 without loss
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of generality. The form of (1.14) now requires a =a(x,).
Equation (1.13a) then implies a=1 or a =0, We also
deduce that ¢ =#{x,)u(x;). By a suitable redefinition of
X3 we can take c =c(x,). From (1.13c) we then can take

¢ =x}. We finally obtain the two differential forms:

[1] ds®=2dx, dx, +xidx}, (1.15)
!

[2] ds®=dx?+ 2dxdx, +x2dxd. (1.16)

If c,=0, we can take c=1. From (1.14) we have the
separation conditions a/h =f (x,), h/c=7(x,)s(x;). From
(1.13d) we have k =1(x,)ulx;); hence a =v{x,)ulx;). By
redefinition of the variable x, we may take h =u(x;).
From (1.13a) we then have

Vg =0, u§:2au. (1.17)
The general solutions of these equations are

v=saxi+ By +y, u=(a/2x,+5)% (1.18)

where o, 3,7, and 6 R, and o > 0. There are two
classes of differential forms to consider:

(a) @ =0: We have the three possibilities

[3] ds?=2dx, dx,+dxi, (1.19)
[4] ds®=dx?} + 2dx, dx, +dx3, (1.20)
[5] ds®=ux,dx}+ 2dx,dx, +dx3, (1.21)

(b) @ =1: We have with suitable redefinitions

(6] ds®=xixddx}+2xtdx dx, +did, (1.22)
[7] ds®=x(x}-1)dx} + 2x3dx, dx, +dxk, (1.23)
[8] ds®=xi(x}+1)dx? + 2x%dx, dxy + dx}. (1.24)

This exhausts the list of separable differential forms in
which the metric coefficients @, %, and ¢ have no x,
dependence.

(2) The equations requiring a flat space for the case of
x, dependence have the form

X Ripgy =Ry =0, (1.25)

2%R 133 = 2R 1331 + (2,8 +8y)/2h - 32 =0,
2R 350/ %1 = 2R 5339 =0, Ryppq =Ry =0,
2xRyy1y=2R 1y +hy/28 =0, Ry =Ry, =0.

Here the curvature tensor components R, ;,; are those in
Eqgs. (1.13) with e ~@&, ¢ —~¢&. Using arguments as for
case (1), we find that the only forms of @ and ¢ com-
patible with the curvature equations are d=x, and ¢ =1,
This gives the separable differential form

(9] ds®=(x,/x,)dx} + 2dx, dxy + x, dx}. (1.26)

(B) R-separation

As regards the possibility of an R-separable solution
for coordinate systems of the type considered in this
subsection, it can be shown that there are in fact no such
systems, We do not reproduce the somewhat lengthy but
straightforward calculations which lead to this negative
result.
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{11) R-separable differential forms in which two
nondiagonal elements of the covariant metric tensor are
nonzero and only one separation equation is second order

(A) Pure separation

The contravariant metric g'/ can be chosen as

0 =& 0
ghi= o b be (1.27)
0 bc
The corresponding covariant metric tensor is
0 /h  -b/he
8ij= 1/n 0 0 (1. 28)
-b/hc 0 1/c?

The wave equation assumes the form
330330 + @ 1909 +@ 13030 + 101 + a8, +azd59=0.

(1.29)
As before we consider first the x; dependence. The

conditions for x,; separation are
ai3=Fx)y3, a;=F(x))ay,

a,=Glxy)a,,

aqg :F(xi)a12,

(1.30)

azz=Gxy)ay, ay=G(x,)a;.

These equations imply & =% (x,, x;)/F(x,). By redefinition
of x; we may as before take F=1, If G is not a constant,
then the above conditions require G’<« G?, and we can
take G=1/x,. We again have two cases to consider:

(1) }l:h(x23x3)) b:b(x25x3): and C:C(Xz,x'3),
/2% (1.31)

(2) h=h(xy,x3), b=2x;""blxy,x,),

and c=x}"2 &(xy, ;).

(1) The curvature equations are

Rypy=-h%/4c*=0, Ryy=0,
Ry =0 + Dby + CCap — DypC = byCy — C3by = Cypb
+ (hyc/R) (by — ¢3) + (c3/¢) (byc + bey —bby)
+ (bhy/R)(c, — by) =0,
Ry =— Shgy + (hy/4c) (Dhy/2k — c,) =0,
Ry112=0, Rygy=3hgy — hycy/26% =0,

(1.32)

These equations immediately give ;=0 and by rede-
finition of x, we can take =1. Multiplying (1.29) by ¢?
we have the further condition b¢c = F(x;). By redefinition
of the variable x; we can take bc =1,

The separation conditions az; =u(xy)v(x;) and a,
=u(x,)v(x;) imply that 5% and ¢® may be taken in the form

b2 =F(x,)/H(x,), c*=H(x,)/F(x,). (1.33)

With this choice the only nontrivial curvature equation is
Ry33, =0, and it has the form

2FF 33 + Fa+ 2HH 5, — Hy = 0. (1.34)
The separation equations for (1.34) are then
2FFy3+Fi=a, 2HH,, - Hi=-o. (1.35)
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There are two cases to consider,

(a) @ =0: In this case equations (1.35) have the general
solution,

H=(Bx, +v)?, F=(5x3+€?3, (1.36)

This gives four possibilities for the differential form
according as the constants 3,7y, 5, and € are or are not
Zero:

[10]  ds?®=2dx, dx, + 2dxy duy + wdsd + Ldx?, (1.37)
! w
dx?
[11] d32=2dx1dx2+2dx2dx3+wx§/3dx§+w—x§&7§ , (1.38)
2
[12] ds®=2dx, dx, + 2dx,dx, + — docs + 22— dx’, (1.39)
1 4% 283 ;%’ © 3
\ wel’® X \
[13] ds :2dx1dx2+2dx2dx3+—xg3-—dx2 + Efn dxd.
3 3

(1. 40)

(b) @ =1: In this case we can integrate Egs. (1.35) at
once to get the relations

dxy=FY2 dF/(F + )V,  dx,=dH/(1 +vH)'/?,

(1.41)
Rather than integrate these equations further, we re-
define the variables x, and x; by taking the new variables
as H and F, respectively. We then distinguish four cases
according as the constants 8 and v are or are not zero.
The resulting differential forms are

[14] ds?=2dx,dx, + 2dx, doy +-Sdxd+ 22 axd,  (1.42)
i 2 2 3 % %,

272 X x
2 23 dxd 4 —22 _ dx?
[15] ds _detdx2+——-—3—1—,~z-(x3 ) dx,dxs + Py dx; + o B)dxa,

(1.43)

2 2
2 _
[16] ds®= A ya) dx,dxy + Trve) 7 dx,dx,
(1.44)

X3 2, X 42
— X gt ogy
x,(L+yx,) T2 x, ¥

9 2x1/2dx dx.
i 3 2 3
[17] ds®= T +yx,)0 7% dzy dx, + [+ yx,)(x, + B2
Xy dxg x dxg . (1045)
%1 +yx,) 72 (x5 +B)

(2) For the case of x, dependence the curvature equa-
tion R,,, =0 reduces to ¢=0, which is inadmissable.
There are therefore no solutions of interest in this class.

(B) R-separation

If we assume that i in (x) has an R-separable solution
of the form = e®¢, then the equation satisfied by ¢
has the form
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b33833¢ + b12612¢ + b13813¢ + blal¢ + bzaz¢
+ bydq0 + by =0, (1.46)

where the b,,, b, are related to the g,;, a; in (1.6) by
the equations

bys=ag3;, b1z=0a12 biz=ays,

by=a;,R, ta Ry +a,, by=a,R, +a,,

by =a,;R, +2a5,R, +aj, (1.47)
bo=a,, (R, + R.R,)+ a;3(R5+ R,Ry) + ag5(Rag +R§)
+a,R; +a,R, +a,R,.

As usual, we look at the possibilities for x, dependence.
The conditions on the coefficients of (1.46) are

by = G(x1)z’33; b, = G(xl)BZ’ by= G(xl)aay
bo=G(x1)50y b12=F(x1)1312, b13=F(x1)513,

b, =F(x,)b,. (1.48)

As in the case of pure separation, F =1 by redefinition
of the variable x, and, consequently, z=h(x,,x;). The
remaining conditions require, as in the case of pure
separation, that G=const or G «x!/2, This latter case
is inadmissable by the curvature conditions.

We may then take =1 and c¢=c(x,). The condition b,
= b,(x,, x,) requires that R have the form xu(x,, x;)
+v(x,, x,). If the x, dependence in (1.46) is now extracted
via the separation equation dA(x,)/dx, =1A(x,), the re-
sulting equation has the form

bagls3 + (lb12 + bz)az¢ + (lb13 + b3)33¢ + (b1l + bo)¢' =0,
(1.49)
where ¢ = B(x,)C(x,). The separation condition Ib , + b,
=s(x,, x;) implies ulx,, x;) =0. The further condition that
c2(1b,; + b,) = t(x,) requires that R,=Ibc to within a sum

of functions of single variables. The only nontrivial
curvature equation is

(1.50)

which has the solution b,=c, so that b= c,x; + glx,) and
the modulation function R has the form

Rys3p = bbgs + b3 + €Cpp — bysC = €303=0,

R=3lccyxt + logxs. (1.51)

Finally from the requirement bl + b, = v(x,) + w(x,) we
obtain the constraints

ep=8, =7, (1.52)

with 8,y R. The general solution of the first equation
is c=(6x% +¢)!/2, We now evaluate the possibilities de-
pending on the values of the constants 6,¢:

(i) 5=0 and e=1; then g=wx,: The resulting metric is

(18] ds?®=2dx, dx, +2wx, dx, dx, +dx +wx5dx3,  (1.53)

and the modulation function is R=wlx,x,.

(ii) =0 and 5 =1; then g=w/«% and the differential
form is

[19] ds?=2dx, dx, + 2(x,x, + w/x,) dx, dx,

1.54
+ (g + w/ K2 dxl + 5% di. ( )
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The modulation function is then R=3lx,x2 +wix,/x,.
(iii) 6 =e=1; then g=w and the differential form is

[20] ds?=2dx, dx, +2[x,x, + w(1 +x2)*/ 2] dx, dx,
+ [opx0,/ (1 + 22 2 + WP dx2 + (1 +22) dx?,

(1.55)

with the modulation function given by
R=31x,55 + loxg(1 +x2)/2
(iv) 6 =-€=1: In this case g=w and the differential
form is
[21] ds?=2dx, dx, + 2[vayx,+ w( |1 = 22| )*/?] dx, dx,
+[vagxy/ (|1 = 22| W2+ wl? dxZ + |1 - 22| dx?,
(1.56)

where v=sgn(~ 1 +xZ). The modulation function is R
= 3ulxyx? + lwxy 11— 221172, This completes our list of
coordinate systems of this type.

(111) R-separable differential forms in which two
nondiagonal elements of the covariant metric tensor are
nonzero and two separation equations are of second order

Pure separation

The determination of the contravariant metric is
rather involved. The wave equation for coordinate
systems of this type will be taken as

0250500 T Q330530 T @,150109 + 130,59 +a,0,9

+ a8, + a0 =0. (1.57)
The contravariant metric can then be taken to be
a f abc/f
gli= f b be (1.58)

abe/f be ¢

so that the components of the covariant metric tensor
are

0 f =bffc
1
8i; = (fz-—abﬁ) f -a 0 (1.59)
-bf/fc O f¥

From the conditions for separation of the x, variable,
which we do not repeat here [these are the analogs of
Egs. (1.30)], we find
a=Glx)a, b=0b/VClx), c=¢/VGx,), (1.60)

where G=1 or 1/x,. There are then two distinct cases
to consider:

(1) f=£ (%5, %3), a=alxy x,), b= b(xy, %5), and ¢ = c(x,, X3).

() f=1 (%, %5), a=0(x %)/ %1, b=bxy x5)21"%,

and ¢ = &(x,, x)xi /2.

(1) From the separation conditions a,,/a,,=7(x,) and
ay5/ ags = s(x;) we have the relations a=1(x.)f, bc=ulx,)f,
and k= abc/f= Hx,)ulx,)f. By suitable redefinition of the
variables x, and x, these relations can be reduced to a
=f, bc=f, h=f. [Note these results follow also for (2)
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with a, b, and ¢ replaced by a,b, and &.] With d =f%/c?
the contravariant metric then assumes the relatively
simple form

f r f
gi=1f a f (1.61)
fof f¥a
with corresponding covariant metric tensor
f -b
1
84T Flrzay f -f 0 (1.62)
-b 0 b
For this case the curvature equations are
2R1221 =for t [1/2(f‘ d)]
X[(2 -~ d/f)fZ + fods — (d/f) fg +(d/f)f3d3]=0:
(1.63a)
2R1331 =fas t [1/2(f— d)]
X[(f/ @) fsds + (F/ d®) fodp + (1 = 2f/A) f}
+(2d - 3f)f2] =0, (1.63b)

2Ry 55 = dyy = 2f35 + (f/d) fap = (F%/ &)y + [1/(f - d)]
X[~ @f/d) fi+ 3F/ @) @d~f) fody + 51 + f/ D&

—4fody +2Q2 = d/F) fofs + (d/f - 2) fody — (f/ d)dof)

:0,
(1.83c)

2Ry = fao = faa + [/ (f- D2 foda + (d/27 - 1) 1}
+(d/20) fads + 2 = d/f)fofs = (f/2d) f3d, - 2 fods

+(b/2f) f2] =0, (1.63d)
2R3112 = fap T [1/ (f— d)]
X (f/2d) fod, + (d/f = 2) fofs + 3 ds)=0,  (1.63e)

2Ry45.= fag— foz T /(r- d)] [(f/zd)f3d3 + (d/Zf— 1) 72
+(d/2f) fods + 2 = d/f) fofs = (F/2d) foda - 3 1ods
+(d/2f) f3]=0.

From these equations we deduce

2R1332 + 2R3112 - 2R1331 = [ffz/d(f— d)] [“ (f/2d)dz +fz] =0.

(1.64)

There are then two possibilities: (i) f,=0 or (ii) 4
=7(x,) f%. We consider each of these cases separately.

(i) From (1.63c) we have that f,d,=0 so that either f,
=0 or d,=0. In the first case we can take f=1. Equation
R,,,,=0 requires

1 +4d)

s (5d-3) &
Sa0 = d) &~ + 0

g+ & T3aa-n £ -

(1.865)

The separation condition asy/ a,, =7(x,)s(x,) must also be
satisfied. There are then three possibilities of this type.

a. d=d(x,): The variable x, can be redefined to be d
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via the relation
de=d/2 - /2, (1.66)
The corresponding differential form is
[22] ds®=2dx, dx, + [2x1/%/ (1 - x,)] (dx, dxg + dx, dx,)
+dx? + xgdxl + dx?/ (1 = x,)°. (1.67)
b. d=d(x,): The variable x, can be redefined to be d
via the relation

dy=d**d-1). (1.68)

[23] ds?=[2/(x, — 1)x3/ 2} (dx, dx, + dx, dx,) + 2dx, dx,

+d? + dxl/ (x, = 1242 + d?/ x,. (1.69)
¢c. d=w, const: The differential form is
[24] ds?=2dx, dx, +2dx, dxg + 2dx, dx, + dx®
+wdxd + (1/w) dl. (1.70)

In addition we must consider the case when f,#0 and d,
=0. From (1.63a) this implies f,=d, so that f=d + 5
with 6 #0. Integrating (1.63c) once, we get dy=56d"*/?
+d*2, The variable x, can then be redefined to be d.
The resulting differential form is

(25] ds?=2(x,+5) dx, dx, + 2x572(dx, dxg + dx, dx,)

+ (g +6) dx? +x, dx2 + dx?. (1.71)
(ii) In this case the separation condition a,;/a,,
=ulx,)v(x;) ensures that 4 and f can each be expressed
as products of functions in each of the variables x, and
%, We may therefore take f=h(x,)r(x,), d=h*(x,)s(x,).
If » and s are both constants, then (1.63f) implies &,
=0. This case has already been found and corresponds
to (1.69), (1.70). For nonconstant v and s=const=1,
(1.63a) can be put into the form

k3 1 % hzvz)
B o (% 2_ .
oh fgs 20r - 7) ( A v + 2hj _;.2__3_

For the right-hand side of (1.72) to be a function of x,
only, we require that i =exp(x,) and = exp(x;). By
choosing now variables & and ¥ the differential form
becomes

[26] ds®=2x5dx,dx, + 2x,dx, dx; + 2dx, dx,

(1.72)

+ x0%5 dx? +dxl +dxd. (1.73)

It is not hard to show that this is the only form of the
functions » and s which are compatible with the curvature
equations.

(2) For the case of explicit x, dependence it can be
shown by straightforward but lengthy calculations that
there are no differential forms of this type. Similar
remarks apply to the case of R-separation.

This concludes our derivation of the differential forms.

Il. EXPLICIT COORDINATES AND R-SEPARABLE
SOLUTIONS

Here we present the list of coordinates corresponding
to the differential forms given in Sec. I. We also present
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with each coordinate system the separation equations
and a representative solution where possible. We con-
nect the listed coordinate systems with the symmetry
group of () by giving the operators which specify the
separation constants in terms of the generators of the
symmetry algebra. We need only recall here the form
of the generators in the coordinate representation. [For
more information on the group structure associated with
(*) we refer the reader to Paper 8 in this series. | The
generators are

1. Translations: Py=3,, P;=32,, P;=2,. (2.1)
2. Two-dimensional Lorentz subgroup SO(2,1):

My =x03,—-v8,, My =18,+x3,, My,=13,+yd,.

(2.2)

3. Dilatation: D=-13,—-x3, — 3, 3. (2.3)
4. Special conformal transformations:

Ky=—t- (*+x"+v%)8, - 2tx3, - 21,3,

K, =x+({*+x%~ 913, + 2xt8, + 2xyd,, (2.4)

Ky=y+ ( +y? =x%)2, + 2913, + 2yx0,.

In a number of cases we give simpler forms of the dif-
ferential forms than given in Sec. 1. This is achieved
by making use of earlier results in this series of papers
and is mentioned when it occurs. We now list the co-
ordinate systems:

[1] ds?=2dx, dx, + x}dx3. (2.5)
The coordinates are given by
t=2x, +3x02% + 2, (x5 + 1), x =2, + 32,55 + 2575,
(2.6)

Y =xy(x5 +1).

The separation equations are

dA _ 2 4B _hp &€ _
g, =l 2 g —xB=EB, S anC=0, 2.7

where ¥ =A (x,)B{x;)C(x;) is a separable solution of (x).
A typical solution is

cosVl, x4
¥ = exp(lyx)xs’? exp(=1,/21x,) (2.8)
1A1/42 2

sinvl, x,

The operators /; and /, which specify this coordinate
system are given in terms of the generators by

Li=Py+Py, [y=My— M) 2.9)
[2] ds®=dx? + 2dx, dx, + x%dx3. (2.10)
The three space coordinates are given by

t=x,coshx;, x=x,8inhy;, y=x+x,. (2.11)
The separation equations are
dA a*B (1 dB (1, 1
== = +{— -2, \=— +{ % --L}B=0
dx, bk 5’?{ <x2 1) dx, (’_‘% x2) ’

(2.12)
d*c
d—xg- =LC.
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A typical solution is

P =exp(l,x,) exp(lyx,) Cz, (ilyx,) exp(ivl, x;), (2.13)

where C,(z) is a solution of Bessel’s equation. The
operators which specify the coordinate system are

L1=Py, [,=M}. (2.14)
[3] ds®=2dx,dx, +dxi. (2.15)
The three space coordinates are
V2t =x +xy, V2x=x-X,, V=x,. (2.16)
The separation equations have the form
dA dB d*c
dx, =14, Ex—;_lzB’ d—xg-:—2l1lzc. (2.17)
A typical solution is
cosv2llyxg
b= exp(lix; +lox,) (2.18)
sinv2llyxg
The operators which specify the coordinate system are
[1=V2 (Py+Py), [,=V2 (Py~P)). (2.19)
|4] ds?=dxd+ 2dx dx, +dx. (2.20)
The three space coordinates are
(i) t=x,, x=2x1+%, y=x3, (2.21)

(ii) t=x;+ x5, x=2%y, Yy=x3.
The separation equations have the form

dA d’B dB d’c _
:ZiA, W—le dxz —123_0, Zi—x*;s-_tIQC.

dxy
(2.22)
A typical solution is
cosVl, + Iix, cosvi lyxg
= exp(lyx;) exp(lyx,)
sinvl, + 1% «, sinvslyx,
(2.23)

The operators which specify the coordinate system are

() [y=P,+Py, [,=P}

. (2.24)
(1) L1:Po, L2ZP§-
2
[5] dstea 2% 1y dxd%) 42, (2.25)
X1 Xq
The three space coordinates are
t=xgxy = /%y,  x=xpxy+1/%y, y=2x5. {2.26)
The separation equations are
dA d'B dB d*c
—_ — —— - = :l C.
dx, =LA, x, E;g' +(1-21) dx, 1,B=0, 3?3' 9
(2.27)
A typical solution is
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2 cosvV-I, x4
Y= x1 xz C,1(2i Viyx,) . (2.28)
sinv-I, x4
The operators which specify the coordinate system are
Ly=My, [,=P}. (2.29)
(6] ds?=xixidx? + 2xidx, dx, +dx3. (2.30)

The three space coordinates are
F=x5[3%,(1 =~ Ex)) + (E= 1/E)(1 = Ex;)(1 - x1x,/2)
+1/E (1 - x,5,/2)],
x=x5[1-2(1 = Ex;)(1 - x,x,/2)],
y =x4[3%,(1 — Ex,) + (E + 1/E)(1 - Ex,)(1 - xx,/2)
- (I/BE)(1 - %2,/ 2)],

EcR. (2.31)
The separation equations are
dA d*B dB
E:llA, xzz—y+2( —ll)dz—lzB-—o,
(2.32)
2
x%%—g— +2x35 -1, =0.
A typical solution is
x
Z,D— exp[ - 1/)62 ] j+1/2 (ili/x2)x§1/2 ’
=j-1
X3
(2.33)

where I,=35(j + 1). The operators which specify the co-
ordinate system are

[i=(E*+1)M, + (E = )My — 2EMy,, [,=~3+D%.
(2.34)

(7] ds®=x3(x}~ 1) dx? + 2% dx, dx, +dx?. (2.35)

There are two alternative parametrizations in three
space which correspond to the above differential form.
They are

(1) t=xgl(eT+E)+ze 1t (xy + 1)+ E)? - 2¢71 (x, +1)]
x=2x5[1= 2™ (x, + 1)(E + ™), (2.36)
y =201+ E) + 3™ (x, + 1)(" + E)2 + 2¢™1 (x, +1)],

where Ec IR
(ii) t=x,{(4/a@) (E-cothzx,)[1+ (E sinh}x, —coshix,)
X (coshzx; ~ %, sinhzx,)]

+(a/4) sinh} x, (coshzx, — x, sinhdx, )}, (2.37)

x =x3[1 = 2(E sinhzx, — coshzx,)(coshix, — x, sinhjx,)],
¥ =x3[(4/@)(E - cothzx,)[1 + (E sinhzx, — coshix,)

X (coshzx, — ¥, sinhzx,)]

- (&/4) sinhzx (coshzx, - x , sinhgx, )],

where o, E€R and o #0.
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The separation equations are

dA d'B dB
E;l—:llA’ (1- xz)——2-+(2l1 )dx2 +1,B=0,
(2.38)
. d*C dc
x3;1—2' +2x3d——-l C =0.
A typical solution is
1,72 Pilx,) x}
=o't (2Tl (2.39)
- X +1 1! et
Q' (xy) X3

where I, =j(j +1). The functions P} (z) and Q¥ (z) are
Legendre functions of the first and second kind respec-
tively. The operators which specify the coordinate sys-
tem are

(1) Ly=2Mp=-EMp+My), Ly=-%+D%,
(i) L=/ )(E? - )My, + M) + (a/4) (M, — My,)

- 2EMy,, [,=-—1+D% (2.40)
[8] ds®=xi(x3+1)dx? +2xEdx, dx, +dxi. (2.41)
The three space coordinates are given by
t=x,l- (4/a)(E +tanix,)
x [1+ (sinzx, + E cossx,)(sinzx, + x, coszxy)]
—{a/4) costx, (sinzx, +x, coszxy)],
x =x5{1 = 2(singx, + &, cossx,)(sinzx, + E coszx,)], (2.42)
v =x5[~ (4/a)(E + tangx,)[1 + (sindx, + E cosix,)
X (sinzx, +x, coszx,)]
+ (a/4) coszx(sinzx, +x, coszxy)],
where ¢, EcIR and ¢ > 0.
The separation equations are
dA o d°B dB
de —l144, (1 +x2)?i;§'+2(x2—l1)d ) _ZZB:O’
(2.43)
d’c dcC
2 fadudi, —
X3 d—'xT +2.X3 dx3 lzc-—o.
A typical solution is
i, ) (s
o — 1\ 141/2 SP; 1(”2)( \ x3
P=exp(x,) <;2TI) ,
2 lli(lxz)g ?x§]-1
(2. 44)

where as usual I, =j(j +1).
the coordinate system are

The operators which specify

Li=@/a)1+E) My +Mp) + (0/4) My -
Lz’_— $+D%,

Mgy) + 2EM,
(2. 45)

(9] ds?=(x,/x,)dx? + 2dx, dx, + x,dx3. (2. 46)
The three space coordinates are given by
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t+x =22V —3x63Vx, , t-—x==2Vx;, y=x3Vx,. (2.47)
The separation equations are
dA d’B ., dB d*C
X4 dx; =UA, x 'd;%- + (21 = 3) (—fx—z- +1,B=0, d—"x%- =1,C.
(2. 48)
A typical solution is
. COS‘/E X3
¢=(x1/xz) ng/4C3_4,1(2vl2x2) (2.49)
sin‘/l_z X3
The operators which specify this coordinate system are
Li==3D=%, [,=51(My— Myp) (2.50)
[10] ds®=2dx, dx, + 2dx, dx, + wdx} + (1/w)dxd.  (2.51)
The three space coordinates are
t+x=2x+2(1 = E/Yw )xy + (0= Ex,,
t=x==2x,, y=x/Vw +Ex,. (2.52)
The separation equations are
d’c dc
2 _ 9., Y —
dxl =LA, ~lzB w a-é- 2wl xs +241,C=0.
(2.53)
A typical solution is
cos{ly (2L, — wil,) |1/ 2,
P =exp(lix,) exp(lyx,) expllyn;)
sinfZ; (27, — W)} %,
(2.54)

The operators which specify this coordinate system are
Li=Py+Py,
(2.55)

[11] ds?=2dx, dx, + 2dx, dxy +wxd/ 3 dx? +dxk/wxd/?. (2. 586)

The three space coordinates are

t+x=2x,+2%; + (wx, = 3E/2Vw )x2/3 = w2 (Fwal/? - E)®,
t=x==1x v=(3/2Vw)x}? -1 '’} + Ex,. (2.57)
The separation equations are
dB
ZA LA, 7 =1,B,
*1 *2 (2.58)

& ac
%y Zz}fr + (=2 - Gy +1,/wx/3)C =0.

The operators which specify this coordinate system are
Li=Py+Py,

Lz-‘:%wwz(Moz‘Mu) +é(P1"Po)
- ZEX(Py+ P,) + EP,.

(2.59)
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L,=3(w-E) (P, +P,) +3(P,~P)) +EP,.

(12] ds®=2dx,dx, + 2dx, dxs + (w/x3) dx} + (x%/w) dx2.
(2.60)
The three space coordinates are given by

t4x=2x,+ 2% = Xx%/w — QE/Vw ) x5 — %%y — w/x,,

e X ==y, ¥ =2X%/Vw +Ex,. (2.61)
The separation equations are
gf =LA, 22 C?TB +(,+x,)B=0,
2 (2.62)
d*c dac 1l
20—
i 2l =— ax, C=0.

A typical solution is
coshVIZ + 1,1,/ w x,
sinhViZ + 1,1,/ w x.

(2.63)

Y =exp(lx)x;'/? exp(ly/2x,) exp(l x;)

The operators which specify this coordinate system are

[=P,+P,, [;=2w(P,+P,)+K,+K,. (2. 64)

[13] ds?=2dx,dx, + 2dx, dxy + (wxs/3/x2) dal + (x%/wxl/ %) dx?.
(2.65)

The three space coordinates are given by

t4x =200 + 2%y = (9/4w)xd 3%, +{ w/ 2%, — (3E/Vw)x,]x2/3
—E%, +Ew®’?/3x, —w®/108x3, (2.66)
t—x==%y, y=1{(3/2Vw)xx}/% +w3'?/6x, + Ex,.
The separation equations are
dA 2 dB (1, _
dxi—_l’A’ 2x3 2 Fg ) +(Z1 +x,) B=0,
(2.67)
d’c ., dac (h L 1/3> _
x3c—l}'§'+(3—2l1x3)dx3 -— 3 +wx3 C=0.

The operators which specify this coordinate system are
[y=Ky+K,+3Ew®/ (P +P)) - $0*/?P,,
(2.68)

[i=P,+Py,

[14] ds?=2dx,dx, +2dx, dxy + (xy/%,)dx} + (xy/x5) dx}.
(2.69)
The three space coordinates are given by

t+x=2x,~ B, — 4E Vxox;, t=x==12%,, y=2Vxyx; +Ex,,
1 2 23

(2.170)
The separation equations are
dA dB
le—1 :l144, sz dx2 =12.B,
2.71)
d*c
X3 d—z‘ + (% 2l1x3) —lllzc 0.
X3
A typical solution is
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¥ =explly(r; +x9) 1322 Dy poii [ (1 +DV2Tx), (2.72)

where D,(z) is a parabolic cylinder function. The
operators which specify the coordinate system are

[1=Py+Py, [,=EM;~Mp)-My~D-3. (2.73)

[15] ds?=2dx,dx, +[2x3/2/(xy + B)1 /] dx, dx,
+ (x3/%5) dxk + [xp/ (x5 + B)] dx2.

(2.74)

The three space coordinates are
t+x=2%; = 2%+ Va3 (x; + B) - 28In(Vxy + B + V) - Blnx,
- E’,— 4Ex} %(xy + B)'/?, (2.75)
l—x==2x5, ¥ =2\/3c2(x—3+§) + Ex,y.
The separation equations are

dA dB

E =11E1, X9 3?2' =ZZB’

(xy+ ﬂ) _2' +[z- 20y Vxg(xg + B)] dC

3
1/2
+{2l1lz +11, [1 —(—L—xx’“ ‘3) ]} c=o.
3

The operators which specify the coordinate system are
[1=Py+Py,
Ly=- %[B(Po +Py)-D - My - 3 +EMyy - Mgp)].

(2.76)

(2.77)

2 2
2_
[16] ds*= (W dxdx, + dezdx3
(2.78)

X 2 X 2
+ ——d— dx? + 22 dx?,
x2(1 +)’x2) 2 X3 8

The three space coordinates are given by
t+x =22 = 2(1 +yxy)t /2 (BYy +x3) = 4E Vi, + 23,
b x == (2/y)(1 +yx)/?,
y =2Vxxy + (2E/7)(1 +yx,) 12,

The separation equations are

dA dB
a?t =lt[4, 2l1x2(1 +'yx2)1/2 d—x: +[%(1 +7x2)1/2_ ZZ]'Bzo’
(2. 80)
d’c

X3 Eg‘ + (2 211X3) + (l2 -1 )C 0.

The operators which specify this coordinate system are
L1=Py+Py, [,= (')’/4)(Ko +Ky)+ (/v - E*)P,

- (1 +E)P, - EPy]. .80
2 2x1/2
[17] ds® = "y dxdx, + T d%20%,
(1 +vxy) (1 + %) (x5 + B)
(2. 82)
+ X3 dx? + dx}
%L +7%) T (i +B) &

The three space coordinates are given by
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t4x=2x;~ (2/V)(1 +vx) 2 (x5 + E?) = 4E Vx, (x5 + B)

~BIn[(VI +yx, - 1)/(VT+yx, +1)] + Va3 (x5 + B)
- 28In(Vx; + B+ Vx5 )
t—x== (/7)1 + yx,)?%, y=2Vx, (x5 + B) + CE/Y)WVI +7x,.

(2.83)
The separation equations are

dA

p =LA, 2%y V1 4+ yx, d +(g\’1+'yx2 5,)B=0,
1

(2.84)

d’c dcC
(x5 +B) 7 +[3 - 21, Va3 (xy + B)] —

dx; dx

1/2
- 1(mre) Je=o.
2 X3

The operators which specify the coordinate system are
[i=Py+P,,

Lo= (7’/4)(Ko +K,) + (1/')’)(P0—P1) - (2E/7’)P2

+(EYy = B)(Py+Py). (2. 85)

(18] ds?=2dx,dx, + 2wx,dx,dx, +dxd + wixidx:  (2.86)
with modulation function R = wl;xyx3.
The three space variables are given by

t+x=2x;, t—x=—2%; 9=2x;+3Wx5. (2.87)

The separation equations are

dA

ax—1=zlA, 2— (w3 +1,)B=0,

(2.88)

2
‘;—CT + 2Bwx; +1,1,)C =0,

A typical solution is then

Ai)
$=exp(liwiyxs + Lixy + 4 1] + 5lyx,) (2.89)

Bi()

with z = (213w)'/ %%, + 1,(23w)"1/3, The functions Ai(z) and
Bi(z) are Airy functions.

The operators which define the coordinate system are

Ll=P0+P1’ LZ=P1—P0+2(UW12—M02). (2.90)

[19] ds®=2dx, dx, + 2(xyx5 + w/x,) dx, dx, @.91)

+ (x5 + w/x2)? dxd + 22 dxl.

with modulation factor R = + 3,%x,x5 + wlyx,/%,. The three
space coordinates are

t+x =2x1 - szz - 2Ex2x3 +2 (.I)E/xz,

(2.92)
t=x=~2%y, y=2xyx3+Exy— w/xz.
The separation equations are
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dA daB wl
o =l 21 3—2—+( ;;[L—lz,)B:O,
\ (2.93)
d<Cc
ol (= dwlilxy ~ 1,)C = 0.
A typical solution is
ll)“x'”zex(lxx wlxg lx———h——wzl
—2 P 12 3 % 1 2l1x2 6x2
y Aiz) (2.94)
Bi(z)’

where z = (4l3w)!/ 3x; +1,(@l3w)"1/3,
The operators which define the coordinate system are

L1:P0 +P1, LZ:Kl +K0 +4wP2. (2. 95)

[20] ds?=2dx dx, + 2xyx5 dx, dxy
+ {33/ (L + wd) ] dxd + (1 +3) dn?

(2. 96)

with modulation function R = 3I,x,x3,
The three space variables are

t+x=2x; = E*,~2Ex,(1 +x3)!/?,
ni/2 (2.97)
t=x==%9, ¥=x5(1+x)!%+Ex,.

The separation equations are

dA

a4 2 9B
o 20,(1 +x3)

:llA’ de

+(xy = 1)B=0,
(2.98)

d*C
E)—C; + (l%x% + ZZ)C =0.

A typical solution is then

Y= (1 +x3)* explalywynd + Lyx, + (1,/21;) tan™tx,

XD (tairy 19 2 [+ (L +0)xg VI ] (2.99)
where D,(z) is a parabolic cylinder function. The
operators which specify the coordinate system are

Li=Py+Py,

[y==E*P,+P,)+2EP, + P, -

Py+K,+K,.  (2.100)

21] ds®=2dx, dx, + 2ex,x, dx, dx,
1 3

+ (3xd/ |1 = x3])dxd + |1-x%]| dxd,

{2.101)

where e=sgn(x2 ~ 1) and the modulation function is R
=3el xox3.

The three space coordinates are

t+x=2xy— E%, —2Ex,|1 = x2|/2,

(2.102)
t=x==1x, vy=x5]1-x2|'"2+Ex,.
The separation equations are
dA dB
BX—1 :llA, 2611( 1) a—’ —(lixz + lz)B 0
(2.103)

d’c
a;%- + (= l%x% +l2)C:0 .
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A typical solution is

(1o+l1)/41
= exp(hel xaxd +1yx,) (r, = 1)° 2 1741

e(ly=1) /414 157 (2.104)
X (xy +1) Do iy /21y V2L xg).

The operators which specify the coordinate system are

(2.105)
[o==EYPy+P,)— 2EP,+P;—

P, +K,+K,.

[22] ds®=2dx dx, +[2Vx; /(1 - x3)] dx, dx; +dx, dx,)

+dxd + xyduf +dxi/ (1 - x5)? (2.1086)
The three space coordinates are given by
t=2V1-x; sinh3x,, x=2VI-x, coshix,, (2.107)
Yy=x +x2 + 2\/5\5—3 +1n[(\/97; - 1)/(\/36_3“*” 1)]
The separation equations are
2
5;4 ~1A, g—?- a1, 4B . B B0,
1
(2.108)

d’c dc 1
(xa— 1) c—i}g— +(x3— 1+2l1\/x_3)ag—-+(—1— +lz—él1>C:0.

23

The operators which specify this coordinate system are

[y=Py, [,==35M, ~MyP,+Pi. (2.109)
2
[23] ds®= -(-’——)-377 (dx,dxy +dx, dxg) + 2dx dx,
(2.110)
2
+dxg + —-——z—g—rl) 7 P
The three space coordinates are given by
t=2V(1/x,) ~1 coshzx;, x=2V(1/x;)- 1 sinhzx,,
2.
Y =x1+ x5+ 20512 4+ In[(Va, +1)/(Vxy ~ 1)), @.111)
The separation equations are
dA
Ex_1' :llA,
d'B 21 dB
2 - - - ._1_ ol
%80y - 1) T +(3x2 2x3 —xy + P > ar,
(2.112)
l I
-1 0,
+ 5 +ly= sz B=
d’C ac
z;%" - 211 d — lzc —0

The operators which specify the coordinate system are

L1=Py, [y=—3Mj;~MyP,+Pj. (2.113)
[24] ds?=2dx,dx, + 2dx dx; + 2dx, dx; +dx} + wdx}
+(1/w)dxd. (2.114)
The three space coordinates are given by
t=V(w=-1)/w x;, x=Vw=-1x,, y=x+x;+x5 (2.115)
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The separation equations are

dA d'B dB
—d-;c—i =LA, E}ﬂ{ —Zl‘a; -1,B=0,

(2.116)
d*C dc

a ~ 2 ey

—ELC:O.
5 w

A typical solution is

Scosﬂzl Tlx, \cosVii+1/wx,
ZSinVlg +1y %y sinvl} +l;?wx3

(2.117)

d=expll,(x; +x, +x5)]

The operators which specify this coordinate system are
Li=Py, [,=(w=1)P}+P%~ (w+1)P (2.118)

[25] ds®=2(x; + 8)dx dx, + 2x3' *(dx, dxg +dx, dx;)

+ (x5 + 8) dx§ + x5 dxk + dxl/ (xy + B)°. (2.119)

The three space coordinates are given by
t=2V6(x, + 6) sinh[(x, +x, +2Vx;~2V5 tan™!Vx;/6)2V5 |,
x =2V5(x; + 6) cosh[(x; +x, + 2Vx; = 2V5 tan 1Vx,/5)2V5 |,

y:\/ﬁ_xz, (2. 120)

The separation equations are

dA d*B dB
:i;; =LA, jx_g— —2117152— +1,B=0,

d’C dc N 5

(2.121)

The operators which specify the coordinate system are

Li=My, [,=0P;—M}. (2.122)

[26] ds®=2x,dx,dx, + 2x,dx, dx, + 2dx, dx; + x,x5 dx?

+dxk +dxl. (2.123)

The three space coordinates are given by

t =%, exp(xy/2) + exp(— x,/2), (2.124)

X =Xo%Xq exp(x,/z) ~exp(—x,/2), =Xy + X3,

The separation equations are

dA d’B dB
‘E :ZIA’ X9 &}g— +(1—'2l1) d—xz' +l2B:0,

(2.125)

2
28 -2y 2 e,

dc
dxs dx

3
A typical solution is

¥=exp(locy) (xy09) 1Cyy, (@VT7,)Cyy (2VTx;).  (2.126)

367 J. Math. Phys., Vol. 17, No. 3, March 1976

The operators which specify the coordinate system are
L1=2Myy, 2[,=PMy+MuPy+P My +M;Py.
(2.127)

lll. OTHER TYPES OF SEPARATION

In this section we examine the coordinate systems as-
sociated with the diagonalization of the operator L
=3%M,, - £(P,—~K,). The algebra of (*) when L has been
diagonalized is SL(2,R) with basis

A=3My,+:(Py~K,), B=1My +i(P,-K,),

C==iMy+iP, - Ky (3.1)
and commutation relations
[A,B]=cC, [C,A]l=B, [C,B]=A. (3.2)

The coordinate systems associated with the diagonaliza-
tion of L and an additional operator from the above
SL(2,R) algebra are the semisubgroup coordinates of
type 7 of Paper 8 of this series. In this section we give
the three subgroup coordinates discussed in Paper 8 and
leave open the question of whether there are any more,
This will be the subject of subsequent study. The three
coordinate systems we present are different from those
presented in the earlier two sections in that they do not
enable a separation of variables to occur explicitly in
the equation., This becomes clear for the individual co-
ordinate systems.

For the choice of variables

_ sinocosz(8+p)
~ coso—cosz(B—p)

___sinz(B~p)
= coso—cosz(B-p) ’

sino sinz(8+p) 3.3)

~ coso—cosz(B-p) ’

and ¢ =[coso — cosz (8- p)]'/? exp(ixB) ©(0, p), we have
Lyp=iyBy, where the function O(c, p) satisfies the
equation

A-B -CHe=(L* +L)e=(:-yDe. (3.4)

The diagonalization of A is easily performed in this co-
ordinate system as A =9, when acting on the function O,
and so for ©(c, p) = ®(0) exp(iTp) the corresponding
solutions of () have the form

Uy+(0, B, p) =[coso = cost (8- p)]'/?

+ X

X exp(ixB) exp(iTp)PILX | ;5 (cosO). {3.5)

In particular we note that the SL(2,R) generators acting
on the functions © have the form

C +iB = exp(ip)(— 9,~ i cothz 3, + x/sinhz + § tanh3z),

C -iB= exp(-ip)(- 9,+7cothz 3, - x/sinhz + } tanhzz),

A=2, (3.6)
where sino =tanh3z. The pure derivative parts of these
operators are the same as the corresponding operators
that would be obtained on the two dimensional hyper-
boloid parametrized by f = (coshz, sinhz, cosp, sinhz sinp).
This suggests the procedure necessary for the remaining

two subgroup coordinate systems which diagonalize C
and A - C. The appropriate change of variables is given
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by a knowledge of the subgroup type coordinates on the
hyperboloid. !! After extraction of the appropriate
modulation function, the separation of variables is
achieved. The results are:

1. The diagonalization of C: The appropriate change of
variables is coshz = cosha coshb, tanp —=tanha sinhb, and
the R-separation modulation function is

f=(cosha coshb +1)!/4 exp[ix tan™ (sinha cothb)).
3.7

The generators acting on the functions &, where 6 =%
have the form

A =sinhb3, — tanha coshb@, — iy coshb/cosha,
== coshb3, +tanha sinhbd, +ix sinhd/cosha,
(3.8)
Then for & =exp(iTh)H (a) the function H satisfies

32 d T . 9 1 >
— - H =
(——-z-aa + tanha 3a + c_x-rosha sinha +y* -5 |H(a@)=0
(3.9)

with solutions

=1/2¢%

-1/24X
H(@)=P;m10.4772

(cosha), @, 77,577 (cosha),
where PL,(z) and Q.,(2) are the generalized Legendre
functions, =13

2, The diagonalization of A~ C: The appropriate
change of variables is

coshz = cosha + 537%™, tanp=ve™®/(sinha +372e™),
and the modulation function is
f=[(cosha +3r%¢™*= 1)/(cosha + 372" + 1) ['*/2
expi~ % tan" v/ (e® + 1)}

The generators acting on the functions & =f3 have the
form

B=03,+73, A=C=3,,

A+C=2rd, + -3, +5(2e-1).

(3.10)

(3.11)
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Then for & =exp(iTr) H(a) the function H satisfies
[8%/3a ~ 3/3a~ T2 = }iT (2° = 1)~ x2 + L H(a) =0,
(3.12)
which has solutions
H(@)=M; /4,002 -in1/2 (27,

where M, ,(z) is a solution of Kummers differential
equation. ™ We see that each of the subgroup types has
an R-separable solution and does not fit into the scheme
of Sec. I, We do not yet know if there are any more
systems of these types.

The principal contribution of this article is to provide
examples of R-separable solutions, which to our
knowledge have not previously been exhibited. A unified
group theoretical approach must be able to account for
the explicit solutions and coordinate systems produced
here.
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We show that the Euler-Poisson-Darboux equation {d,—0,,—[(2m+ 1)/]0,} ® = O separates in

exactly nine coordinate systems corresponding to nine orbits of symmetric second-order operators in the
enveloping algebra of SL(2, R), the symmetry group of this equation. We employ techniques developed in
earlier papers from this series and use the representation theory of SL(2, R) to derive special function
identities relating the separated solutions. We also show that the complex EPD equation separates in
exactly five coordinate systems corresponding to five orbits of symmetric second-order operators in the

enveloping algebra of SL(2,E).

INTRODUCTION

This paper is one of a series concerning the relation-
ships between the symmetry group of a linear second
order partial differential equation and the coordinate
systems in which variables separate for that equation.
The previous three papers! were devoted to separation
of variables for the wave equation (3, — AP (x)=0. If
we pass to polar coordinates,

X{=¥CO8¢@, x,=7Ssing,

and consider solutions of the form P(x) = exp(im )@ (¢, 7),
the wave equation transforms to the Euler—Poisson—
Darboux (EPD) equation

(3= 2,,- /7 8, +m?/F]é=0. (0.1)

Many authors write ®{f,7) =+ "0(t, ») and take the
EPD equation in the form

(att - arr - [(27}’[ + 1)/7’] ar) o= 0,

but for our purposes (0. 1) is more convenient., This
equation also arises from the wave equations

(3, - 8,)¥(x) =0, n>2, if one looks for spherically
symmetric solutions. For n =2, m is usually taken to
be an integer while, for »> 2, m may be half-integral,
In this paper we will treat these cases simultaneously
by allowing » to be a nonnegative real number.

{0.2)

It follows from the results of Refs. 1 that (0.1) can
be solved by separation of variables in exactly nine
coordinate systems associated with nine orbits of sec-
ond order operators in the enveloping algebra of
SL(2, R). Here SL(2, R) is the local symmetry group of
the EPD equation.

In this paper we undertake a detailed study of these
coordinate systems and show how one can use the rep-
resentation theory of SL(2, R) and its universal cover-
ing group to derive special function identities relating
separable solutions corresponding to distinct coordinate
systems.

In Sec. 1 we compute the symmetry algebra sl(2, R)
of the EPD equation and show that we can introduce a
Hilbert space structure on the solution space of the EPD
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equation such that this space transforms according to
a unitary irreducible representation of the universal
covering group of SL(2, R), taken from the discrete
series. We also relate the space to two other models
of this representation which are more useful for com-
putational purposes.

In Secs. 2 and 3 we classify the nine possible coordi-
nate systems such that variables separate in (0. 1) and
relate them to nine orbits of symmetric second order
operators in the enveloping algebra of sl(2, R). We also
compute the spectral resolutions of these operators. In
Sec. 4 we use our earlier results to compute the separa-
ble solutions of (0.1), and in Sec. 5 we determine over-
lap functions relating various distinct bases.

Finally, in Sec. 6 we discuss the separation of varia-
ble problem for the complex EPD equation and show that
this equation permits separation in exactly five coordi-
nate systems corresponding to five orbits of symmetric
second order operators in the enveloping algebra of
sl(2, C). We relate these results to a paper by
Viswanathan,® which employs Weisner’s method®? to
derive generating functions for Gegenbauer polynomi-
als. For a slightly different approach to the complex
EPD equation, see Ref. 5.

All special functions appearing in this paper are de-
fined as in the Bateman Project, ¢

1. SYMMETRIES OF THE EPD EQUATION
The symmetry algebra of the EPD equation
(04 = 8, — (1/9) 0, + m? /)@ (t, ) =0,
y20, —eo<t<eo, (11)
is the set of all linear differential operators
L=a(t,7) 8, +ay(t,v) 2, +b(t, )

such that L® is a (local) solution of (1.1) whenever &

is a (local) solution. By using standard techniques in
Lie theory, "4 it is straightforward to show that this
algebra is isomorphic to sl(2, R). Indeed, the operators
A, B,C form a basis where
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A=3@-~-»)a,-2trd, -],
B=—(5+13,+79,),
C=3Q+#+7r)0,+2tra, +1].

(1.2)

Note that A +C=19,. Here, we are ignoring the trivial
symmetry E of multiplication by the scalar one: E® =&,
The commutation relations are

[A,Bl=-¢, [A,Cl=-B, [B,C]=A.

We can express (1.1) in terms of the Lie algebra
generators with the result

(CP-A*-B)d=(:-m?) o, (1.19)
where C% — A% - B? is the Casimir operator for sl(2, R).

By definition, sl(2, R) is the Lie algebra of 2X2 real
traceless matrices. We choose the isomorphism be-
tween our symmetry algebra and sl(2, R) such that the
operators A, B, C correspond to the matrices A4,8,(,
respectively, where

A=(38) 2= (5 ) e=(5 ),

Then, using standard results from Lie theory,* we find
that the operators (1.2) exponentiate to a local Lie rep-
resentation of the group SL(2, R) by operators T(G),
where

(1.3)

(1.4)

T(G) (¢, v) =[(o +y8)? = ¥*2]1/2

x@[(oﬂ_ B)(a + vt) — vt ¥

(a+v =75 (a+ vy -7 |
_ (@ B\ .

G= (y 6)cSL(z,R). (1.5)

Here, SL(2,R) is a local symmetry group of (1.1) in
the sense that if ® is a local solution of the EPD equa-
tion, then T(G) @ is also a local solution.

Motivated by the connection between the EPD equa-
tion and the wave equation discussed in Refs. 1, we note
that for any C* function f(k) with compact support in
(0, ») the corresponding function

®(t,7) = exp(~ imn/2) [[” exp(itk) (k) f(k) dk=U[f]
(1.8)
is a solution of (1.1). If we introduce the inner product

Fofor = I3 f1(B) Fy (k) dEe (1.7

on the space of C” functions, we find that, in terms of
the corresponding solutions &;(t,7) of (1.1), the inner
product reads

(@4, @) =(f1,f) =1 fow ®y(r, 1) 3,8, (v, t) vdr

=—if0°° B,(r, 1) 3,3, (r, D) vdr. (1.8)
Here, the last two integrals are actually independent
of f.

It follows from this that if we complete our pre-
Hilbert space of C” functions f to form the Hilbert space
L,(0, =), the space of corresponding functions & =U[f]
defined formally by (1. 6) will form a Hilbert space /4 of
weak solutions of the EPD equation with inner product
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(1.8). The transformation U determines a unitary equi-
valence between these Hilbert spaces.

The action of the symmetry algebra sl1(2,R) on /{ is
given formally by (1.2). Indeed, these expressions make
sense when applied to the dense subspace of // consist-
ing of those solutions & which arise from C” functions
f with compact support on (0, ©), Moreover, as we shall
see, they define symmetric operators on this subspace.
The operators UTIKU on L,(0, ») related to operators
Ke sl(2,R) on /4 are easily determined using integration
by parts:

i & 1 d m?
A“Ek(ﬁﬁf+%ﬁ—7e7+l)’

1 d

i & 1 d  m
c:— p— —_ ——

zk(Zi_kf kdk*?”)“

[We are using the same letter to designate correspond-
ing operators on 4 and L, (0, w), ] It is now straightfor-
ward to show that {A, iB, and iC are essentially self-
adjoint on L, (0, ), Moreover, it is well known that
these operators determine a unitary irreducible rep-
resentation of the universal covering group of SL(2, R)
from the discrete series, "8

Indeed, it is easy to check that C has discrete spec-
trum iA=i(m+s+1/2), s=0,1,2,++* with a corre-
sponding ON basis for L,(0, ©) consisting of
eigenfunctions

2T (s +1) )1/2
) . m _ (2m)
V(R = <—————————r(2m T 1) (2B)™exp(~ k) L 3™ (2F),
(1.10)
Cf‘;i):i(m+s+%)ffs1): <fs(1)’fs('1)>:653"
From this fact and the relation
Cio A Bi=Lt_m? (1.11)

we see that the operators (1.9) determine the irreduci-
ble representation D;,_,,, from the negative discrete
series, 0?8

For 2m an integer this Lie algebra representation
exponentiates to a single-valued unitary irreducible
representation of SL(2, R) defined by unitary operators
T(G), where

T(G)f(k) =~ v expli(ka/y +1/2 - mm)]
X [[7 exp(ild/7) Sy ((2/7)VED F@) dL, ¥#0,
T(G) f(k) = a exp(ikap) flalk), y=0,

G= (‘;‘ ?) c SL(2,R), f& L,(0,=). (1.12)

For 2m not an integer, operators (1.12) define a
multiple-valued representation of SL(2, R). In this case
we obtain a single-valued representation of the universal
covering group of SL(2, R), and expressions (1.12) are
valid only in a neighborhood of the identity element of
the covering group. For a discussion of the parametri-
zation of the covering group see Refs. 7, 9.
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There is another model of D7,_,,,, due to Bargmann,®

which we will also find useful. This model is defined on
the Hilbert space 4, of all functions F(z) =37.0a.2",
a,< €, analytic in the disk 12! <1 and such that

lim [¢ -1)/7] f | 7(2) |21 - 2z)"2dx dy < =,

I-2m+1 1 21<3

1>1, z=x+1iy.
The inner product is

(FoK)n= lim [€-1)/1]

x If<1 FR KRG - 22V dx dy (1.13)

and a convenient ON basis is provided by the monomials

F () =[T@m+s+1)/T(@m+3)s]V225

§=0,1,2,++*. (1.14)

The operators A, B, C corresponding to (1.2) and (1.9)
are

A=é{(1+22)£+(2m+1)z} s

B:% {(1—z2)£—(2m+1)z}, (1.15)

. d 1
C=i {za+m+§} .
For more details about this representation, see Refs.
7, 9. Since CF,=i(m +s+3) 7, it follows that the basis
vectors £V (k) and 7, correspond. The unitary mapping
V from #,, onto L, (0, ©) which carries 7, to £ and

the operators (1.15) to (1.9) is
VIR =(F, V& *Npy FEHm

Vik, 2) = fé £ 7.(2) (1.16)

=[2/T@m +3)]2@2r)™ (1 - 2)2™1

X exp(- k) exp[— 2kz/(1 - 2)].
Similarly, the unitary mapping W=UYV from #,, onto
His
W, V) ={F Wt,7,* N> FEHm
Wi(t, 7, z) =[22"» " (m + ) exp(+ imw/z)/m
LA+ - 2) + 22 + (1 - 2)¥r me1/2,

2. THE SEPARABLE COORDINATE SYSTEMS

As shown in Refs, 1 the EPD equation permits
separation or R-separation of variables in nine coordi-
nate systems corresponding exactly to the nine SL(2, R)~
orbits in the space §/{C%- A®- B%}, where § is the space
of symmetric second-order elements in the universal
enveloping algebra of sl(2,R). A particular separated
solution @ is characterized by (1.1) and the eigenvalue
equation S® =A®. The eigenvalue X is the separation
constant. If two operators S, S’ are on the same orbit,
i.e., if ¢S'=T(G)ST(G™), where cc R, c#0 and
Ge SL(2, R), then the coordinate systems associated
with S and S’ are considered equivalent., A complete
list of orbit representatives is

1], €3,
2]. (A+cC),
371 J. Math. Phys., Vol. 17, No. 3, March 1976

3. B,

4], 2A’+AC+CA-aB?, a>-1,
5], 2C*+AC+CA+aB?, a>-1,
6). rB2+AC+CA, 0s7<™,
7). B:-siCY,
8. C'+E:B:, O<K <o,
9. (A+C)B+B(A+C)

2.1)

0<st<l,

(In case 4] and 5] we shall always normalize so that
a=0).

It is clear that the operators 1]—9] are symmetric
in the L,(0, ©) model of the representation D;, ,,,. [Here
we consider these operators as initially defined on the
dense subspace of C* functions with compact support in
(0, ). ] In this section we will determine the spectral
resolutions of six of these operators in this model.
Operators 6], 7], and 8] are most conveniently studied
in the //,, model and will be treated in the following
section,

System 1] has been treated above. It is straightfor-
ward to show that the operator iC has deficiency indices
(0, 0). Thus 7C is essentially self-adjoint. The spectrum
of the closure of C isi(m+s+3), §=0,1,2,--+, and
each of these discrete eigenvalues has multiplicity one.
The corresponding ON basis of eigenvectors is listed
in (1.10).

For system 2] we have A + C =ik. Clearly the closure
of —i(A +C) has continuous spectrum covering the posi-
tive real axis and a basis of generalized eigenfunctions

FP(R)=06(k=-2), 0<r<w, 2.2)
(F2, £i7)=800=N), (A+C) D =iAf D,
where 5()\) is the Dirac delta function.

For system 3] we have B=4+ kd/dk. It is easy to
show that the closure of — iB is self-adjoint with con-
tinuous spectrum covering the real axis and a basis of
generalized eigenfunctions

f‘(LB) (k) — (2”)-1/2 kiu-i/Z’ —og <™

(F Ry =0—u", BRY=iuf®.

(2.3)

System 4] with a=0 is more interesting, Here the
operator L =2A% + AC + CA is symmetric with deficiency
indices (1,1). The possible self-adjoint extensions L,
can be parametrized by the real number o, 0<a <2,
For each «, L, has discrete spectrum A=m? - (o + 2s)?
-1, 5=0,1,2,-++, each eigenvalue of multiplicity one,
and continuous spectrum. The normalized eigenvectors
fol(k) form an ON set for L,(0, ):

FOR =[2(a+28) E1 V20, ,05(k), s=0,1,°+°,
<f:x4,)s ,f?,)s'} =04, Lafof‘,i; =[m? - (a +2s) - %] é:i;'
(2.4)

The overlaps between distinct self-adjoint extensions
L,, L,,, a#a’, are given by
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<f¢(x4,)s’ oiﬁl,)s’>
_ V(o +2s)(a’+2s") sinn[(a —a’)/2+ s - ']

~ (e -a’) 2+s—s’][(a+a’)/2+s+s’]

(2.5)

Restricting ourselves to the case o =2 for simplicity,
we find that L, has continuous spectrum A=m?+ -},
8= 0, with corresponding generalized eigenfunctions

FiR Ry =1, - (V) + Iy (vB))/ 24 T SIOR(TV ),

(Fala Fathy=0(8-8".
The functions {758, fali} form a complete set for

L,(0,<). More details can be found on pp. 93—95 of
Ref, 10.

For system 5] with a= 0 we find that the operator
M =2C%+AC +CA is essentially self-adjoint. The
closure of M (which we also call M) has continuous
spectrum A=%—m? - p?, =0, of multiplicity one and

a basis of generalized eigenvectors.
£ (R =[n/V2kry sink(um] K;, (k), O<pu<o,
P £y =8 —p"), MRED =(G-m? - u)f.

For system 9] we find that the operator N=(4 +C)B
+ B(A + C) has unequal deficiency indices (1,0). How-
ever, there exists an obvious extension of N to the
space Ly(R) =Ly (- =, 0) ® L,(0, ) with deficiency in-
dices (1,1). Of the self-adjoint extensions of this latter
operator we choose the one with continuous spectrum
covering the real axis and generalized eigenfunctions:

£ (k) = exp(iX /k) /R VET, — 0 <A<,

(2. 6)

(2.7
NEE =210, [7 AP ) FE () de=5(a - M),

Note that { 7'’} satisfies the usual orthogonality rela-
tions on L,(R) but not on L, (0, «).

3. LAME BASES

The spectral resolution of the operators 6], 7], and
8] is carried out in this section using the model of
D;,,,» due to Bargmann, ° defined on the Hilbert space
H . as given in Sec, 1. The reason for treating these
operators in this model rather than the L,(0, <) Hilbert
space model with SL{2,R) generators as in (1.9) is that
they are second order differential operators rather
than fourth order,

In fact, if we consider the functions ( (z) defined by
F(z)=2z"""%(2), where J(z)e#,, and put 2 =4e* with
6 complex, the generators A, B, and C acting on the func-
tions §(2) have the form

A=— sin9i+ (m - 3) cosb,

dde ; (3.1)
. a 1y es _a
B——cosede (m -3)sinf, C 75

The form of the generators (3. 1) is the same as used
in Ref. 11, where the bases described by the operators
1]—9] were studied for the principal series of SL(2, R).
The appropriate variables which change eigenvalue equa-
tions for the operators 6], 7], and 8] to Lamé equations
have been given in that article. The spectral resolution
for each of these operators also follows along the lines
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of our previous article. We now discuss each of the
three Lamé bases in the order 8], 7], and 6], treating
the simplest cases first.

For the coordinate system 8] it is convenient to
choose the functions / (v) defined by

G (z)=ldn(v, s)[* 2"/ (v), (3.2)
where
cosf = ! sa(v, s)
(1 +EH72 qn(v, s)

and s=k/(1+k%'/2, The eigenvalue equation for this
coordinate system is then

(& + %0 Dewtle, ) - T )a@ =0, (3.9)

Suitable eigenfunctions are the Lamé Wangerin functions
with boundary conditions

(i) [sn(v, s)]' 2/ ,(v) bounded at v =K' and [ (K +iK")
= O-

This gives the solution [ (v} =F% (v, s} with 2p
zeros in the interval (iK', iK' + 2K).

(ii) [sn(v, )12/ ,(v) bounded at v =4K" and [ ,(K +iK")
=0 giving the solution /() = F2 (v, s) with 2p +1
zeros in the interval (iK', iK' + 2K).

It should also be mentioned that the resulting
eigenfunctions

F®(2)={[s"sn(v, s) +icnlv, s)1/s'dn(v, s} 21, (0),

(3.4)
where s'=(1-s?'/2 are analytic inside the unit circle
of the complex z plane and are elements of 4 ,(m
=1,2,3,.-.).
For the coordinate system 7] we choose the functions
/M (v) defined by
G (2) =[is"/en(v, )™ /4N (v),

where

(3.9)

cos® =dn(z, s)/en(v, s).

The eigenvalue equation for this coordinate system then
becomes

<dijz_ s¥(m? - )sn(v, §) - A)/YI r(v)=0. (3.6)

Natural choices for eigenfunctions are the Lamé
Wangerin functions with boundary conditions:

(i) [sn(v, ) /%1 1(v) bounded at v =K and /,(K +iK')
=0 giving the solution/},(v) =F%, ,,(v, s) with 2p zeros
in the interval (iK', iK' + 2K);

(i) [sn(z, )12/ ,(v) bounded at v =1K" and /(K +iK")
=0 giving the solution/},(v) = F&%}, (v, s) with 2p +1
zeros in the interval (iK', iK' + 2K).

In each case the spectrum is discrete and the eigen-
values are labeled by the index p, p=0,1,2,---. The
resulting eigenfunctions

F2) ={s'[s"sn(v, s) = dn(v, s)/en?(z, ™ &, (v)
(3.7
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are analytic inside the unit circle of the complex 2 plane
and belong to #/,. The coordinate system 6] is the most
complicated of the three under consideration. A con-
venient choice of function V/(v) is

Nsn(v, s)dn(v, s) m1/2
G&)= ([?(1 AT 17 71 ]end(v, s)—27) N

(3.8)

where

201 (1 +7 2]+ {(1 + #3221 #lsni(o, s)
[1+7= 1+ 2]sn?(v, s) - 27

sinf =

and

s (L+7 2y N
ST E AT

The eigenvalue equation for this coordinate system is

2 z_%
(Edc?' Hom® = 2)snw, )+ r(;’)z‘ ’z(s)fis 7
1/2
+%+_—7:slryzl>/\/x(w):0- (3.9

Here we have introduced the variables, w={(s+is')v
+iK'(f) and t = (s +is’) /(- s +is'). The resulting equa-
tion is of the Lamé type with modulus ¢ on the unit cir-
cle. Natural choices for eigenfunctions are the Lamé
Wangerin functions with boundary conditions as for the
coordinate system 7], where v is replaced by w and ¥
by {. The eigenfunctions are then N (w)=F,_, ,,(w, 1)
withp=0,1,2,---, and the spectrum is discrete. The
corresponding eigenfunctions 7$%'(z) are analytic in the
unit circle in the complex z plane and are members of

H e

We see that for the discrete series D;, /, of SL(2, R)
the most convenient basis eigenfunctions for the three
Lameé bases are the Lamé Wangerin or finite Lamé
functions. This is opposed to the situation in Ref. 11,
where we dealt with the principal series of SL(2, R) and
the corresponding basis functions for system 8] were
the periodic Lamé functions. For the discrete series
D7y /2 in the Bargmann model the operator specifying
system 8] is singular inside the unit disc. The operators
of the other two systems are singular on the unit disc.
The imposition of boundary conditions that gives Lame
Wangerin functions for these systems yields eigenfunc-
tions in i’*/,,,, which are analytic inside the unit disc and
Zero at the singular points.

4. THE TWO-VARIABLE MODEL

If {A(k)} is a basis for L,(0, ) consisting of eigen-
functions of the operator S, symmetric and second order
in the generators (1. 9) of sl(2, R), then{F{'(t,»} is a
basis for / consisting of eigenfunctions of the corre-

. !
sponding operator S° constructed from the generators
(1.2), where

FOU »n=ulf], j=1,...,9, (4.1
and U is the unitary transformation (1.6). Indeed we

have the relations
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Sf{j)z 7\]‘{“, S'F{j): KF;fj )’
B L = A, U =(FF, F) =6, (4.2)

Furthermore, F¥ (¢, #) is a solution of the EPD equa-
tion (1.1). It follows from results proved in Refs. 1
that for fixed j there exists a coordinate system

{u(t, v, v(t, ¥)} such that variables separate (or R-
separate) in the EPD equation and such that F¥ (¢, )

= explQu, v) [y (wK,\(v), where J,, K, are solutions of
the separated second order ordinary differential equa-
tions and either @ =0 (separation) or @ #0 and @ cannot
be expressed as a sum Q(u, v) =q,(u) +¢g,(v) (R-separa-
tion). In particular the possible coordinate systems and
separated equations (as well as the functions @) are
listed in Ref. 1, Paper 9.

In this section it is our aim to compute all the func-
tions F{ (¢, ») defined by (4.1) and (1. 6). In general, the
integrals (4. 1) are rather difficult to evaluate. In par-
ticular we have not been able to find the integral for
7 =5 nor two of the three integrals needed for j=4 in
the Bateman Project.

However, our work is enormously simplified because
we know in advance the coordinates in which variables
separate for (4.1). Thus we can immediately evaluate
the integral as a linear combination of four terms (since
Jy and K, each satisfy a known second order ordinary
linear differential equation). The four constants can
then be determined by evaluating the integral for spe-
cially chosen values of the variables #, v. In this re-
spect the functions F;“"’(t, 7) listed below can also be re-
garded as evaluations of a number of interesting inte-
grals related to the EPD equation.

For several cases we find that the integral (4. 1) does
not converge sufficiently rapidly so that differentiation
under the integral sign is permitted. It is not immedi-
ately apparent in these cases that F¥’ is actually a
solution of the EPD equation. However, it is always pos-
sible to justify our assertions by noting that if we allow
¢t to become complex and take Imf >0 in (1. 6), then the
convergence in each integral (4. 1) is sufficiently rapid
that multiple differentiation with respect to » and ¢ is
permitted under the integral sign. In each case one can
verify by inspection that the coordinates u(f, 7), v(t, %)
can be extended to the domain Im¢ = 0 and that variables
still separate in the EPD equation. Finally one can
evaluate the integrals (4.1) for Imf >0 and then use the
Lebesgue dominated convergence theorem or a similar
device to justify going to the limit as f becomes real
through positive imaginary values.

We have the following results:

1]: FO, V) =F& (0, ¢)
_( 2(s1) )“2 L@m+1) e
T\r2m+s+1) T(m+1)

X exp[- i(m - 1)1/2]Vcoso - cose sin™o
X exp[—i(s +m +1/2)@]CM™ D (cos0),
§=0,1,2,...,
sing
T coso—cose’

_ sinc
coso - cose’
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Ososm, 21-0>¢>g,

i B(B—r2-1)+it
RIS EINIE

i = G 7"‘+1)+ir
R GEE T YL et
=vcoso- cosg, (F&, F)=68..
Here, C§”’(z ) is a Gegenbauer polynomial,

2] F®t, 7) = exp(~ imm/2) exp(it\J (M),

(4.3)

A>0

14

u=t, v=v, Q=0, (F®, F&)=5(r~21). (4.4)

3}
Ff’ (t, V) =explein(m +1/2+ip)/2) (£ )11 /2

exp(imn/2)r™ .
*TomTDvar LimFivtz)

X, P (in/2+m/2+15,i0/2+m/2+

r< e,

(4.5)
5ym+1; 2/,
F®(¢t, v) =[exp(~= imn/2) /v 2n {21 - /2
[r(m/z +ip/2+5)r "/ D(m/2 = iu/2+3)]
X F(iu/2+m/2+5,in/2=m/2+%; 53 t2/79)

+ 2t 2t ST (1 /2 + 41 /2 +3) /T m/2 + /2 + 5))
X F(iu/2+m/2+5; iu/2-m/2+5; 55 /7,
r> ¢,

Here the (+) sign holds for { >0 and the (~) sign for
£<0. In this case u=tf, v=7v/t, @ =0, and (F{®, F}¥)
=6( - ).

For systems of type 4] we consider three cases.

[t| 27 +1: For =1 we have (v =a +2s)

F&(t, ) =F(8, @)
=explin(v/2-m+H|V2/m (4.6)
XP;7 72 (cosh®)@y /5(coshy),
§=0,1,2,..., for 8> ¢, and F&'(0, ¢) = F# (¢, 6) for
6<¢. Here P, and @, are Legendre functions and
t=coshé coshy, 7=sinhfsinhy, 6, ¢ =0, 4.7

For t< -~ 1 we have F{t)(t, ») = exp(— imm)F, (Iis( t, ).

4b]: ]t‘SV—lz

explin(— 5m/2+ v +3) 120G +v/2 - m/2)
TG +v+mITG +m/2-v/2)

F(4 )5(9 QD)

@y /z(i Sinhe)qu /z(i sinhg), (4.8)

t=sinh6 sinh¢e, % =coshfcoshy, —*<@#<x
cl: |t| +r<1: Fort=0,

VI (v +m +3) exp(— imn/2)
T(w=m+3) cosl(n/2)(v —m=3)]

V=q+ 28, (4_9)

F6, 9) =

X P37 ,(cos8) PiT sp(cose),
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t=cosf cosy, 0<8,¢o<m/2.

For t <0, Fg(t,7) = exp(-imm) FO (=, 7)
These three parametrizations do not cover the full
¥—{ plane but, as shown in Ref. 1, Paper 9, variables

do not separate in the remaining domain. We omit the
computation of the continuum eigenfunctions F;“},

¥ = ginf sing,

510 F2(t, ) =F3(6, @)

_TPPrG—ip+m)CG +in+m)
2VEL sinh{Lm)

><P-l /2+1u(COSh6) :{n/zq.iu (— i sinh(p),

O<p<e, (4,10
t=coshf sinhg, 7»=sinhfcoshe, 0< 6, ¢.
For t <0 we have F®)(t, 7) = exp(— imm)F> (= £, 7).
9]:
FO(t, v) = F®(x, X)
V271 K20V =N (2XV=X) ift>0, A<0,
{NTH“’(sz )L (2XVR)  if >0, A>0,
(4.11)
Here,
x=5(VEFTHVT=7), X=3(TF+r-Vi-9) iftzr>0,
=3(VrHTt+Vr=h, X=i(N7Fi-Vr—0 ifrzt>0.
(4.12)

Also F§(~t, v) = exp(— imm)FO (¢, 7).

For cases j=6, 7, 8 it is most convenient to use the
model A, (1.13)—(1.15). The passage to the two vari-
able model proceeds along similar lines as in our earlier
work with Lamé bases.!! In each case the resulting
basis function is determined to within a phase. This
quantity can be chosen by adopting a fixed normalization
of the Lamé Wangerin functions.

8]: F{®(@t, v)=2[dn(a, s)dn(8, s) +iss'en(B, s) [ /2
Fr o a(a, )Fo 108, 5), (4.13)
where
t=s sn(a, s) sn(B, s)/R, r=1/R (4.14)

and
R=-idn(a, s)dn(8, s)/ss’ +en(a, s)en(B, s”)

and the variables @, are in the ranges a c [0, 2K],
Belik’, iK' +2K].

71: F@, v) =2E[s sn(a, s)sn(B, s) + enle, s)en(8, s) 172
XFY oo, S)FE L 0(8, s), (4.15)
where
t=dn(a, s)dn(g, s)/ss'R, r=1/R,
and
R=s[sn(a, s)sn(B, s) +cnla, s)en(B, s)/s']. (4.16)
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The variables @, f can vary in the two ranges a,
cl0,2K], a,Bc iK' iK' +2K].

8]: FO(t, v) = x[(s = is")dn(w, Hdn(i, 7)

+ (s +isen(w, fen(p, )12

X an-l /Z(w! t)Fsl-i /2(“'s t): (4' 17)
where
t=2Vss’(s +is')sn(w, t)sn(L, £)/R,
y=2Vss'/R (4.18)

and R =[(s - isVdn{w, )dn(, ) + (s +is Yen(w, Henlu, B,
t=(s+is") /(s -is").

The variables w and i vary in the ranges w, 4
e[~iK',iK'], which is the line segment joining the points
— iK', iK' in the complex plane. (Remember XK' and K
are complex.) Here for the Lamé bases we have used
the same notation as in Sec. 3, where the spectral anal-
ysis was performed.

5. OVERLAP FUNCTIONS

Here we compute several of the overlap functions
(9, A1) which allow us to expand eigenfunctions £
in terms of eigenfunctions f{’. Since (T(G)AY’, T(G)F)
={9, A, the same functions allow us to expand eigen-
functions T(G)fS’? in terms of eigenfunctions T(G)f¥* .
Moreover, since (£, A= (F, F{"), the overlaps
allow us to expand eigenfunctions Fﬁ“ in# in terms of
eigenfunctions FY). These last expansions converge in
the Hilbert space sense. Pointwise convergence has to
be checked separately.

However, if we choose 7= 0 and Imf >0 in (1.6), then
the function H, ,(k) = exp(+imm/2) exp(- if k)J ,(k7) be-
longs to L,[0, =] and the transformation U[f], (1.6), can
be represented as an inner product on LZ[O, w].

Oll= ¢, He . (5.1)

In this case it follows easily that all of the expansion
formulas

F ) =[G, FNFDE, v) dr,

Im¢ >0, =0, (5.2)

are valid in the sense of pointwise convergence, a.e.,
(See the analogous arguments in Refs. 12 and 13.) In
each case it is easy to verify that separation of vari-
ables persists in the domain Im¢ > 0 if it holds for Im¢
=0.

Overlaps involving system 2] are especially easy to
compute:

(9 F2y =), 0<a<w, (5.3)

In addition we list the overlaps (f¢’, /') between the ;]

basis and the discrete basis 1]:

G, FA = (F(Zm +s+ 1))1/2 2,,,I."(Zm +iu+3)
" s

(s)m T'(2m +1)
—-s,m+ig+3% )
x y
2F1< o1 2], (5.4)
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(& )

— 2m-v+1(1 1 i)-v-m-l /2

Ly +m +§)<vr(2m+s+ 1))1/2
rv+1 \(sH)T(2m+1)

X Fy(v+m+g;v+s,—s;20+],

o2 2
T 1)

v=a+2q, ¢,s=0,1,2,---, (5.5)

Here F, is a Lauricella function.' The overlaps
D, fD% and (R, f&), while straightforward to com-
pute, are of a complexity similar to (5.5) and will not
be listed here. [Note that the latter overlaps are not
unitary since {f{”’} is an ON basis for L,(R), not
L,[0,=]).]

The overlaps (£, f&%, §=86,7, 8, can be obtained
immediately from the /,, models. The computation of
the overlap functions between the Lamé bases 8], 7,
and 8] and the basis 1] is easiest to perform by giving
the recurrence formulas for these coefficients (see Ref.
11.) We consider explicitly the case of coordinate sys-
tem 8], where the basis function 7 ®(z) is even under
the interchange z — - z. Applying the operator C%+ k2B?
to both sides of the identity,

I®(2) =2 az%, (5.6)
n=0

we obtain the recurrence relation

R2(2n+2)(2nt+1)a,,
+ [4n(k2+2)(1 = m = 25) — 4r =~ (2m = 1) 2m = 1 +£¥)]a,

+ 2k 2(n =12+ (2m = V)(n-m)]a,, =0, (5.7

2k%ay — [4x+ (2m = 1)(2m = 1+ kD) ]a, = 0.

The normalized overlap functions b, are then given via
the relation

a,=[C@m+n+1)/T(2m+3nl %

For the case of eigenfunctions 7$(z) which are odd the
analysis goes through as before by making the substitu-
tion n-n+3. We should mention here that even and odd
eigenfunctions 7 {#'(z) correspond to Lamé Wangerin
functions with an even or odd number of zeros in the
interval (iK'(s), iK'(s) + 2K(s)) (see Sec. 3). Similar re-
currence relations for the basis eigenfunctions of sys-
tem 7] can be derived by making the substitutions &2
~=1/s% A ~— /s, The recurrence relation for 6] is
somewhat more lengthy and will not be presented here.

Finally we list the interesting overlaps

o pen T ¥ )”2r((Hz‘u)/z)F((v-w)/z)
R (u sinhum rv+1)

(v +iu)/2, (v ~iu)/2

X oy v+1 ; =1), v=a+2s,
tual ) 2
(O, [0y =TT 2w Hiw)/a) o

L((v-ip)/2+1)°

As discussed in earlier papers in this series, the
most general overlaps between basis functions are the
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mixed basis matrix elements (T(G)fS, A1"). The deter-
mination of these matrix elements is straightforward,
though frequently the result is complicated.

6. THE COMPLEX EPD EQUATION

In the case where the variables 7, { in (1.1) are com-
plex and m is a complex constant, we can regard the
EPD equation from another point of view. For the sym-
metry algebra we now choose the complex Lie algebra
s1(2, ¢), whose action on solutions of (1.1) is given by
(1.5), where now the matrix elements a, 8, v, 6 are al-
lowed to be complex and constrained only by the re-
quirement detG =1.

We can now pose the problem of determining the pos-
sible coordinate systems {u, v} in which the complex
EPD equation is separable. Here, we require that the
coordinate transformation functions u(7, £), v(7, t) be
only complex analytic in #,¢ rather than real analytic
as in the case of the real EPD equation. Furthermore,
we regard two coordinate systems as equivalent if one
can be obtained from the other by a transformation
(1.5) from the group SL(2, ¢). Just as in Sec. 2, we ex-
pect the equivalence classes of coordinate systems to
correspond to the SL(2, @)-orbits in the space g” =5/
{C?.A%- B%°, where 5° is the space of symmetric
second-order elements in the universal enveloping alge-
bra of sl(2, @).

To determine the adjoint action of SL(2, C) on §°, we
choose a more convenient basis for sl(2, €):

S, =iA, S,=iB, S,=C,

6.1
[Slysz]:ss’ [Saasl]:szy [SZ:SQ]:SI' ( )

A general element @ of §° can be expressed uniquely
in the form

Q= iIijSjsk, dix=0qy; €C. (6.2)

ip=
Using the well-known local isomorphism of SO(3, C)
and SL(%, C), and identifying @ with the 3X3 symmetric
matrix @ = (q;,), we see that under the adjoint represen-

tation @ transforms according to @ ~01Q0, 0eS0(3, ©).

The elements of ﬂc can be identified with the matrices

@ such that tr@ =0, or more conveniently, we can add
arbitrary multiples of the identity matrix to @. It is now
a simple exercise in matrix theory to classify the orbits
in #° under the adjoint representation of SL(2, €). We
present only the results and label the four possible or-
bit types by the eigenvalues of Q. The symbol A(2) [or
A(3)] signifies that the eigenvalue X corresponds to a
generalized eigenvector of degree 2 (or 3). Every ¢

€ J° is conjugate under the adjoint representation to an
element in the following list.

eigenvalues orbit vepresentative
a. A\ U,p AS2 + uSZ + pS2
A+ p+p=0,

(A=A =p)(p-p)#0
b. 2A, =X, =)
A#0

M25% - 8% - 8%
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c. M(2),-2x (X +3)S2+ (n - 3)S% - 228?
+ %i(SISz +5,5,)
d. 0(3) (S +128,)S, +8,4(S, +1S,)

(6.3)

For our purposes we can add a scalar multiple of
8%+ SZ+S2 to any of the orbit representations without
changing the element of f Then we find that any ele-
ment of f is equivalent to a scalar multiple of one of
the following elements.

a. S2-k%S%, k#0, 6}, 7], 8],

b. S, 1], 3]

cl. (A#0) 282+ (1 - 6M)SZ+i(5,5,+S,5,), 4],5], (6.4
c2. (A\=0) 2 S%+i(S;S, +S,5,), 2],

d. (S, +1S,)S, +5,(S, +1S,), 9l.

Each of the nine SL(2, R)-orbit representatives in
(2. 1) belongs to one of the five orbits (6.4}, and we have
indicated the orbit inclusions in the last column of (6. 4).
We see that each of our five orbit-types contains at
least one of the SL(2, R)-orbits and that some contain
more than one. From these facts we infer that there
are no new separable coordinate systems obtained by
complexifying the EPD equation: all coordinate systems
follow from an obvious analytic continuation of the sys-
tems 1]—9]. However, the systems 1} and 3], the sys-
tems 4] and 5], and the systems 6], 7], 8] are equivalent
for the complex EPD equation.

A particularly interesting basis for the solutions of
the complex EPD equation is that of type b:

}i(w’ T) - T""’”l(l _ w2)m/zc:'n+1 /2(w),
BY = (n+m +1)7°. (6.5)

Here, Ci(w) is a Gegenbauer function (a polynomial for
n=0,1,2,--) and the complex variables w, 7 are given

by
w=HE -t = (-

In terms of the variables w, 7 the local group action
(1.5) of SL(2, C) becomes

{(6.8)

T(G)@(w, T) =U' /2y /2
X @((w+ 28yw + aB7T + Y674y /V; TU),

U =[(82 + 8272 + 286Tw) /(a? + Y212 + 20T w) | /2,

V=[(2w + 28yw + aBT + ¥6TV)(2Byw + afT +y071) + 1] 2,
(6.7
Here
G:("‘ ﬁ) e SL(2, C).
v 6

We are now in a position to apply Weisner’s method®™
to expand solutions of the complex EPD equation in
terms of the basis (6.5). Suppose ®(7,#)=®(w,7) is a
solution of the EPD equation such that
7-m1(1 - w?)"™/2@(w, T) is analytic in 7 and w in a neigh-
borhood of {w, 7)=(0, 0). Then there exist complex con-
stants g, such that
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T (1 - w2 (w, ) =2 a,C7 2 (w) T, (6.8)
n=0
This method was employed by Viswanathan® to derive
generating functions for the Gegenbauer polynomials.
[The awkward factor 7™1(1 - »?)™"/% which appears in
(6. 8) is due to our insistence in retaining the EPD equa~
tion. One can easily remove this factor by transforming
the EPD equation to the equivalent equation for ultra-
spherical functions which appears in Ref. 2. ] In order
to derive useful results from (6.8), one characterizes
a solution ¢ of the EPD equation by requiring that it be
an eigenfunction of a first or second order operator in
the enveloping algebra of SL(2, C). As Viswanathan re-
marked, in practice one can compute $ precisely in
the cases where it is possible to find coordinate sys-
tems in which variables separate in the equations for
¢. The results of our paper show why this is so and
exactly when separable variables exist. Once a suitable
% is computed one can evaluate the constants a, by
choosing special values of the variables, e.g., w=0.
Similarly one can derive expansions for 7(G)9®, i.e.,
functions which lie on the same SL(2, C)~orbit as &.

According to (6.4) there are five types of orbits to
consider to obtain all possible generating functions for
the Gegenbauer polynomials via Weisner’s method. An
examination of Viswanathan’s paper shows that he has
found four of these orbits, omitting only the Lamé
case (type a). This case can be treated by using the
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coordinates (4.14) for o, B complex and substituting

into (6.6). The remainder of the computations follow
just as those given in Ref. 2. However, the resulting
identities are somewhat complex due to the fact that

sn{e, s) and sn(B, s) are rather complicated algebraic
functions of w and 7.
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On a phase interchange relationship for composite materials

Kalman Schulgasser

Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
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A theorem exists relating the transverse conductivity of a fiber reinforced material in a determinate manner
to the conductivity of the composite with the phase properties interchanged. It is shown that no such
theorem can exist in the three-dimensional case, e.g., for a statistically isotropic composite material.
However, an inequality is established relating the two effective conductivities.

1. INTRODUCTION

Keller' presented and proved a very interesting “phase
interchange” theorem for two-phase fiber reinforced
materials. He considered two-phase materials whose
boundaries are cylindrical surfaces, say parallel to the
z axis, and for which effective conductivity® perpendic-
ular to the fiber direction has as principal directions
the axes x and y. The conductivity properties of each
phase are assumed to be homogeneous and isotropic.
Let us denote one phase by the subscript 1, the other
by the subscript 2. The conductivities of the individual
phases are &, and %, and the effective conductivities of
the composite in the x and v directions are k*(k;, k,) and
k*(ky, ky) respectively. Keller showed that

k¥ (Ry, ko) kE (g, ky) =Ry ks, 1.1

where k¥(k,, k) is the effective conductivity in the y
direction when the phase denoted by 1 is now given con-
ductivity %, and the phase denoted by 2 is now given con-
ductivity k. We have not changed interface geometry,
but only interchanged phase properties. If the sample is
statistically isotropic in the x—+ plane, then

k¥ (ky, kg) = kY (ky, Ry = k*(Ry, k)
and Eq. (1.1) becomes

1% (Ry, Tep)k* (g, Toy) = key ey (1.2

Actually, Keller proved this theorem only for rec-
tangular arrays in the x—y plane, when one phase, iden-
tified as an inclusion (fiber), has specific symmetries.
Mendelson® has shown that Eqs. (1.1) and (1. 2) are valid
for any two-phase material with cylindrical phase bound-
aries, no matter what the phase geometry, even if the
phases are not distinguishable as matrix and inclusion
(fiber).

That Keller’s theorem can be useful in dealing with
the problem of the prediction of effective conductivity
of two-phase materials has been shown by Schulgasser.?
A major limitation on its potential application is its ap-
plicability only to the two-dimensional (cylindrical phase
boundaries) case. The proofs of both Keller and Mendel-

son depend on the two-dimensional nature of the problem.

For the three-dimensional case, i.e., a statistically
homogeneous two-phase material when x,y and z are
the principal directions of the effective conductivity,
but when the phase boundaries are not aligned with the
z axis, Eg. (1.1) is not valid as can be shown by con-
sidering counterexamples to the special case of statisti-
cal isotropy expressed by (1.2). Two such counterex-
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amples will be presented in Sec. 3. We will show first
of all that not only is Eq. (1.2) not valid in the three-
dimensional case but also that no one-to-one relation-
ship exists between k*(k, k,) and k*(k,, &), i.e., that
knowledge of k*(ky, k,) is not sufficient to determine
k*(ky, k). We will show however that in the three-
dimensional case an inequality can be written in place
of Eq. (1.1). Specifically we find

k;((k’l, kz)k:(kz, k1)> klkZ! (1.3)
or for the statistically isotropic case
k* (fy, ky)k*(Ry, ky) = Byl 1.4

2. NONEXISTENCE OF A KELLER-TYPE THEOREM
IN THREE-DIMENSIONS

To disprove the existence of a Keller-type theorem in
three-dimensions it is sufficient to point out one instance
for which it cannot possibly be true. Consider a statis-
tically homogeneous and isotropic two-phase material
which in addition is statistically symmetric, so that an
interchange of the two phase conductivities yields the
same material. In general, if a Keller-type theorem
exists then

¥ (Rgy Ry) = f(k*(Ry, By), Ry, Boy)

where f is some definite function. But for symmetric
materials

F* By, ko) = k*{Rg, ky).

(2.1)

Hence for a symmetric material we conclude that

B* Ry, k) = glky, ko), 2.2

¢ being some definite function, i.e., k*{(kj, k,) is a de-
finite function of k; and k,. Now the detailed phase geom-
etry of a two-phase material is not completely deter-
mined by the requirement that the material be symmet-
ric. Indeed, we will present an example of a class of
symmetric materials for which different values of #*
are realizable. Hence Eg. (2.2) cannot hold true and

no relationship of the sort suggested in Eq. (2.1) can
exist.

The class of symmetric materials referred to above
is constructed as follows. Let us make a laminate of
thin slabs of materials 1 and 2, of equal thickness and
stacked alternately. “Grains” of such a material whose
dimensions are very large compared to slab thickness
will behave as axially symmetric crystals whose con-
ductivity perpendicular to the slabs (i.e., along the
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FIG. 1. Model of a statistically symmetric material.

crystal axis) is

Fu=2(1/ky +1/kp),
and in the directions perpendicular to the crystal axis
is

br=3(k +k,).

From these grains we now consfruct a statistically
isotropic polycrystal (see Fig. 1). What has been de-
scribed above is clearly a statistically symmetric two-
phase material. It is known that a polycrystal constituted
of axially symmetric crystals does not have a macro-
scopic conductivity uniquely determined by the princi-
pal conductivities of the constituting crystal. It was
shown by Molyneux® who considered realizable corre-
lation functions that at least a narrow range of effective
conductivities is realizable. Schulgasser® demonstrated
by presenting constructable polycrystal models that
quite a large range of effective conductivities is realiz-
able. If effective conductivity of the polycrystal is not
uniquely determined by 4. and %1, then 2* for the above
described statistically symmetric material is not
uniquely determined by %, and %, and hence no Keller-
type principle can exist.

3. A THREE-DIMENSIONAL INEQUALITY

Consider a statistically homogeneous two-phase
material for which the principle directions of the effec-
tive conductivity are x,y and z. Further, consider the
functional U defined by the volume integral,

U=(1/2V) [, (a-q/k) dv
=(1/2) [,(1/B) (g9, + 3,3, + ¢,9.) AV,
where q is the heat flux vector and ¢,, ¢, and g, are its

components., For a statistically homogeneous material
subjected to a macroscopic heat flux in the x direction

U= 3(a.)/k¥ (3.1

where ( ) denotes a space average. An appropriate set
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of boundary conditions is that on the external surface

S of a large block of such a material, n-q have the same
value as for a uniform flow g,=<g,) along x. n is a unit
vector normal to the surface. Then the boundary condi-
tions can be written

lg, +mg,+nq,=lg,

where , m, and n are the direction cosines of n. (3.1)
serves as a definition of effective conductivity. Consider
the classical variational principal

Us<(1/2V) [y (1/k)@,4; +q,, + 4.4, 4V, (3.2)
where ~ denotes admissible trial heat flux fields. Ad-
missibility requires that the condition

V.q=0 (3.3

be met and that at interfaces the normal heat flux must
be continuous.

Now let us imagine a cut parallel to the x—v plane.
Suppose that this cut, rather than being a cut through a
statistically isotropic material, were a transverse cut
through a fiber reinforced material (perpendicular to
fiber direction). At each position on the z axis let us
use the true heat flux field that would be obtained for a
cut through a fiber reinforced material as the trial field
in (3. 2). This trial field clearly satisfies the condition
(3. 3) and the interface condition. We will denote such
a trial field by the superscript 2D. For cuts perpendicu-
lar to the z axis at all positions on this axis we obtain
statistically identical phase geometry and hence statis-
tically identical trial heat flux fields. Noting that

g =0,

we write (3. 2) as

Us<(1/2V) [,(1/kNg?q2> + g2 qP) dV. (3.4)
The trial field satisfies the boundary conditions for the
three-dimensional problem since with ¢, =0 they can be
written

[1/(1 = n2 /Z]Qx +[m/(1 = n?)! /z](/y
=[{1/(1-n®)! /%] q,,

and the coefficients of ¢,, ¢, and ¢, are precisely the

direction cosines appropriate for the boundary condi-
tions of the two-dimensional case. Now the right hand
side of (3.4) is simply

(1/2k1%) (¢,

where £2°° denotes the effective conductivity in the x
direction of a fiber reinforced material whose cross-
section is statistically identical to the cut through the
statistically isotropic material described above. Utiliz-
ing Eq. (3.1) we then have

(1/ k¥) < (1/kF%), (3.5)
or equivalently
BX = k¥2D (3.6)

We could have looked at the above process from an-
other point of view. If U is minimized under no con-
straints other than those required physically, and if
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(3.1) is then used, the result is the correct 1/2¥. If the
minimization is carried out under additional constraints,
the resulting value of 1/k¥ can be higher than but not
lower than the correct value. The constraint ¢, =0 leads
to the result 1/2*%’; the inequality (3. 5) follows imme-
diately. Now (3. 6) will be true if phases 1 and 2 have
conductivities k, and 2, respectively, or if the phase
conductivities are interchanged throughout., Thus we can
write both

k¥ (Ry, ky) 2 X (Ry, k) 3.7
and

k¥ (ky, ky) > k;ZD(ka, ky). (3.8)

Inequalities (3.7) and (3. 8) are of course valid if the
subscript x is replaced by vy or z.

Applying Keller’s theorem as expressed in Eq. (1.1)
to the right hand side of (3.7) we get

kr(ky, ky) = klkz/k:an(kz, k),

or

kyky/ Rk Ry, ko) < B3P (g, By (3.9
Inequality (3. 9) together with (3. 8) then gives

kyky/ R (Ryy ky) < RYP (g, B) < Y (g, By,
or simply

R (ky, ky) = faks (3.10)

T RF(Ry By}

This is the sought after inequality (1.3), which for the
case k¥ =k¥ reduces to the inequality (1.4).

Before presenting examples for the statistically iso-
tropic case which disprove the validity of (1. 2) for the
statistically isotropic case, but which do satisfy the in-
equality (1.4), several comments are in order. First
of all the intermediate inequality (3. 6) is valid not only
for a two-phase material but for a material of any num-
ber of phases. Indeed it is true for a material with con-
tinuously varying properties, as long as the definition
of k*%C is suitably broadened. Secondly, one might ex-
pect that a second inequality, perhaps bounding k*(k,, %,)
from above, might be obtainable from the classical vari-
ational principal complementary to (3.2). That this is
not so is shown in the Appendix.

Beran and Molyneux’ have calculated bounds on the
quantity

Q=Fk* /R,

for a symmetric two phase material. According to the
inequality (1.4) when k*(ky, k,) is taken equal to k*(k,, k)
because of the statistical symmetry of the material, @
may be greater than 1, and need not necessarily be equal
to 1 as implied by (1.2). Beran and Molyneux calculate
upper and lower bounds on @, but cannot show that they
are realizable, For &,/k; less than about 14 both bounds
are greater than 1. Hence (1. 2) cannot hold and (1. 4)
holds. For k,/ky greater than 14 their lower bound is
less than 1. Inequality (1.4) indicates that we can sim-
ply set the lower bound at 1.

As a second example consider the “spheres assem-
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blage” model proposed by Hashin and Shtrikman® for
which the exact conductivity can be calculated. For one
alternative of their model (the other gives the same re-
sult with indices reversed)

¥Ry, Ry) = Ry + Buiky(Ry — ky) /[3k, + v,y — ko),

where v, and v, are the volume fractions of the phases.
Then
R*(ley, ky) = by + Buy Ry (R — k) /[ 3y + 0,k = Ry,
Using these expressions we find
k* (ky, ko) k*(ky, By)
kiR,

1 9v,,(ky = ky)?
(9~ 6, + 20Dk by + (30, — VD) (RF + )

which is clearly always greater than 1 except for either
v,=1 or v; =1 when it is exactly 1, as we would expect
for this case of degeneracy to a one-phase material.

As a final interesting example of the inequality (1. 3)
and to emphasize its applicability to any statistically
homogeneous material no matter what the nature of its
anisotropy let us consider an extreme case. Take the
inequality in the form

kt(klﬁ kz)k:(kz, kl) = klkz’
where the material we are considering has phase bound-

aries which are cylindrical surfaces parallel to the z
axis. Then we know

k¥ gy Fop) = vy Ry + gk,
and by applying the inequality we find

k¥ (R, ko) = (v1 /Ry +0,/R5)7
This is the well known Wiener lower bound on the effec-
tive conductivity of two phase composite materials. k¥
realizes the right hand side when the phase boundaries

are planes perpendicular to the x axis, as it must, since
for this case the problem is again two-dimensional.

APPENDIX

Consider a statistically homogeneous two-phase ma-
terial for which the principal directions of the effective
conductivity are x,y, and z. Further consider the func-
tional U defined by

U=(1/2V) [, kVT - VT dv
=(1/2V) [ k[(37/2x)*+(9T/3y)* + (3T/32)*}aV,

where T is the temperature field in the composite ma-
terial. For a statistically homogeneous material sub-
jected to a temperature gradient in the x direction,

U=%4EXaT/3x)%.

(Al) serves as a definition of effective conductivity.
Consider the classical variational principle

U< (1/2V) [ k(3T /o5 + (aT/2y)2 + (2T/22)*1dV (A2)

where ~ denotes admissible trial temperature gradients.

(A1)
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To be admissible it is required that T be continuous
throughout the material.

Now let us imagine a cut in the x-y plane. Suppose
this cut, rather than being a cut through a statistically
isotropic material were a transverse cut through a fiber
reinforced material (perpendicular to the fiber direc-
tion). Let us use the true temperature field that would
be obtained for the cut through a fiber reinforced ma-
terial as the field from which we derive the admissible
temperature gradients in (A2). We will denote such a
trial field by the superscript 2D. For cuts perpendicular
to the z axis at all positions on this axis we obtain sta-
tistically identical phase geometry, and hence statis-
tically identical trial temperature gradient fields. We
note that

(3T /3z)?P 0

since for a given x—y coordinate position the tempera-
ture changes as we move in the z direction, by virtue
of the fact that the phase geometry of two neighboring
cuts changes, Then from (A1) and (A2) we can write
only

skX(T /ox)?
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<3EFP(3T/0x)* + (1/2V) [[(aT/32)® R av.

No way of evaluating this last integral is apparent. Ad-
ditionally it is possible to conceive of phase geometries
for which the above proposed trial field is not even ad-
missible, e.g., instances when phase boundaries are
(locally) planes perpendicular to the z axis. For the
case of continuously varying material properties the
proposed trial field is clearly admissible.
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On the conductivity of fiber reinforced materials

Kalman Schulgasser

Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
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A two-phase material in which the phase boundaries are cylindrical surfaces is considered. A technique
exists for finding upper and lower bounds on the effective thermal conductivity (or electrical conductivity,
permittivity, or magnetic permeability) of the composite in the direction perpendicular to the generators of
the phase boundaries in terms of two different three point correlation functions. It is shown how a phase
interchange theorem can be introduced into these bounds enabling us to express them in terms of a single
geometrical constant of phase geometry. We determine what range of values of this factor is realizable for
real phase geometries, and we show that the bounds thus obtained span exactly all realizable effective
conductivities for such composites. Finally, we show that the bounds as expressed here enable us to use a
knowledge of the effective conductivity of a composite for one ratio of constituent conductivities to narrow

the bounds for some other ratio.

1. INTRODUCTION

We consider here two-phase fiber reinforced materi-
als. By this we mean any two-phase material whose
boundaries are cylindrical surfaces, say parallel to the
x4 axis. No other restriction is made on the geometry
of phase boundaries. Indeed, we do not even require
that any one phase be identifiable as the matrix, the
other being the inclusion (fiber). We are concerned with
the problem of determining the effective thermal con-
ductivity perpendicular to the fiber direction (i.e., per-
pendicular to the generators of the cylindrical phase
boundaries) when the statistical properties of the phase
geometry for cuts perpendicular to the fiber geometry
are isotropic and homogeneous. The conductivity prop-
erties of each phase are assumed to be isotropic and
homogeneous. Hashin®*? derived bounds for this effective
conductivity in terms of the phase conductivities and
volume fractions of the two phases. He was able to show
that these are the best possible bounds obtainable if this
is the only information available defining phase geom-
etry. He showed this by presenting models of two-phase
materials for which the effective conductivity could be
exactly calculated and which exactly realized his upper
and lower bound. For two-phase materials completely
isotropic (statistically) in three dimensions Beran® has
developed a statistical theory for bounding effective con-
ductivity in terms of additional statistical information,
viz. three-point correlation functions. Silnutzer? has
applied Beran’s technigue to the problem under consi-
deration here. It was only necessary to rewrite all of
the results of Beran using two rather than three dimen-
sions. Silnutzer found that k*, the effective conductivity,
is bounded as follows:

[(1/k) = (k' /B2 /4R T < Ro*

<= %((k’2>/<k>)/(1 + 200 (R"),
1.1

where ( ) denotes an ensemble average which is assumed
to be equal to the spatial average for a statistically ho-
mogeneous material, and ' denotes deviations from (&),
j.e., if the two phases are labelled 1 and 2 then

By =k —(R) and ks=k,—(k).
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I and J are integrals of different three-point correlation
functions and are given as follows:

1 8% TS
[\W’/;’/"-a—yla—slo? (O)k (r)k (S)>;2‘s—z(‘lrds, (1::2)

— 1 aZ k'(r)k"(s) ViSi
J_4ﬂz<k>zﬁ ,[A.aylasl< woyPsrdrds. (1.3)

r and s are vectors in the plane of the cut with compo-
nents 73, ¥, and $;, S, respectively. The repeated index
indicates summation. The integrations are over areas
infinitely large compared to the scale of the phase geom-
etry. Inequality (1.1) and the definitions (1.2) and (1. 3)
are the two-dimensional analog of Beran’s three-dimen-
sional results and are very nearly identical in form.

The usefulness of (1,1) and its three-dimensional
counterpart depends on our ability to determine 7 and J.
Little success has been achieved in this respect. In
fact, short of actual measurement or calculation for a
particular structure it has not been known what values
of I and J are possible in real materials. For a certain
class of cellular statistically isotropic three-dimen-
sional materials Miller® has evaluated 7 and J in terms
of cell shape. The analogous results for the two-dimen-~
sional case under consideration here have been present-
ed by Beran and Silnutzer.® Both the extent of the appli-
cability and the universality of these evaluations of I
and J are not clear. Firstly, it is necessary to deter-
mine to what extent real materials fulfill the restriction
on phase geometry imposed in these works, especially
that of complete independence of conductivity properties
between any two cells, and secondly because the I's and
J’s computed do not produce bounds which span the com-
plete range of the Hashin bounds, a range which has
been shown to be realizable.

A disturbing feature of the Silnutzer (and Beran)
bounds is that the upper and lower bounds depend on dif-
ferent three-point correlation functions. We will show
here, without putting any restrictions on phase geom-
etry, that for the case of a fiber reinforced material
both upper and lower bounds can be found in terms of
eithev I or J. We will see that I can be written as

I= (k3 /(Y20 1.4)
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and that J can be written as
J= (;eéz/kz<k>z)[J1 + (kz/ki)Jz]; (1.5)

where I, J; and J, are purely geometrical functions of
the statistics of phase geometry. v, and v, are the vol-
ume fractions of the phases (v; +v,=1). Turning our
attention particularly to I; we will find the limits on the
values that /; can take for any given volume fractions of
the phases and we will show that these limits are real-
izable, i.e., that these limiting values correspond to
real materials. We will see that the Hashin bounds can
be derived from those of Silnutzer. Further we will show
that if for a material with a particular structure the
actual k* can be exactly (or approximately) calculated
then the exact (or approximate) value of the correspond-
ing factor 7 can be found. We will see that a knowledge
of k*, say from measurements, for a particular ratio
k,/k, permits us to bound 7 and that these bounds on
can in turn be used to bound k* for different ratios k,/%;,
the phase structure remaining unchanged. This last re-
sult is significant in view of the complete mathematical
analogy between the problems of determining effective
thermal conductivity, effective electrical conductivity,
effective electrical permitivity and effective magnetic
permeability of composite materials. That the analogy
can in fact be extended to include the computation of ef-
fective elastic axial shear modulus of fiber reinforced
materials was indicated by Springer and Tsai’ for the
case of rectangular periodic arrays, and it was noted
that this analogy is generally valid by Hashin® who point-
ed out that the underlying mathematics is the same in
both cases. Thus for example, a knowledge of the ther-
mal conductivity of a composite permits us to place ri-
gorous bounds on its electrical permittivity, assuming
of course, that the phase conductivities and permittivi-
ties are known.

2. THE BOUNDS AND THEIR IMPLICATIONS

Consider the correlation function
=(E"(0)k"(r)k'(s))

which appears in the integrand of the integral defining
I. Were we to perform experiments to determine P(r, s)
by randomly sampling for any given r and s we would
be faced with eight possible outcomes. These are:

(1) by <y R \= k3 (R{ /R})°,
(2) By ki -ky=k3(k{/k)?,
(3) R < fog - { = Ry (R{ /3%,
(@) kj -y b = 3 (L /RY)?,
(5) by« by b{ =R (R{/R}),
(6) by« Rf - ky =l (ki /Ieg),
(1) Iy by bg=R3(R{/B]),
(8) By by ky=R3(1).

P(r,s)

In the second column %,° has been extracted. But using
the definition of #{ and &,

k_{ - (v1hy +vpky) Ve
ky ko= (viky T Uk, T vy’
383 J. Math. Phys., Vol. 17, No. 3, March 1876

i.e., each possible outcome of such an experiment
yields the factor kz'3 times a quantity completely inde-
pendent of phase conductivities, but rather dependent
only on phase geometry. Then P(r, s) can be written

P(r,s) =k, G(r, 8),

G depending purely on geometry. Putting this into the
definition of I we obtain (1.4), viz.

1= (k3 (RY0 )]

where /; is a purely geometric factor for any particular
phase geometry. The factor 1/} has been removed from
I, for later convenience.

The possible outcomes for the same experiment per-
formed to determine the correlation function in the in-
tegral of J are:

() (By + ky) /ley = (Re2/Ry) (k1 /Re3)?,

(2) (B - ky) /ey = (R32/ ko) (ki /F3),

(3) (g ki) /oy = (3?/Ry) (ki/R3),

(4) (kg - ky) /By = (k32 /R (1),

(5) (y - 1)) /Iy = (kg2 / o) (/) ¥/ ),
(6) (ky + p) /Ry = (R52/ Ry (1 /Reg) (Rp/ R,
(7) By~ R{) /By = (Rg2 /R (B Rg) g/ Ry ),
(8) (y = kg) /ey = (Rg/ k) (V) Ry /Ry).

We see that all outcomes contain either of the factors
ky2/ky or (Ry2/ky)(ky/ky) times a quantity independent of
phase conductivity. Hence it is clear that J can be writ-
ten as in (1.5), viz.

J = (k? /Ry kY[ + (Ry/ Ry ), .

It is significant that two separate factors are necessary
to determine J for a given geometry for any ratio k,/%,

We will utilize a phase interchange theorem first
proved by Keller® for ordered arrays of cylinders with
certain symmetries embedded in a matrix, and which
was later proved by Mendelson® to be valid for all two-
phase materials whose phase boundaries are cylindrical
surfaces, there being no furthere restriction on phase
geometry. Let the conductivity of phase 1 be %, and of
phase 2 be k,. Then k*(ky, k,) is the effective conductivity
perpendicular to the fiber direction. Keller showed that

E*(Ry, ko) k* (ky, ky) = Ry ky, (2.1
where &*(k,, k) is the effective conductivity when the
phase denoted by 1 is now given conductivity %, and the
phase denoted by 2 is now given conductivity #. We
have not changed interface geometry but only inter-
changed phase properties. (Flaherty and Keller!! have
also proved this theorem separately for the case of
axial shear modulus. )

Now we note that the upper bound (right hand side) in
(1.1) is a function of ky, &y, vy, v, and I;. Let us denote
this function by fy (%, %5, ©1, ;). Then

k¥ (ky, y) < fir(Ry, kay vy, 1), (2.2)
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FIG. 1. Bounds on the effective conductivity £* as a function
of the geometrical factor I, ky=1, ky=5; v;=%, v,=1.

Similarly, for the same phase geometry, were the
conductivity of 1 actually %, and that of 2, % then

k*(kyy Ry} < fy(Ry, Ry, v1, 1) (2.3)

But from (2. 1) we can write this last inequality as
Ryley/ ¥ (Ry, Ry) < fy ks, Ry, vy, 1),
or

EX(Ry, kp) 2 Ryky/fi Ry, Ry, 01, 1) (2.4)

(2.2) and (2. 4) together give a set of bounds in terms of
a single geometric factor ;. Writing these out in detail

we have
-1

(0,0,/2)%(k, — Ry)? >
Fukey <(k,vz ) - (0105/2)(Ryvy + Rgoy) + (Ry — Ry

) - (7)1’[}2/2)2(/?1 - kg)z
(v1v5/2)(Ryvy + Ryvy) + (kg = k)

(2.5)

< k* < (kyvg + kyv,

0.06}
004l I, ,UPPER LIMIT OF I,

0.02}-

L

1o, LOWER LIMT OF I,

I\ ! I
0100 120:80 4060 60.40 80.20 100.0
VOLUME FRACTION RATIO, vp:v,

FIG. 2. Permissible values of the geometric factor I,
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FIG. 3. Bounds on the effective conductivity ¥* as a function
of the geometrical factor Iy. k=1, ky=15; v,=v,=3.

To obtain a visual image of the implications of these
bounds we have in Fig. 1 plotted the bounds against I,
for the case v; =%, v,=1 for b, =1 and k,=5. The maxi-
mum and minimum possible values of I; are at the inter-
sections of the bounds, and the values of k* at these
crossing points are absolute bounds on the effective con-
ductivity. To determine the crossing points we set

Sullyy gy 01, 1) = Ry Ry /fy (g, By, 01, 1)

and solve for I;. We find that the values thus determined
are independent of k; and %k, and are given by

Ila:('Ul'Uz/Z)(Ul/Z—’UB) (2. 6)

25 HASHIN UPPER BOUND

24+

221

21 r—

EFFECTIVE CONDUCTIVITY K*

HASHIN LOWER BOUND

20+

I

FIG. 4. Bounds on the effective conducitivity &* as a function
of the geometrical factor Iy. ky=1, ky=5; vlzvzté.
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FIG. 5. Bounds on the effective conductivity 2* as a function
of the geometrical factor I;. ky=1, ky=3; v,=v,=3.

and
11b=(vlvz/2)(v1-_-vz/2). (2.7

Further we find that the values of 2* corresponding to

these are

k::kﬁ”?/(ﬁ +%;> (2.8)
and

kg‘:k2+vl/(k1i—kz+§v]:—2> (2.9

respectively., These are precisely the Hashin bounds
for eifective conductivity which Hashin has shown are
realizable. This was first shown by Hashin in the axial
shear modulus case' and was later pointed out by him
to be valid for the conductivity case.? It turns out that
for k, >k, k¥ is the lower bound and k¥ the upper; for
ky <k, k¥ is the upper bound and k¥ the lower. Hence
I, and I}, are not only bounds on J; but are also realiz-
able, In Fig. 2 we show the permitted range of /; for all
volume fraction ratios.

Another feature of the bounds can be appreciated by
considering Figs. 3—6 successively. Here we have
taken v, =v,=% and consider ratios k,/k equal to 15, 5,
3 and 1.5. We see that the bounds narrow progressively
at a rate much faster than that at which & approaches
k¥. In fact using I’'Hospital’s rule we easily show that

lim Sulky, kg, vy, ) = kyky/fy(Rg, Ry, vy, 1)

kX - kf =0

kg-ky
for all values of vy and .

Referring to any of the figures we see how a knowl-
edge of k* (say from measurement) for particular val-
ues of k; and %, tells us the possible range of 1, for a
material of the structure for which this £* is known,
e.g., from Fig. 3 we see that if for a fifty-fifty mix-
ture of materials with 2, =1 and k,=15 the effective con-
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ductivity is 4, then I; must be between -, 0167 and
.0199. This range of I; represents nearly 60% of the
total range of ;. For % =1 and k,=1.5 with #*=1,225
we find that 7; must lie between 0 and . 00625. This range
of I, represents slightly less than 10% of the total range
of I; were nothing known about £*, and hence we see how
a rather precise determination of I, is possible if k*

can be determined for ratios of #,/k close to 1. Now
for ratios of k,/k, close to 1 the entire range between
k* and k¥ is small, e.g., for %,/k; =1.5 we find that

(kX — E¥)/k* is less than 0.5%, so extremely accurate
measurement techniques would be necessary to deter-
mine I; precisely. However, if we can exactly (or ap-
proximately) compute &* for a given structure we could
exactly {(or approximately) compute I, by considering
the case of &, ~ .

Prager'! first posed and presented a solution to the
problem of determining bounds on 2* for one set of
phase conductivities when k£* is known for some other
set of phase conductivities. His results, obtained from
classical variational principles (his Egs. 27 and 28),
are written for a statistically isotropic three~dimen-
sional two-phase material but the development is valid
line by line also for the case under consideration here
and the final results are unchanged. We see now how
Prager’s problem for the fiber reinforced case can be
handled using the present bounds. The known value of
k* for one set of k,, ky is used to find limits on I;. These
limits on I are then used to find bounds on k* for a dif-
ferent set of k,, k. This technique will always produce
bounds better than those of Hashin. In some instances
Prager’s solution gives narrower bounds, in some in-
stances those obtained from the present technique are
narrower, We give two illustrations. Consider a fifty-
fifty mixture for which it is known that %z* = 2. 2 when
k=1 and k,=5. Then for & =1 and k,=3 the various

HASHIN UPPER 8OUND
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I i | i 1 I L
-.03 -02  -0i 0] o]} 02 .03

I

FIG. 6. Bounds on the effective conductivity 2* as a function
of the geometrical factor I;. ky=1, ky=1.5; vi=vz=%.
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FIG. 7. Bounds on the effective conductivity 2* as a function
of the geometrical factor I). ky=5, ky=1; vy=4, v,=1.

bounds obtained are as follows:

1.6667 < k* < 1, 8000,
Prager: 1,6875 < k* < 1, 7500,
Present work: 1. 6875 < k* <1,7647,

Hashin:

The Prager bounds are slightly better than those ob-
tained by the present method. Consider now a fifty-fifty
mixture for which it is known that 2* =1, 225 when & =1
and k,=1.5. Then for & =1 and k,=5 the various bounds
obtained are as follows:

2. 000 < k* < 2,500,
2,059 < b* < 2,442,
2,143 < k* < 2, 375,

Hashin:
Prager:
Present work:

The bounds obtained by the present method are some-
what better than those obtained from Prager’s results,

When the effective conductivity is known for some
ratio k,/k; greater than 1 and sought for a different
ratio %,/k less than 1 the Prager equations give bounds
worse than those of Hashin. However, before the Prager
equations are applied the Keller theorem can be used to
invert the ratio for which effective conductivity is known,
so a fair comparison is as above, i.e., both ratios %,/
ky, either greater than 1 (or both less than 1). An inter-
change of k2, and %, in the bounds found here produces a
visually different set of bounds, but no new information.
(Compare Fig. 7 with Fig. 1). This is to be expected
since it was the Keller theorem which relates k*(k;, k,)
to k*(k,, k) that permitted the construction of the lower
bounds in the first place.

Returning now to the Silnutzer bounds (1.1) we see
that by applying the present approach to the left hand
side we can obtain upper and lower bounds in terms of
J. But since J is not expressible in terms of a single
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geometric factor, but rather in terms of two, J; and J,,
these bounds are of limited usefulness. Knowledge of
k* does not offer bounds on either J; or J, separately.

3. CLOSURE

Only the lower bounds that have been developed here
in terms of I; are new; the upper bounds are those of
Silnutzer rewritten in terms of the purely geometrical
part of 1. The attainment of this lower bound adds con-
siderably to the usefulness of the Silnutzer result. Con-
sider Fig. 1. Were only the upper bound known, then
we would only be able to place a lower limit on /; (where
the bound takes on the value of the Hashin lower bound),
which we could not even say was realizable since it was
not known whether the upper bound is the best possible
in terms of ;. We could only say that the upper limit on
I is at least as high as the crossing point of the upper
bound with the Hashin upper bound. The addition of the
lower bound and the fact of its crossing at the Hashin
bounds (which are realizable) permits us to place pre-
cise limits on I; which are then realizable,

We do not know whether the bounds presented above
are the best possible in terms of I;, but it is not un-
likely that they are because of the confluence of these
bounds and those of Hashin at the extreme permissible
values of ;. In order to determine if indeed these bounds
are best it would be necessary, given %y, &, and vy, to
construct a set of models of two-phase materials for
which 2* can be exactly calculated and all of which have
the same value of [;, but different values of #*—and then
to determine if the range between the bounds for each
value of ; is spanned. The author is currently construct-
ing such a set of models.

Another unanswered question is the relationship be-
tween [ and J. If the bounds in terms of I are not best,
does J contain information that permits narrowing the
bounds for a specific structure? One indication that this
is probably not so is as follows: For a completely sym-
metric material, i.e., one for which an interchange of
%y and k, produces the same material (v, =v,=35 of
course) we see from Keller’s theorem (2. 1) that

o =Ry .

(This was pointed out by Mendelson.®) In terms of the
correlation function P(r, s) in the integrand of (1.2),
symmetry implies that P(r, s) =0 and hence I; = 0. Then
the bounds (2.5) reduce to

[klkz/%(kl + kz)][l - %(kl - kz)/ (kl + kg)z]-l

(3.1

< k¥ < (k)1 = 3(ky — Ry)/ (By + Ry)2) (3.2

These are the same bounds as are obtained from the
results of Beran and Silnutzer® when both of their cell
shapes are taken to be the same, but their lower bound
is obtained by placing the appropriate restrictions on
the form of J, and not on /.

This leads to the more general question of the effi-
ciency of three-point correlation functions in character-
izing two-phase materials as to their effective conduc-
tivity. We have seen that the simple statement that a
fiber reinforced material is symmetric completely de-
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termines its effective conductivity. But bounds obtained
through the three-point correlation functions are often
quite wide (Fig. 3 with I; =0), Symmetry implies [; =0;
I, =0 does not necessarily imply symmetry. Hence the
contribution of the higher order correlation functions
must be very significant.

Prager’s method characterizes a two-phase material
by its effective conductivity for any given constituent
conductivities. The present work can be interpreted as
doing the same thing since, using the technique de-
scribed at the end of the last section, we could have
explicity written

GL (kl, kz: VU1, klo, kzoy k o*) < k*
< Gylky, kg, 11, By, kyy k%)

where the superscript ° refers to the constituent con-
ductivities for which effective conductivity is known.

G, and Gy are the appropriate functions, /; will not ap-
pear at all in the final result. As has been shown,
neither Prager’s method nor the present method consis-
tently gives better results (narrower bounds) for all
ratios % /k, and k°/k;. Hence it is to be expected that

a better solution to the problem posed by Prager exists
than either his solution or that obtained by the present
method.

Hori and Yonezawa!? have recently rederived the
bounds (1.1) upon which the present work is based. In
place of the nondimensional geometrical factor /; which
we used in writing the right hand side of Silnutzer’s
bounds, they introduce a coefficient A® related to I, as
follows

I =A®0,(0 = vy).
They also show that a perturbation expansion for the
case k,~k gives

k* = (l)(1 = 5k /(). (3.3

This is simply the right hand side of (1.1) with I (or )
taken as 0. However, referring to Fig. 2 we see that
I; =0 (and hence I=0) is not possible for all volume

fractions; specifically it is not possible for v, <3 or v, > £,

Hence we are lead to believe that (3. 3) is not the cor-
rect perturbation solution. Indeed if we write

ky=Fk (1 +0),

then expansion of the Hashin bounds (2. 8) and (2.9) in
terms of 6 gives

B/ Ry =1 41,0 = 50,0,0% + (1) 50,0,5° + - . . (3.4
(3.5)

A similar expansion of the perturbation solution (3. 3)
gives

kE/Ry =1+0,0 — 300,82+ (v, + 1)00,0° + -+

F¥/by =1 40,0« 3010,6% + (20,)5010,6° + + + », (3.6)

It is only in the third-order term that the expansions
differ and we see that indeed, without any reference to
the present work, the perturbation solution falls outside
of the Hashin bounds for v; < § or v; > %, It seems neces-
sary then to question the validity of even considering a
perturbation solution other than that obtained by taking
only the terms of the Hashin bounds (up to the second-
order) for which the bounds coincide. A higher order ap-
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proximation, even if the coefficient of the third-order
term were to fall between the coefficients in the expan-
sions of the Hashin bounds, can only point to one partic-
ular value for 2*, not unique to third-order accuracy,
since we expect that all #*’s between the Hashin bounds
are realizable. Indeed the method proposed in the last
section for calculating I; for a particular structure for
which we know how to calculate 2* simply requires cal-
culating the third-order coefficient in a power series
expansion in 8, Then since the bounds not only approach
each other for &, ~ %, but also approach a straight line
(see Fig. 6), the required /, is simply obtained by pro-
portions as follows

L-h, kx=kf¥ C*-C,

L,-1;, kE-k¥ C,-C,’

where C* indicates the third-order coefficient of the
material being considered and C, and C, are the third-
order coefficients in (3.4) and (3.5). This reduces to

11 =C*- 'UIUZZ/ZD

Hence, the bounds (2.5) could be rewritten in terms of
C*, the coefficient of the third-order term in a power
series expansion of 2* in 6. Now the perturbation solu-
tion (3. 3) is the analog of the well-known three-dimen-
sional perturbation solution [in this case the % in (3. 3)
becomes 3], and the processes of arriving at these re-
sults are identical, We must then question the validity
of that perturbation solution also to terms of higher or-
der than those which coincide in the bounds which Hashin
and Shtrikmant® have derived for the three-dimensional
case, and which they also show are realizable.

We close by pointing out that the technique developed
here is valid only for the two-dimensional problem of
fiber reinforced materials (and not for the more general
three-dimensional case), since it is only for this case
that Keller’s theorem is valid. The extension of Keller’s
theorem to the three-dimensional case has been consi-
dered by this author. !4
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Long-wavelength normal mode vibrations of infinite, ionic

crystal lattices. Il
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In an earlier paper [J. Math. Phys. 16, 1156 (1975)] we presented a mathematical theory of the long-
wavelength normal mode vibrations of infinite crystal lattices whose particles interact with Coulomb forces.
(Retardation was neglected.) The paper showed how the eigenvalues and eigenvectors of the complete long-
wavelength dynamical matrix are related to the eigenvalues and eigenvectors of the dynamical matrix
obtained by neglecting the contribution of the macroscopic electric field. Rules were obtained for
determining whether or not the various branches of the dispersion relations for a lattice approach definite
frequencies in the long-wavelength limit. The paper was restricted to the rigid ion approximation. In this
paper we show that the above treatment can be easily extended to include lattices with polarizable and

deformable atoms.

1. INTRODUCTION

In a recent paper,! we presented a mathematical
theory of the long-wavelength normal mode vibrations of
infinite crystal lattices with Coulomb interactions when
retardation is neglected. The paper was concerned with
showing how eigenvalues and eigenvectors of the com~
plete long-wavelength dynamical matrix C%(¢) are re-
lated to those of the long-wavelength dynamical matrix
A where the macroscopic electric field contribution is
neglected. Further, theorems were developed for deter-
mining which dispersion relations for such lattices ap-
proach definite frequencies in the long-wavelength
limit,

Our treatment in Ref. 1 was limited to the case of the
rigid ion model. The purpose of this paper is to point
out that the mathematical approach and substantive re-
sults of Ref. 1 also apply to lattices with polarizable and
deformable atoms. In particular we show that the mathe-
matical approach and results of Ref. 1 apply with only
slight modifications to the phenomenological model for
lattices with polarizable and deformable atoms as
presented in Sec, VI. 5 of Maradudin, Montroll, Weiss,
and Ipatova.?

A logical step by step development of the extension of
our mathematical treatment to the case of polarizable,
deformable atoms would be largely an unnecessary re-
petition of the rather lengthy presentation of Ref. 1,
Thus, we merely outline to the reader already familiar
with Ref. 1 how that treatment can be extended. The
notation and definitions in this article are consistent
with those of Ref. 1. Lemmas and theorems of that ref-
erence are referred to by number. Whenever an equa-
tion from Ref. 1 is referred to, the equation number
will be followed by the Roman numeral I.

Il. THE PHENOMENOLOGICAL THEORY OF
CRYSTALS WITH POLARIZABLE AND
DEFORMABLE ATOMS

We list those results from Sec. VI.5 of Ref. 2 which
are applicable to this work. Some changes in notation
are made in order to make equations conform to the
notation of Ref. 1. In particular all quantities are made
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dimensionless, the names of the f particles in a primi-
tive cell are denoted by Greek letters and Cartesian co-
ordinates are denoted by Latin letters.

According to the phenomenological theory, the long-
wavelength normal mode vibrations of lattices with
polarizable, deformable atoms (with retardation
neglected) are governed by the eigenvalue equation

CUHWO(B) = [A + [472% /v 6, ($)IN' ($) 1 ¥°()
= A(@)¥°($). (1)

The above equation replaces Eq. (3I). Most of the above
symbols are defined in Sec. II of Ref. 1. The new quan-
tities are ¢, (@) and N’(¢). The quantity ¢, *(¢) is the
the longitudinal, optical frequency dielectric constant.
It is given by

() =1+4nd'x"é, (2)

where the 3 X3 matrix X with elements X;;” is a sus-
ceptibility relating the macroscopic electric field to the
electrostatic polarization of the lattice. The 3fX3f

matrix N’(¢) consists of 3x3 submatrices N, (¢)
defined by

N, (@)=1, L(d),/ (1) /2, (3)

The new quantities f, are 3 X3 matrices with elements
fi;(v). The symbol £, represents the (dimensionless)
transverse effective charge of the vth atom in a primi-
tive cell. In the rigid ion model f,= Z I, where I is the
3% 3 identity matrix, and N’($) reduces to the matrix
N(@) of Ref. 1.

We assume that 4;, X”, and f, are real quantities.
Thus, we make no distinction between their adjoints ¥
and their transposes ®.

Some important properties of X* and {, are given in
Ref. 2. The susceptibility X* is symmetric; that is

X*=X" (4)

Another property is charge neutrality of the primitive
cell, expressed by

25f,=0. (5)
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Let the point group of the space group of the lattice be
G and let R G where R is a 33, real, orthogonal
matrix. Designate by F,(v,R) the type of particle into
which a particle of type v is brought by a space group
operation involving R. Then,

fFO(v,R):vat (6)
and
x*=RX"R!. (7

The following relations, which can be immediately
derived from Eq. (6), are useful in extending the treat-
ment of Ref. 1 io polarizable, deformable ions: Let R
€ G, then

Zf 1 b, =RE (£, £, )R, (8)

and

(24,8, 1) =R( fo Lt/ 1) R, (9)

In Ref. 2, expressions are derived for the macroscop-
ic electric field, polarization, and electric displace-
ment field amplitudes produced by a normal mode vibra-
tion ¥ propagating in the direction @. These expressions
which replace Eqs. (25I), (291), (30I), and (31I) are re-
written below in the dimensionless form employed in
Ref. 1:

~[416/v 6, ~(®)IL(S) D8,/ 111>, , (10)
P ={a*/v,)1-[41a%/v,e,(9)] x""L(&)}
<D,/ 1%, an)

and
D= (4na*/v,) Y23 (f/ 20,

- [4na®/v eL”(¢>)](I + 47rx‘°)L(¢) €&/ w23, (12)

Next consider lattices for which the point group G be-
longs to the regular (cubic) system. In the remainder of
this article we shall for the sake of brevity refer to such
lattices as cubic lattices. For such lattices many of the
above expressions reduce to simpler forms.

If a lattice is cubic (in the above sense), then Eq. (7)
implies that
X*=x"I, (13)

where x* is a number. From Eq. (2), it follows that ¢;,~

assumes the qb independent value
€L°°:1+4ﬂ'xw_ (14)

Further, we see from Egs. (8) and (9) that for cubic
lattices

%) ££,5/ 1, =al, (15)
where o is a number given by

a=3Tr szufu‘/ i, (16)
Finally note that Eq. (12) reduces to

D= (4na®/v,)T( ¢)£4 (f/ur/),, amn

where T() is defined by Eq. (181).
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11l. A RESTRICTION ON THE TYPES OF LATTICES
TO BE CONSIDERED

In this paper, we make one restriction on the types
of three-dimensional, ionic lattices to be analyzed. We
confine our treatment to lattices for which the real,
Hermitian matrix 5 £,/ 4, has an inverse. This re-
striction is equivalent to assuming that

t
det DLl 4.

v

(18)

The principal values of 3£ £,/ 1, must be nonnegative.
Thus, our restriction is also equivalent to insisting that
all of the principal values are positive definite.

The physical meaning of the above limitation is clear.
Imagine that we work with the principle axes of 3 £,/
u, as coordinate axes. It is easily shown that the vanish-
ing of the ith principal value of 3,£.f !/ u, implies that
only zeros occur in the jth row of f,. But referring to
Eq. (10), we see that then no set of long-wavelength
particle displacements in the direction of the ith princi-
pal axis will result in a macroscopic electric field. In
effect, we have a three-dimensional lattice which exhibits
ionic properties in fewer than three dimensions. An
analysis of such lattices would be interesting., However,
we exclude such lattices from our present treatment.

IvV. EXTENSION OF THE ANALYSIS TO
POLARIZABLE, DEFORMABLE ATOMS
(PART I}

The starting point for our treatment of ionic lattices
in Ref. 1 was to show that the matrix N(@) in Eq. (31)
has the (3 f- 1)-fold degenerate eigenvalue zero and
only one nonvanishing eigenvalue. This fact is also true
for the matrix N'(¢) in Eq. (1). By direct calculation,
we find that the normalized vector \Il’"(cp) redefined by

¥,17(8) = [Tr D1, L), / 1,17/ 20, /428, (19)
is an eigenvector of N’(¢) corresponding to the
eigenvalue

Ayn(@)="Tr Z)ftqu)f/u

=Tr[2 L, 1,)L()]. (20)

[If we set f,= Z I, we regain the original definition of
¥'n(@) given in Ref. 1.] By working with the normal co-
ordinates of },£f ¢/ 1 one can easily show that the re-
striction stipulated in Sec. III [Eq. (18)] is the neces-
sary and sufficient condition that the factor of normaliza-
tion in Eq. (19) be finite and that A,/"(#)#0 for all §.

In general A,*"(¢) is ¢-dependent. However, Eqs, (15)
and (16) show that in the case of cubic lattices (lattices
whose point groups belong to the regular system) A"

is ¢-independent and has the value given by

A n=LiTr Z)ff‘/u) (21)

A direct calculation also shows that any vector or-
thogonal to ¥'*(@) is an eigenvector of N’(¢) correspond-
ing to the eigenvalue zero. Since N’(¢) is Hermitian,
this eigenvalue is (3f - 1)-fold degenerate. Further, from
the theorem that eigenvectors of Hermitian matrices are
orthogonal if they correspond to different eigenvalues,
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it follows that the conditions N/(¢)¥ =0 and L(¢)
x3 £, 2% =0 are equivalent,

The spaces and subspaces sz(total), sz_l(ANzo;ci),
Sy(normal), and S, ;(zero) are now defined in complete
analogy with their definitions in Ref. 1. The subspace
S;(normal) consists of vectors ¥ of the form

¥, = lu, %y, (22)

where 2#0 is a number and ¢ is an arbitrary three-
dimensional vector. The restriction stipulated in Sec.
III insures that ¥ 0 if $+#0 and, therefore, that S,
(normal) actually is three-dimensional,

In extending the work of Ref. 1 to include polarizable,
deformable atoms, Lemmas I and II of Ref. 1 are to be
left unchanged. Lemma III of Ref. 1 remains essentially
the same except that now the branch of the dispersion
relations whose long-wavelength eigenvectors are paral-
lel to ¥'"(¢) approaches a frequency corresponding to

A= A2+ [4na3/vﬂeL°°(<£)]Tr 2 4L,/ 1,

as ¢ approaches zero. In general this frequency is qS-
dependent. However, since Lemma III requires that A
have at least a three-fold degenerate eigenvalue (non-
acoustic}, it is actually only applicable to cubic lattices
(barring accidental degeneracies). For such lattices
Egs. (14)—(16) show that

A=A+ (41a®/v eL°°)3 Tr 2, Vfufv Y,
which is ¢—1ndependent.

A necessary and sufficient condition that a single
given branch of the dispersion relations approaches a
definite frequency (independent of d3) in the long-wave-
length limit can be determined by the same method ap-
plied to the rigid ion model in an earlier paper.3® We
find that a necessary and sufficient condition that 2° in
Eq. (1) be independent of @ is that for all ¢, the ¥°(¢)
for the branch obey either the equation

N/ ($)¥%() =
or the equation
Za/ w1 ()
= [47/e, (X LO) €/ 1,1/?)

X¥0($) + [L()/ e, (B DA/ 1} 28,2 $).
Equation (24) is equivalent toKthe equation
AL, w2 - [4n/e, (@)X
K L) DL,/ 2= h()$, (25)

(23)

where h(qS) is an arbitrary number.*

Referring to Egs. (10) and (12), we see that a branch
will approach a definite frequency if and only if, for all
¢, in the long-wavelength limit either E=0 orD =0.
The same result was obtained in Ref. 1.

On the other hand, Lemma IV of Ref. 1 must be modi-
fied. The condition that ¥°(¢) e 8352y =0; ) stated in
the lemma must be replaced by the condition that Eq.
(24) be obeyed.
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For cubic lattices, Egs.
(24) reduces to

T(®) 2 ¢,/ 2 /2 ($) =0, (26)

(13) and (14) show that Eq.

where T(@) is defined by Eq. (18I). Thus, for lattices
whose point groups belong to the regular system, it is
convenient to introduce a matrix analogous to the matrix
M($) defined in Ref. 1 by Eq. (171). This is the
Hermitian matrix M’(®) given by

M (D)=L !/ 1T,/ 1, /2. 27

Using Eqgs. (15) and (16), we find that, for cubic lat-
tices, M’($) has the two-fold degenerate eigenvalue

AM:?}TI‘ Efuf,,t/ﬂy), (28)
with corresponding normalized eigenvectors of the form
¥, = (Te 208 £ /u, )2 b )n(), (29)

where é*n(é): 0. Equation (18) insures that x,#0 and
that the normalization factor in Eq. (29) is finite. Any
vector orthogonal to a vector of the form given by Eq.
(29) is also an eigenvector of M’(q@) corresponding to
the (3f - 2)-fold degenerate eigenvalue zero. The con-
ditions M’ (@) =0 and T(¢)Y p, ¥, =0 are equivalent,

We now define the subspaces S,,,(A, = 0;¢) and S,(,,
sTry, 1 'lfwfw‘,zp) in complete analogy with the cor-

respondmg subspaces introduced in Ref. 1, i.e
Saealhy = 0:8) and S0, =2 2,2/ 11 ;).

It is important to emphasize that the operator M/()
and the subspaces S;, (A, =0; $) and S,(0, =3 Try, 1,
=5Try, p, 1.5 :®) are to be employed only when deal-
ing Wlth cubic lattlces.

Lemma V of Ref. 1 remains unchanged when the work
is extended to polarizable, deformable atoms.

In Sec. IV of Ref. 1 an alternative form for writing
C%¢) was introduced. In dealing with polarizable, de-
formable atoms, we find this alternative form useful
only when dealing with cubic lattices. For such lattices,
we can write

CAP) = A - (471a%/ v, e, M (), (30)
where A’ is the d;—independent matrix defined by
A=A+ (41a%/ v e, )N (6) + M ()] (31)

Using Eqs. (5) and (6) and the same general approach
used in Sec. IV of Ref. 1, we find that for cubic lattices
any properties of A derived by group theoretical methods
apply with equal validity to A’.°

Sec. V of Ref. 1 defines the term accidental degener-
acy. No modification of this section is required.

V. EXTENSION OF THE ANALYSIS TO
POLARIZABLE, DEFORMABLE ATOMS
(PART U)

Equations (351)—(411) in Sec. VI of Ref. 1 list pro-
jection operators to various subspaces of S3f(total).
These expressions must be generalized when the work
is extended to include lattices with polarizable, de-
formable atoms. The new expressions are listed be-
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low (the notation conforming with that used in Ref. 1):

P($) = (Tr 2 £, /L(N,/ )" N (@), (32)
P(S,,.,(Ay=0;8))= 1 =P [¥7(8)], (33)
P(S;(acoustic)) =(2 TN T ol ¢ (34)
P, (S,(normal)) =

L (5 fufut M (35)
Tk (E Ky ) w7z

and

P(S;;.5(zero)) =1 - P(S,(normal)). (36)

The following additional projection operators are em-
ployed when dealing with cubic lattices (lattices for
which G belongs to the regular system):

P(Sy, .00 = 0;0))= 1 = G Tr 248,/ 1) "M/ ($), (37)
and

P(S, (0 =5 Tr D18, 1,:6))

= (3 Tr 288,/ 1) M (9), (38)

The remaining development in Sec. VI requires little
modification except in the details of the proofs of the
lemmas. With the aid of Eq. (27), we find that Lemmas
VI and VII remain true provided that it is understood
that they apply only to cubic lattices and that the symbol
Sp(Ay =%, 2%/ 1,>9) in Lemma VII is replaced by S,(»,
=3Tr3, 1, ':¢). The statements of Lemmas VII
through XIII require no modification. Their proofs are
similar to those given for the point ion case in Ref. 1.
Equation (6) is helpful in overcoming the difficulty that
the effective charges are now matrices instead of
numbers, ¢

The subspaces S(polar) and S(nonpolar) are defined
exactly as in Ref. 1.

Lemma XIV of Ref. 1 should be replaced by the fol-
lowing more general statement: Consider a branch of
the dispersion relations all of whose long-wavelength
eigenvectors ¥°(@) lie in S(polar). If the ¥°(d) obey Eq.
(24) for each ¢, then the ¥°(¢) span a subspace of
S,/{total} which is exactly three-dimensional.”

Lemma XV requires no modification. A generaliza-
tion of Lemma XVI which holds true for lattices with
polarizable and deformable atoms is the following: Con-
sider a branch of the dispersion relations all of whose
eigenvectors ¥%(@) lie in S(polar). A necessary and suf-
ficient condition that the branch approach a definite fre-
quency in the long-wavelength limit is that either the
V() lie in Sy, (Ay=0;¢) for all é or that the ¥°($)
satisfy Eq. (24) for all ¢. Further, for no ¢ does ¥°(¢)
both lie in S, (X, = 0:$) and satisty Eq. (24).

Some comments concerning the proof of the above
statement are given in a footnote.®

All of the work in Sec. VII of Ref. 1 preceding the
proof of Lemma XVII is based upon general symmetry
arguments and not upon any particular model for a lat-
tice. Thus, it applies to lattices with polarizable and de-
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formable atoms as well as to the rigid ion model, The
statements of Lemmas XVII and XVIII require no modifi-
cation although some minor changes are required in

the proof of Lemma XVII,°®

We then find that Theorem I of Ref. 1 is correct as
stated for the case of polarizable, deformable atoms.
Egs. (791) and (801}, which are useful results for making
calculations as well as decisive steps in the proof of
Theorem I require no modification. An important step
in the proof of Eq. (79I) for the point ion model was
provided by Eqs. (741) and (751). These equations must
be replaced by the following:

84
Zlfu‘llvrui:CTr(u) 612 ) (39)
T
6,3
where
e, T =20 (£,¥,T43),, (40)

rT

In order to avoid confusion between effective charges
and expansion coefficients, replace f, in Eq. ('761) with
the symbol ;. Eq. (771} is then replaced by the more
general equation

¢,
20 (€ e, T(w)/ 1, P, et (¢, | (1) =0, (a1)
s

Having made the above generalizations, the reader
familiar with Ref. 1 should have no difficulty in com-
pleting the proof of Theorem I for polarizable, deform-
able atoms using the same arguments as those in Sec.
VII of Ref, 1.

In Sec. IX of Ref. 1 a method is developed for deter-
mining the long-wavelength eigenvectors for a branch
of the dispersion relations of a cubic lattice in the point
ion approximation once an eigenvector for the branch
is determined for just one value of ¢. We find that the
method remains unchanged for the case of polarizable
and deformable atoms. Only some of the details of the
proof of the method need be changed. [Here we take the
opportunity to point out that a typographical error oc-
curs in Eq. (86I). In that equation QR) should be re-
placed with Q' (R). ]

Theorem II also remains true as stated for the case
of polarizable, deformable ions. Equations (98I), (991),
(1101), and (1111) also remain true. In the proof of Eq.
(98I}, Eqs. (95I) and (96I) are to be replaced by

3,
g_fu‘pv(w)izcr‘w) bl (42)
0
where
e, =25 (8,0, 1) (43)
VT

In the proof of Eq. (1101}, replace Eqgs. (103I) and (1041)
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with
1
DAY, W=t @ () [ -4 ], (44)
vT T
0
where
e(M) =% Z[A,8,7), +it,¥,7),]. (45)
T

Equation (105I), which defines the constant C appearing
in Egs. (110I) and (111I), should be replaced with

C=23"c(1)/nr2, (46)

Vi. CONCLUDING REMARKS. POLARITON MODES

We have shown that the treatment of Ref. 1 can be
extended to lattices with polarizable and deformable
atoms with no changes in such final results as Theorems
I and II, the physical criterion that a branch of the dis-
persion relations approach a definite frequency (either
E or D vanish), and the general forms of long-wave-
length eigenvectors. Only small modifications in mathe-
matical details are required.

It is important to emphasize that retardation is
neglected in this work. The results therefore do not
apply to the long-wavelength behavior of polariton
modes, In fact, our results correspond to those ob-
tained by letting the propagation vector go to infinite
magnitude in treatments of long-wavelength polaritons
(with spacial dispersion neglected).

The above statement can be simply illustrated by
considering polaritons in an infinite crystal of rigid
ions. In terms of the notation used in Ref. 1, such
long-wavelength polariton modes are governed by the
equation

20(¢) = A¥°(9) + (47a®/v,)
X (N(6) - M(¢)/{lad?/a,Me)] - 1NE(), (47)

where a,=e?/mc?, ¢ is the speed of light, and e, m,
and a are the electronic charge, a typical mass, and

a typical cell dimension, respectively.® If we let ¢
approach infinity and assume A(¢) approaches a finite
value (thus ignoring modes which become purely elec-
tromagnetic), Eq. (47) reduces to Eq. (3I) of Ref. 1.
However, consider the limit of the above equation as ¢
goes to zero. If A(¢) does not go to zero, Eq. (47)
becomes

AU = {A+ (41a%/v, IN(P) +M(¢)]}‘1’0=A"I’°. (48)

Thus, each branch of the dispersion relations for the
polariton modes either approaches zero or approaches
some other eigenvalue of the ¢-independent matrix A’.
Therefore, all such branches approach definite fre-
quencies as ¢ approaches zero, regardless of the lat-
tice symmetry.

13, A. Davies and C. L. Mainville, J, Math. Phys. 16, 1156
(1975).
’A.A. Maradudin, E.W. Montroll, G, H. Weiss, and I P.
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Ipatova, Theory of Lattice Dynamics in the Havmonic Approx-
imation (Academic, New York and London, 1971).
3J.A. Davies, J. Math., Phys. 13, 1207 (1972). See Sec. IX.
“In both the derivation of the preceding result and of the corre-
sponding result for rigid ions in Ref. 3 (Lemma IV of Ref. 1),
we assume initially that \1,0(3, is real. Equations (23) and (24)
are derived from perturbation theory using this assumption.
However, the final lemma is correct even if \Il°(¢) is com-~
plex; that is, W(@) =R V(&) +zﬂ\It°($ The operator C%¢) is
real and Hermitian. Thus, if ¥YP) is an eigenvector of

CY%@) corresponding to the eigenvalue 7Y, then R¥%$) and
ﬂ\lf"(qﬁ) are separately eigenvectors of C°($) corresponding
to the same eigenvalue. Thus, a necessary and sufficient
condition that the branch approach a definite frequency is
that the requirement of the lemma holds separately for
R¥YP) and ¢ ¥}, Further, if \It°(¢) obeys Eq. (23) or

(24), then both R ¥%$) andﬂ\l’ow) will obey the same equa-
tion. Thus, the condition that ¥(&) obey either Eq. (23) or
(24) is g sufficient condition. It is also a necegsary COndlthI‘l
IR \Ilo(qb) and ¢ ¥YP) are linearly dependent, then ¥/ is
just a complex constant times a real vector and the proof of
the lemma is the same as for real ¥U@). It R ¥Y$) and
y\p‘)(da) are linearly independent, then k” is at least twofold
degenerate. For general directions of ¢ and barring acci-
dental degeneracies, C (¢) can have such a degeneracy only
if the degeneracy is required by Lemmas I, II, or III. In

any of these cases, both R ¥%) andﬂ‘l’ﬂ(qﬁ) obey Eq. (23).
Thus, ¥ ($) must obey Eq. (23).
*An important step in showing that A and A’ have the same
symmetry properties is to show that T(0,R) as defined by

Eq. (13 commutes with N'(¢) + M'($), Using Egs. (3) and

(27), we see that [N'($) + M'($) ], = £ ", (4 i4)"1/ 2, Then making
extensive use of Eq. (6), we obtain the result

1T, RIN(G) + M) T},

=aRs [k, Fon , RIEEE, (1 p,)"1/2

:Rf‘F?,i(n,R)fv(“x uv)-“2

:fktRfu(ux ”v)-l/z

= fxtho(v,R)R(“k B! rz

=EI66 B, Fy(v, R IRk, py)=1/2

={IN() + M'"($)1T(0, R)},,,
fL,emma VIII follows directly from Egs. (5), (34), and (35),
and the procedure used in Ref, 1. An important step in the
proof of Lemma IX is showing that T(0,R) and P[Sy s(zero)]
commute, This statement will be ture if T(0,R) and

P[S4(normal)] commute. Using Egs. (13D, (6), (9), and (35)
we obtain

{T(0, R PIS,(normal) I},
=TaR8 I, F o, RYIGE Qufuff /) 1 (Hy p)°1/2
= Ripkte, o fufo’ /1) M, (1, )12
= £t Cufufy! /1) RE (e 11)71/2
= £ Cufuly! /80 r 0, Ry )71/ 2
= af Qufula! /i) M )~V *RE(N, F (v, R))
={P[S;(normal) IT(0, R},

The generalization of Lemma XIV is easily proved by
writing out Eq. (25) in terms of a set of Cartesian coordinates
relative to which y* is diagonal. One can then easily show
that the vectors \If°(¢(”) TS | and ¥%(3) are linearly
independent, where ¢ = (51,642,569 -

8The proof is essentially the same as that given in Appendix B
of Ref. 1. The chief problem is to rederive Eq. (B7I}. Once
this is done, the proof differs from that in Ref. 1 only in
minor detalls Equation (B7I) is rederived as follows.
Suppose that the branch ¥%$®) obeys Eq. (23) and ¥%¢®)
obeys Eq. (24). Then A¥%$“) =A'9%(¢$ %)) and

(A + (4ra?/ (v € L (PN N (89 1w $P)
:)\o\l,o(é;(b))_
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It follows that
\I,UT($(G)) N’(ti;(b’) W0($(b)) =0
or equivalently
Q\Atfnp‘ -1/2%g 0($h))]YL($(b))Eva#v-1/2\p (&(b)) =0.

wo(le) obeys the equation F,f "t 2, °(¢‘“’) kg(d)")) where
k=0. Using Eq. (25) and the identity L($)x~L($) ={le ;=(¢)
—11/4r}1(¢), we find that

L($("))Zafv#u'”2‘l’y°($m) =€L°($“’))h($(b))$(b) ,

where R(¢®) = 0. Equation (BTI) follows immediately.
In order to prove Lemma XVII, use Eq. (6) to show that
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{P*PIS;(normal) I},
= fnt“n-“ 2(n /8 (ERX(M)*(R)R) (wawfw’/#m)"ﬂ;%"”-

The above equation replaces Eq. (66]). The above expression
vanishes if none of x, ¥, or z belongs to D #_ To show that
the above expressmn does not vanish if any of X, y,0rz
belong to D'® | calculate Tr}‘K{P“P[Ss(normaI) ]},‘ With the
aid of Eq. (8), we find that TrE“{P P(S3(normal)‘f}
= (n,/8) TrSax W *(R)R. Equations (550, (570, (59T, and

(641) show that thls quantity cannot vanish if any of x, y,
or z belong to D™,

YEquation (47) is obtalned from Eq. (6.6.13) of Ref. 2.
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Spectrum generating algebras and Lie groups in classical

mechanics
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We give a general framework for a geometric foundation of time dependent classical mechanics. The theory
is based on the concept of evolution space which is phase space extended by time. Lie algebras of constants
of motion which may possess explicit time dependence are constructed, and general conditions for getting
global Lie group actions from infinitesimal actions are derived. In a natural way these groups map
solutions of the Hamiltonian equations of motion onto one another and act on the orbit space via
symplectic transformations. The theory is applied to the nonrelativistic free particle, the harmonic and
damped oscillator, nonstationary quadratic systems, and to the motion of a particle in constant

electromagnetic fields.

I. INTRODUCTION

A lot of structures of classical mechanics are moti-
vated by analogies between quantum theory and classi-
cal dynamics. The classification of elementary parti-
cles and quantum mechanical states of a physical prob-
lem is essentially based on group theoretical meth-
ods, -7 In this scheme an elementary relativistically
invariant quantum mechanical system is described by
irreducible representations of the inhomogeneous
Lorentz group.® For a nonrelativistic particle the
group action is given by the Galilean group.

Similar methods can be applied in classical physics.
The basic objects are given by phase spaces (symplec-
tic manifolds) and evolution spaces for time dependent
problems. Invariance and noninvariance properties can
be characterized by groups of transformations acting
on these spaces.

General methods have been developed for getting
global actions of symmetry groups irom infinitesimal
actions on phase spaces of conservative mechanics, 7~

In this paper we shall give a framework for time de-
pendent mechanics by using evolution spaces™ ! such
that all relevant physical properties can be derived in
a natural and stringent way. For the construction of
group actions we use finite dimensional spectrum gen-
erating Lie algebras® 714 of constants of motion of
classical orbits. The infinitesimal actions of the corre-
sponding groups are extended to global ones.

In special cases the set of orbitfs of different energies
defines a manifold on which a group acts via symplectic
transformations. The general theory is applied to sev-
eral physical problems.

2. PRELIMINARIES 15-18

In this section we set out the standard definitions and
results of differential geometry. The relationship with
the language the physicists are familiar with is
indicated.

Let M be an n-dimensional C”-differentiable mani-
fold. We denote by C=C~ (M), the space of real valued
C”-functions f: M = IR on M, and by M, the tangent
space to M at the point pc M. An element X, of M, is
called a tangent vector at p.
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Letu!,...,u" be local coordinates in a neighborhood
U M of p. Then the coordinate derivatives 2/dull,,...,
a/2ull,, ..., 3/0u"|, form a basis of M, such that each
tangent vector X, can be expressed as a linear combi-
nation of these derivatives.

A differentiable contravariant vector field on A is an
assignment of a tangent vector X, to each point p of M
such that for all f< C the function Xf given by (Xf)(p)
=X,f is differentiable. On U the field X can be ex-
pressed by X = X*(u)ou® with X*(u) =X(u*) and 1< k< n.
(We adopt the summation convention whereby a repeated
index implies summation over all values of that index. )

The space D of all contravariant C*-vector fields on
M is a real Lie algebra with Lie product defined by

[¥, Y]f=X(Yf) - Y{Xf) for X, Ye D and f< C.

A covariant vector field or 1-form p on M is a linear
homogeneous mapping from the space D into the space
of functions C. The value of y at X is denoted by g (X).
Each function f& C defines the 1-form df by df(X) = Xf.
With respect to the local coordinates !, ...,%" on
UC M we have Xf=X*u)(3/0u") f. df is called the differ-
ential ov gradient of f. Furthermore we have du®{d/du")
=ou*/0u’= 8% Any 1-form p on U may be expressed
uniquely in the form

2
B= () du® with p () =p (W)

A form field of degvee v ov v-form on M is a v-
linear alternating map « from the »-fold product
DX+++xD into €, i.e., the function

LX) alX,,...,X,) with X;,...,X,eD

a: (X, .
is linear in each X; and skew symmetric in the
arguments.

The values a,...,, = ald/3u"1,...,3/3u") where
1<sk;<n, 1<j<y with respect to the basis field
8/dul,...,3/3u" on UC M are called the {covariant)
components of «.

The wedge product ov exterior product a /AB of the
r-form a and s-form S is defined by

a AB(Xy, .., Xpo)

1 < , -
=~ 2o sgn(m a(Xyy, . ... 3 Xey) = BOG Gy - o o s Xplpas)
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for X,,,..,X,,s€ D and where the sum has to be taken
over all permufations rof 1,...,r+s, aABis a form
field of degree 7+ 5. In terms of local coordinates on

U an v-form a can be expanded as
a=(1/r!) Qpyone duPt N\« « Adu
r
The components of a Ag are given by

(Q Aﬁ)ki"'kri»s: a[kl'"kr Bkr-&‘l"'kﬂs]’

where [ ] denotes the antisymmetrization operator used
in physics. ap..ip, 204 Bypuu.p, are the components of o
and 3. An 7»-form o can be contracted with a fixed vec-
tor field X to give an (v ~ 1)-form i(X)a defined by the
inievior multiplication i(X) with

GO e Xy, e, X)) =0 (X, X, .00, X)),

i(X) & is obtained by inserting into the function « of
¥ vectar variables the fixed vector X as the first
argument. A straightforward calculation gives

. : ? 2 \
(l(X) a)kz'”k,:(l(X) 0[) (m 3re vy m) =X akkz...k,

with respect to the coordinate system »1,...,%" on
UCM.

The interior multiplication is an antiderivation in the
sense that

XN AR = (G(X) )AB+ (- 1) o AGX) B),
where a is an 7-form and £ is a s-form.

Locally the 1-form df of a function f is given by
dr = 3f/u*[au*]. The operator d sends 0-forms (func-
tions) into 1-forms. This operation can be extended
to form fields of arbitrary degree. For a given v-form
a=1/r!) ay...,, du"t A<+ Adutr we define the extevior
derivative do by (r=1)

do = (1/7’!)dak1°-nkr/\duk1/\° °° Adukr;
de is a (r + 1)-form. The components are given by

N Ch g VLT
@ (nyenrony,y) denotes the antisymmetrization of the
derivative (3/3u"r+1) Qpgeen,s One shows that da is in-
dependent of the coordinate system. The exterior
derivative is a IR-linear map with

d(da)=0, and d(a/\p)=(da)/\B+ (-1)"a/Ndg,

where ¢ is a form of degree  and 8 a form of degree s.

Let ¢: M —~N, p + ¢(p), be a differentiable trans-
formatjon from the manifold M into the manifold N, If
f is a function on N, the mapping ¢ defines the function
¢*f on M as the function whose value at the point pc M
is the value of f at ¢(p), i.e.,

¢*r(p) =f(o(p)).
The mapping ¢ induces a linear mapping of the tangent
space M, into N, defined by

(04 X)) Fl ot = Xp(0% £)], With X,eM,, f= C=(N).

Introducing local coordinates u},...,u" around p in the
manifold M of dimension » and %, ..., 2! around ¢(p)
in the manifold N of dimension [ we have for X,

=X*0 /3uM 1,

2385 J. Math. Phys,, Vol. 17, No. 3, March 1976

d(p*r?)

o
n X

b4

with ¥/ =

;0
— YV
QS'XP— r E o5

The transformation ¢ induces franformations of
Forms in the following way: Let « be a v-form on N.
We can pull back this form from N to M by the definition

('fb*a)(Xp oo er) |p: a(¢*X1, D] ¢*Xr) l olp)s
for X;e M, (i=1,...,7). With respect to the coordinate
systems one obtains

a(p*okt) | B(¢*vtn)
r  duil oulr

d)*a:(l/y!)akl-“k dujl /\"'/\dujr
The pull back operation for forms commutes with the
exterior derivative and the operations addition and ex-
terior multiplication. For two transformations ¢ and

P we have (g }* =§* o p*.

A curve t = ¢, on M is a map of an interval of the
real line IR into M. A differentiable curve { = ¢, on M
is said to be an integral curve of a contravariant vector
field X on M with initial point p if

L £ (6P = (DG, do(p)=p

for all f= C*(M). The vector field X is said to be com-
plete if, for each p= M, X has an integral curve
t — ¢, with initial point p and parameter domain

—~ o< f o,

The Lie derivative Lya of an v-form a with respect
to X is defined by the derivative of @ along the integral
curve t —~ ¢, of X, i.e.,

Lya=1lim (¢¥o - a)/t.
t =0
The three operators’ interior product i(X), exterior
derivative 4, and the Lie operator L, are related by
Ly=i(X)d + di(X).

This formula proves to be very useful for applications.

3. SYMPLECTIC MANIFOLDS 7.8.12.15,18

Let Al be a real manifold of even dimension 2n, A
symplectic form on M is a 2-form Q satisfying:

(@) d2=0, i.e., Qis closed,
(b} © is nondegenerate, i.e., for each p= M,
Q(X,, Y,) 1,=0 for all X, < M, only if Y,& M, is zero.

© defines a nondegenerate skew-symmetric covariant
tensor field of degree two. The pair (M, Q) is called a
symplectic wmanifold.

Theovem 1. (Darboux)i518: Let (M, Q) be a 2r-dimen-
sional symplectic manifold. Then, for each point of M
there exist an open set U< M containing the point
and a local coordinate system x = (x®) = (¢°, p,)
=(g',...,q", Py ..+, pa) On U such that (k=1,..., 2n;
a=1,...,n)

Q=14Q,,; dx*Ndx! =dp, Ndq*
with

0 -9
(ij):(éb Oﬂb);a,bzl,...,n

ai
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on this open set, x= (k" is called a canonical coordinate where 7: W— M is the projection from W onto M and

system. 7*Q denotes the pull back of Q. ©, has rank 2z such that
For each f= C™(M) the differential df defines a co- the restriction of &,
variant vector field. By using Q as a “metric” tensor Q.| M, with M,=Mx{i} for all tc IR,

we may pass to the contravariant (canonical) vector

field which we denote by X, uniquely defined by*%!" is nondegenerate. (W, Q,) is said to be an evolution

space,

ixpel(r) =X, ¥)= - df(Y) Q, is degenerate on W and we shall show that there

for all contravariant vector fields ¥ on M. By using exists a vector field Z on W such that

the fact that /(X,) is an antiderivation, the vector field (“(2) (V) =0, (2, ) =0
X,=Q%2/0¢% + P*(2/3p,) with respect to canonical co-

ordinates (x*) = (q",p,,) can be written in the form for all contravariant vector fields ¥ on W, A vector

field Z with this property can be defined in a natural

X,= K __3_ _ o 2 way: Let &, : M —1R be the function with k, (x) = h(x, 1).
8p, 8¢°  9¢° apa Then X,, is the canonical vector field on M given by
Then X, with X,(x, {) = (X,,t(x), 0) defines a vector field
= [i(Xf) dpaldq® - [i(Xf) dq°®ldp, on W,
= (Xspo) dq® - (Xsq°) dp, =P’ dq® — Q" dp,. Theorem 213151 Let 1 : W—1IR be a Hamiltonian
A transformation ¢ : M — M which leaves the 2-form with dh# 0 and define the vector field Z, on Wby
Q invariant, ¢*Q =9, is said to be symplectic. Since Zo=X.+ 2
o e B _ R A T
Ly, Q=d((X,) Q) +i(X,) dQ =~ d(df) = Then
the integral curve ¢ + ¢, of the vector field X, pre- i(Zy) R,=0,

; *Oy —
serves , l.e., ¢Fi=%Q. In terms of local coordinates Z, is expressed by

The Poisson byacket {f, g} of two functions f,g< C* (M) a3 am 8 3

is defined by Zh:a—m-a—f_w~%—a+a—t.

U at=xs The integral curve of Z, through the point {g,, p, 0)c W
In terms of canonical coordinates we have is given by

0 2 9 t (gt t), t) with 0 0),0) = 0
{f’g} q,p) a ’af’ _ % . aqg;z . (Q( ):p( ), ) (q( ):P( ); ) (q07p0’ )
q ‘ o where
The space of functions C” (M) equipped with the Poisson o
bracket defines a Lie algebra. c}"(z‘)w ap (q(t) p), D, plt)= e @), pH), 1.
a
4. EVOLUTION SPACES”. '3 Since i(Z,) 2,=0 the Lie derivative of 2, is zero
Let (M, ) be a 2n-dimensional symplectic manifold. (dg,=0),

We consider the direct product L7, =i(Zy) A+ d(i(Z,) Q) = 0,

W=MXIR such that the integral curve of Z, preserves the
which is a (2z + 1)-dimensional manifold locally de- 2-form .
scribed by a system of coordinate functions 5. GROUP ACTIONS

(0 1) =(q% Py 1)- We shall prove a basic theorem concerning group

Let f: MXIR—~1R be a C”-function, For any € IR de- actions which are generated by a system of constants
fine the function of motion I: W—IR defined by the solutions of the
equation
fi:M—~IR by fg(x):f(x; 1. , p
I

Then the Poisson bracket [ 7, g] of two functions ZyI=1n]+ i =%

f.g: W—1R is given by .
The constants of motion define a Lie algebra with the

7, 816, = 1fes ge2)- Poisson bracket as Lie bracket. In the following we
The space of functions C*(W) defines an infinite dimen- consider a k-dimensional Lie algebra of cons.tants of
sional Lie algebra with Poisson bracket as Lie bracket. motion given on a (2rn + 1)-dimensional evolution space

. W where k= 2n.
Now let 2: W—1R with di2#0 be a C*-functionon W

called Hamiltonian. Then a closed 2-form @, on Wis Let I',...,I* be a basis of the Lie algebra. We asso-
defined by ciate vector fields X,s (j=1,...,%) on Win the follow-
ing way: For H defined by I{(x)=F(x, ), with (x,1)
Qp=7"Q - dh\d! S MXIR we have the vector fields X;s with
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i0,y) 0=~ di.

Then the vector fields X,; with X i(x, 1) = (Xff(X)’ 0) are
defined on W. The map I/ + X,s generates a Lie algebra
homomorphism.

We are interested in Lie algebras of complete vector
fields which generate Lie groups of transformations.
We shall say that a Lie group G acts on a manifold N
if there exists a homomorphism

¢:G —DiffN, g ~ ¢,

from the group G into the group DiffN of diffeomor-
phisms ¢, on N. Sometimes G is called a tranforma-
tion group.

Now let # with d2# 0 be a {Hamiltonian) function de-
fined on N. If the transformations of the group G do not
leave invariant the function 7, the Lie group G is said
to be a noninvariance group with vespect to h. The cor-
responding Lie algebra is called a spectrum generating
algebra.

In the following we shall construct spectrum generat-
ing Lie algebras of constants of motion and the corre-
sponding Lie groups acting on evolution spaces and orbit
spaces.

Theorem 3: Let (W=MXIR, Q,) be a (2n+1)-dimen-
sional evolution space. We assume that the vector field
Z,=X,+3/3t is complete. Let L be a finite dimensional
Lie subalgebra of C*(W) with a basis I',..., I of L
(k= 2n) such that

. ; ar .
(i) [I’h]+ﬁ:0’ i=1,...,k,
(i1) dI', ... ,dI* span a 2n-dimensional vector space

at each point of W=MXIR,

(iii) each F generates a complete vector field X,; on
W. Then

(a) a connected Lie group G with Lie algebra iso-
morphic to L acts on the evolution space. The 2-form
Q, is left invariant by the group actions;

{b) the group action maps an orbit onto an orbit of Z,,

Proof: (a) The map F X ,; defines a Lie algebra
homomorphism. From a result of Palais!? it follows that
for a given Lie algebra of contravariant vector fields
X,i there exists a connected Lie group G which acts on
the evolution space. Since Lx ;2,=0 for all X;i the 2-
form §, is left invariant by the corresponding group
transformations.

(b) It can be shown that!* ([Z,, X,;] Lie bracket of
vector fields)

(2, Xpil = X0, et e

From condition (a) it follows that [Z,,X,i]=0. There-
fore the group actions commute with the orbits. G maps
a trajectory of Z, onto a trajectory of Z,.

We show that there are intrinsic relations between
symplectic transformations on the manifold (M, Q)
and transformation on W. From X ;=0 it follows that
the group actions on W preserve the time ¢, Therefore
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the manifold M, = MX {t{C W with tc IR is left invariant.
On the other hand, group actions on W are induced by
symplectic transformations on M, i.e., there is a Lie
algebra homomorphism from the Lie algebra of func-
tions I{ : M —IR into the Lie algebra of contravariant
vector fields X;; defined on M with i(X,) @ = - dF, for
all = IR. Assuming that all vector ﬁelés are complete
there exists a connected Lie group G acting on M. Since
Lx,; Q=0 for each < IR the group G acts on M by sym-
plectic transformations which may be given by

(),

PR
This transformation on M can be extended to a trans-
formation on W,

T, W W with T lx, 1) = (¢ (x), ).

MM, x Hcp:,”(x), for all ge G.

The space M, C W is left invariant by this action.

On the other hand we have Z,f=1, i.e., the time is
not left invariant with respect to the integral curves of
the complete vector field Z,. Therefore any trajectory
of Z, is transversal to the manifold M, for {= IR. The
trajectories commute with the action of the Lie group
G which leaves each M, invariant. From this it follows
that the integral curves of Z, interpreted as a 1-param-
eter group of transformations on W connect the mani-
folds M, for different values of £.

It is interesting to note that for /=0 the problem has
been discussed by Dirac?® in the case of special rela-
tivistic dynamics. In this connection we have transfor-
mations induced by the inhomogeneous Lorentz group.
The preceding results show that even in the general
theory it does make sense to discuss the problem for
t=0.

6. ORBIT SPACES

Let (W=MXIR, Q,) be a (2z + 1)-dimensional evolution
space. We assume that Z, is complete on W. Let W be
the set of orbits of Z, and ¢ : W— W the map assigning
to each point of W the trajectory of Z, through the point
we W. Since the projection of W=AMXIR onto IR maps
Z,=X,+ 9/3t onto 3/9t every trajectory passes through
one and only one point of M,=MX{t} for any given
te IR. Therefore there exists a manifold structure on
W such that for any te IR the restriction

ol My w
is a diffeomorphism. W is called the ovbit space of the
evolution space W.

One shows that the 2-form , given on W induces a
symplectic 2-form § on W defined by (¢ : W— §)?:18.25

Q0,X;, 0, X o)) = Q,(X;, X ) (w)

for we W and all functions I and J with Z,/=Z,J = 0.
Therefore (W, ) defines a symplectic manifold where
o*Q=Q,.

Theovem 3: Let the conditions of Theorem 2 hold.
Furthermore we assume that the set of orbits of Z, de-
fines a C*-manifold W. Then

(a) The Lie group G with Lie algebra isomorphic to
L acting on the evolution space W induces a unique group

action on the orbit space W.
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(b} The group G acts on W by symplectic
transformations,

Proof: (a) The group G maps a trajectory of Z, onto
a trajectory of Z,. From a theorem of Palais?? it fol-
lows that there exists a unique group action

B W =W, W
such that
0{p () =G, (0(w)) or oog,=¢,00
with we W and the projection 0 : W— W for all ge G.

(b) We have to show that & leaves invariant with
respect to the group action ¢,, i.e., ¢¥R=8. Since
$F2 =9, and Q,=0*Q we have

*Q= 9F (0*0) = (02 ¢)* Q= (B 2 0¥ = 0* (P 0)
such that Q= ¢}{, where we have used 6°¢,=¢,°0
and ¢F o 0* = (00 ¢,)*.

7. PHYSICAL APPLICATIONS

The preceding theory shall be applied to physical
problems which can be described by Lie algebras of
constants of motion FF with Z,F =0 for a given
Hamiltonian function 2,

The space of constants of motion can be identified
with the space of functions C*(W) on the symplectic
orbit space {W, ). C*(W) defines a Lie algebra under
Poisson bracket on W. In the following we study finite
dimensional Lie algebras of functions generating Lie
group actions on orbit spaces.

For special problems we shall give solutions F
(i=1,...,2n) of

g .
Z,F=0 or —;{—:—Xhl’,

with initial conditions Fi(x, 0) =«’ calculated in terms
of Lie series,® i, e.,

Fx, t) =exp(- tX) -x~‘=(§ (- )/m]1 ]XZ’> x’

=x = tlx’, h]+ (/20 1], 1] = oo
Furthermore we shall construct the map
o:W—W with Q,=0*Q.

For a given system of coordinate functions I defined
in a neighborhood U of point we W there exist coordi-
nate functions I7 defined on o(U) such that for all

we U we have

Iow))=F(w), I'ec="F,

respectively.

7A. THE NONRELATIVISTIC FREE PARTICLE

In the case of a free nonrelativistic particle with
time independent Hamiltonian

h:W—IR, hig,p, 4] :p2/27n: pe R? \{O}>
and the vector field Z, is given by (a=1,2,3,)

8 hp, B
Z”_gf-i_a%f;—ﬁ 9g°"
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The solutions P : W—1R of Z, I’ =0 with P(x, 0) =x’ are
given by

1%(g, p, th =exp(- tX) * q° - fg®, n]+ (& /2)[lq% k], R] - <+ «
a_Da

=9 m
Ima(‘]; b, B =Par

The differentials dFF at each point of W have rank 6.
There exist coordinate functions ¢, and P, on W such
that (o: w— )

— a+d _.
_QQOO,I —‘PQOO~

4

Q is given by

3
Q= El dP,N\dg,
a=

since

3 3
o*q =o* (Z‘ dPa/\an> =2, d(P

a=1

2 ONd(Q,°0)

3 3
21 19, Nd{g® - (po/m) 1) = Z% dp Ndg® — dh A\dt =Q,.
a= =

Therefore we are given a system of canonical coordi-

nates on the symplectic manifold (W, ).

One immediately verifies that the functions P,, G,

J,, and i with

¢ 3

G, =— mQ,, Jazbé1 €we @P. P, and h=p/2m

define a realization of the Poisson algebra of the
Galilean group?!*?? if one uses the Poisson bracket
defined on the orbit space as Lie bracket, The func-
tions G,, o, P,, and  generate complete canonical
vector flelds on W which have rank 6 since the differ-
entials of the functions have the same rank and @ is
nondegenerate, Therefore the group generated by the
canonical vector fields is globally defined and acts
on W via canonical transformations. The Galilean
group can be interpreted as a noninvariance group of
the iree nonrelativistic particle,

78. THE HARMONIC OSCILLATOR

In the case of the three-dimensional harmonic oscil-
lator with Hamiltonian

rg,p, ) =pt/2+¢*/2, q,pc R\{0},

coordinate functions @,, P, on the orbit space W are
given by

Q.°0(q, b, t) =q° cost - p, sint,
P,oo(q, p, 1) =g" sint + p, cost.

If we introduce the complex variables
2a=(AN2)Qu+iP,), Z,=(1/V2)(Q, - iP,)

we have

3 3
27 dP,NdQ =i Z} dz,\dz,.
a=s

a=1

With respect to the corresponding Poisson bracket
given on W the functions

3. 1/2
Aab:Eazb: AM:iza(E zbzb+1> b4
b=1
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3
A=-Ay, A44:‘§ 2,2,-1

define a realization of the Lie algebra of the group
U(3, 1) 2% which is a noninvariance group of the three-
dimensional harmonic oscillator.~

7C. A CHARGED PARTICLE IN A CONSTANT
ELECTROMAGNETIC FIELD

For a particle with mass m and negative charge —e
moving in a constant magnetic field B = (B,, B,, B;) the
vector potential A may be given by (B;= |Bl, gc R®)

A=4[B,ql= (- $Byqy, $B3q1, 0).
Then the Hamiltonian % is defined by (w=eB;/mc)
h(g, p, 1) = (1/2m)(py — 3mwgy)*
+ (1/2m) (p, + pmwg)* + (1/2m) pl,
with
Ty =Py — sMWGy, T, =py +imuwy,.
six constants of motion are
Bg, p, 1) =x¢ - (7, /mw) sinwi + (7,/mw) coswt,
g, p, t) =y, — (1,/mw) coswt - (m,/mw) sinwt,
Plg,p, )=q5- (py/m)t,
g, p, D) = 3mwy, + (1,/2) coswt + (m,/2) sinwt,
Blg, p, 1) = - 3muw, — (1y/2) sinwt + (7,/2) coswt,
g, b, ) =p3s
where
Xo= 3Gy — po/mw,  ¥o=3qy +py/mw.

By choosing these constants of motion as a coordi-
nate system one immediately sees that the particle
moves on a cylinder with constant velocity in the direc-
tion of g;.

On the orbit space W a system of canonical coordi-
nates is given by the functions (0: W— W)

@4, &y, &3, Py, Py, Py
with
@oo=I'-xy, Q°0=x, @°0=r
Poo=2(I" - $mwyy), Py,°c0=mwy,, Pz°0=[F,
With respect to these coordinate functions one verifies
0*Q =y

If there is an additional electric field then in a similar
way one can calculate the constants of motion and con-
struct the orbit space.

7D. TIME-DEPENDENT QUADRATIC SYSTEMS

We consider a Hamiltonian # with [(x*) = (g% p,)]
in . 24

B(x, )= 25 A, () x*x’ + 25 By(t) x*

j=1

Ry j= k=1

and assume that the problem can be described by 2x»
constants of motion I* with

2n
Fx,t)= le Ay (1) 27 + b, (8)
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which are solutions of

R
a.; =0 with P(x, 0)=x*.

ZhIk-_— [Ik, h] + ETs

Then the coefficients a,; and b, must satisfy the dif-
ferential equations

; db -

by = d_tk-z ji;:i ;84 By
and

o day; 2

Ay = ‘Cﬁl = ’Lm/:lakx QA +A;m
where

0 - 5ub ko,

()= 5, 0 and {x* x7]=- Q.
Furthermore

[Iks Ij](xs t) = [Ik, Ij](xs O) = [xk>xj] == ij
such that

2n
E: Dot Rim Ay = Qe

I, m=
Now introducing the complex variables
2,= (V2 I%(x, 1) +il *"(x, 1)],
E,= (/2% £) — il *"(x, 1)),
we can define a realization of the Lie algebra Uz, 1) by

setting (1 <a, b <n)
n

1/2
Ay =Z 2y, Aann:lza(z szb‘*‘l) s
b=q
— h
An+1a:'Aan+1’ An+1n+1=—1-bz_2 2p2p.

We shall apply this result to the problem of a damped
oscillator: The problem may be described by the
equation

mi+Pg+hg=0 (gcRY).
The corresponding Hamiltonian is defined by?
h(g,p,0) = (p*/2m) * expl- (8 /m) ]
+(k/2) ¢* * expl(B/m) t].

Using the equations given above we have for instance
(d=1,2,3)

Ezdd —_ k eXp[(B/m) t] ° ad 3ed

and
&g 30a==(1/m)exp[— (8/m) t] ag,
such that
g = (B/m) Qgq + (R/m) agq = 0.
The general solutions lead to the result
(&= (8 - 4km)'?, I%(x,00=¢" I**(x,0)=p,]
I%(x,8) =(1/2a) exp(8/2m) t {(a - B) exp[(a/2m) t]
+(B+4) exp[- (a/2m) t]} * ¢
- (1/4) expl- (8/2m) t]{expl(a/2m) t]

- exp[— (A/Zm) t]}'ﬁa:
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1%3(x, 1) = (km/5) expl (B/2m) t]{exp[ (6 /2m) ¢]
— exp[- (a/2m) t]} -4
+(1/24) exp[- (8/2m) t]{(8 + &) exp[ (& /2m) t]
- (B~ a) exp[- (a/2m) t]}+ p,.

The constants of motion generate a Lie algebra of
the group U(3, 1) which is a noninvariance group of this
problem as in the case of the stationary three-dimen-
sional harmonic oscillator, Finally the constants of
motion can be used as a system of canonical coordinates
on the orbit space.
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Dynamical quantization of the Kepler manifold
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The dynamical quantization of the “Kepler manifold” in any number of degrees of freedom is constructed.
The Kepler manifold is the phase space of the regularized Kepler motion and is shown to be an SO(n,2)-
homogeneous symplectic manifold, corresponding to an extremely singular orbit in the co-adjoint
representation; the quantization is obtained by “approximating” this orbit by more regular ones, which are
equivalent to homogeneous bounded domains. The most relevant result is that the usual quantum-
mechanical “hydrogen atom” model is recovered in the particular representation introduced by Fock in

1935 [SO(n)-homogeneous integral equation in momentum space].

INTRODUCTION

“Geometric quantization” is generally accepted today
by mathematicians as a powerful technique which gives
almost all unitary irreducible representations for a
wide class of Lie groups. "*® There has been little
interest in the theory among theoretical physicists,
however; the reason may be found in the narrow limits
of applicability of the theory, i.e., harmonic oscil-
lators, ! free relativistic and de Sitter particles,® and
energy levels of the hydrogen atom. ® The aim of the
present paper is to give an example which should be of
interest also for theoretical physicists. The problem of
applying the theory of geometric quantization to the

Kepler problem attracted the attention of several people.

Simms® considered each energy level separately and
showed that the usual level structure could be obtained;
a certain deviation from original Kostant theory was
however necessary (this will be discussed in Sec. 2).
Onofri and Pauri’ suggested applying the theory to a
certain SO(4, 2)-homogeneous symplectic manifold which
represents the phase space of the (regularized) Kepler
motion with negative energy. It was shown, however,?
that there does not exist any invariant polarization in
this case, and Kostant theory does not apply. Recent
developments of the theory allow us to deal with non-
invariant polarizations as well’; but there does not seem
to exist a simple recipe to construct the so-called
Kostant—~Blattner—Sternberg kernel. In this paper we
shall adopt an alternate procedure. We shall show that
a correct quantization of the “Keplev manifold” can be
obtained thrvough a limit of quantizable manifolds, ad-
mitting an invariant (complex) polarization. Whether
the same result can be obtained by means of the
Kostant—Blattner—Sternberg approach is still to be in-
vestigated. Although our procedure may appear rather
heuristic, it is a posteriovi justified, since we obtain
the usual quantum-mechanical model of the hydrogen
atom (for negative energy). In particular we obtain the
representation found by Fock® in terms of functions de-
fined on a hypersphere in momentum space.

The material is organized as follows: In the first
section we study some singular orbits 0‘*‘1 with respect
to the co-adjoint representation of SO(z, 2). The lowest-
dimensional one 0(.,0 is shown to represent the phase
space of Kepler motion with negative energy in n -1 di-
mensions; to make this identification one must first
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regularize the Hamiltonian flow as shown by Moser!’
[see also Refs. 4 and 11]. In the second section, we con-
struct the quantization of the orbits ()u,; the corre-
sponding unitary irreducible representation of SO, 2)

is studied in some detail, in particular the “coherent
state” basis is constructed. In the third section we study
the limit I — 0. The result is that (i) a natural realiza-
tion of the carrier space of the representation of SO, 2)
in this limit is given by functions on the sphere ™!, and
(ii) the energy eigenvectors are solutions of the integral
equation

w0 =T in-1) nrq.'sy(ﬁz'? »,

sn=1

where (s +3n— 1) is the eigenvalue of mk/(~ 2mH)!/2,
This equation is identical with the usual one as reported
in Ref. 12.

From a mathematical point of view, the idea of ob-
taining unitary representations through an analytic con-
tinuation in the invariants goes back to Knapp and
Okamoto!?; it was suggested by the present author for
SO(n, 2), with an eye toward the Kepler problem, in Ref.
14. The mathematical ideas are essentially all con-
tained in Harish-Chandra’s works; in particular the
singular case is considered in Ref, 15, We included a
lot of well-known results, the aim being to make the
paper readable for a wider group of theoretical phy-
sicists.

1. A FAMILY OF SINGULAR SO(n, 2)-orbits

Let us consider the group of linear transformations
of R™? onto itself which leave the pseudo-Euclidean form
g invariant, where gy, =gy =-gy=c==guy m=1,
and g;;=0 for i#j. We consider only transformations
which are connected to the identity. This group is de-
noted by SO(x, 2); n =3, 4 correspond to the de Sitter and
conformal group, respectively. We shall deal in general
with#n =2 3. Let g =expX be the exponential mapping,
X being an element in the Lie algebra so(z, 2).
A basis in s0(x, 2) is given by X,;, exp(¢X,,) being a
special transformation in the (,) plane., Of course X;;
==X, and

(X5 Xl = 8inX i + 81X 1n~ G Xin~ LixX s (1)
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or equivalently [X;;,X,,] =g X, (two equal indices), or
zero if all indices are different.

It will be useful, in the sequel, to have special sym-
bols for the generators, namely:

X9 =S, maximal compact subalgebra
Xun=2Z,,
Xopw=W,, (2)

Greek indices run from 1 to » and are “tensorial” with
respect to the compact subgroup SO@).

The dual space of sofn, 2) is denoted by so(n,2)*. The
Killing form B(X,Y) = (1/2r) Tr(adX adY) is nonsingular;
then X} prov1de a basis in so(r, 2)*; here X¥c so(, 2)*
is defined by (X}, ¥)= B(X,7Y) for every Y € so(n, 2). Ex-

plicitly we have B(X;;, X,,) = &8 — &ia&jx- A generic
point w € sofn, 2)* is then given by
w:sSb+§p mwM}:,+§ @, 2" +w,Wh), 3)

and we shall simply write w= (s, m,,, 2,, w,).

The orbits in so(n, 2)* with respect to the co-adjoint
representation constitute the most general model of
homogeneous symplectic manifold with respect to the
group. 1*> We shall denote by (), the orbit through w. We
shall limit ourselves to some “singular” orbits, namely
wa (I = 0) defined by

(O] =l5b,
w0=s*’+z‘;+W§+M$,

{1>0),
¢=0).

these orbits are charac-

(4)

As submanifolds of so(n, 2)*,
terized as follows:

() 0wl={w:(s,mu,,zu,wu)[sz-k“z(?’ mi,
—;(zf +wk)=1% smu‘,:zuwy—z,wu} (I >0).

Since
ad*x(vh) =[x, v]t (5)

the stability subgroup of w; is given by the commutant
of § which is SO(2)® SO(#), the maximal compact sub-
group. It follows that (J,,, is equivalent to the n-dimen-
sional complex bounded domam H™ " of type IV. 1€
Said otherwise, it is possible to parametrize Owt by
complex coordinates (&y,&;,...,4,) in such a way that
the action of SO(r, 2) on (J,,, is given by holomorphic
transformations. This will be shown in Sec. 2.

o 2
(11) Ow(}:{w:‘(ssmngg)wp)lsz+§1 My
wsv

—; (% +wl)=0; sm,,=z,w,—-2,W,;

gl =2 wl; 2z wu_O}
It follows that §, & =7, w? =s 2%, m%, and the global

structure of (0, is given by Oy * R XSO(n)/SO( ~ 2).
This is the same as the mamfold introduced by Moser!?

402 J. Math. Phys., Vol. 17, No. 3, March 1976

T#S™! (cotangent bundle on S™! with the zero-section
deleted) and called the “Kepler manifold” by Souriau. !!

The identification of 0‘*’0 with the phase space of
Kepler motion can be seen by introducing a local chart
of canonical coordinates. Let (X, p) be canonical co-
ordinates in T*(R™!—{0}), H=p?/2m - k/7 is the
Hamiltonian, where p®=pep, 7= (x-%)!/%, Letz
= (zla v )Zn-l), w={wy,.. wn-l)’ p= (mlm oaey 7’77n-1n)'
Then the following transformations are canonical
(locally):

S =mk/(-— 2m H)I/z

mkX/v - (Xo p)p)

0=Z—iWw= (rp+z ComiD

X exp{i(— 2mH)!/ e p/mk},

rpt
O, = zw"*((—z_n’l—HTnT +ZXDP>

X exp{i (- 2mH)' /2 x - p/mk},

muu:xupv_xupu’ M,V::].,z,.. n-1,

-~ (Xop)p~mkx/7
p= (_ zmH)IIT

(Runge—Lenz vector),

Let us briefly comment on these formulas. The rela-
tion between s and H is such that the rotation angle 7 in
(1, 2)-plane coincides with 27t /T, where ¢ is the time
in Hamilton’s equations and T is the period of motion,
The expression of m,, and p is obvious; that of 2z, and =
is not so obvious, yet well-known (Bacry—Gyorgyi
parameters ), A simple proof is given below,

©

Let us take for granted that the expression of s and
m,, is correct. We have to determine (z,z,) and (w,w,)
as functions of x and p. Let us put

Z=¢1x+¢'2p, Z":¢, (7)
w:lP1x+ Z,l)zp, w,,:d;,

where the ¢’s and §’s may depend only on ¥, p and X»p.
Let us fix these unknown functions by requiring that
{s, my,, 2,, w,) belong to Owo’ i.e.,

ZoW+2,w,=0

= Db+ (D1 + P10y)X oD + Gothpp® + ¢ =0,

2t + 2l =52

= o+ 20 xep+ipt+ 0" =50, 8
w? +wl=s?

= P + 29, X o p + i p? + PP =57,

2 Wy~ Z,W, =S My,

b1y = PPy =5,
: k
- w¢1—¢¢1=%(p2— ’—"—) :

r
2

by~ Py =~ fﬁ Xop.
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It follows that

s 2 Z_”ﬁ) ]
b=" [X°P¢1+(P- ~ ) %2

=Dy T A0,

: o mb
:E—I; [Xoplp1+(p - " )1112]

=09 + At

&)

and

(10)

wea (%9 (3) =

where A=72+2%, B=p? +2%, C=xop+A),, AB~Cl=5s

If we have a solution of Eq. (10), then we can obtain
another solution by applying a transformation 7 of the
form

cos6 - (C/s) sind
Tz( (4/5) sins

Let us determine a particular solution by imposing ¢,
=0. Then we have ¢p,=s/B'/*=7, ,=-s /7, 9,=Cs/
Br =[(x*p)/mk]s. The general solution is then

- (B/s) sing )

cosd +(C/s) sind (11)

s .
o=~ p sind,
¢, =rcosd + ;Z—k X P sind,
(12)
S
Yy =— p cosd,
. Xep
Yy =—78ind + kS cosb,
and from Eq. (9)
o= %l_e- {(rp? — mk) cos§— X ep sins,
(13)
b xo _ S 2 _ :
Y=~Xop cOsbd ok (rp® - mk) sinb.
We can now impose the condition that x and p be
canonical and we obtain, as a particular solution,
=-Xep/s. (14)

The solution corresponding to =0, still noncanonical,
is interesting, since it provides the variables which
regularize the Hamiltonian flow, namely

E = (V=2mH rp/mk, vp*/mk—~1)ec S,

y (15)
_[xep)p-mkx/r ) -
= <—~qy ~Xep| c TE §™1,

V—2mH -
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It is a nice feature of this group-theoretical approach
that the explicit form of these variables is straight-
forwardly obtained by simple algebraic considerations.

2. THE QUANTIZATION OF 0.,

The homogeneous complex structure of (), (>0)
provides an invariant complex polarization for the
prequantized 0, . We shall then construct a unitary ir-
reducible representation of SO(z,2) in a Hilbert space
#; of holomorphic functions on (J),,,. The exposition will
be rather sketchy, since the general theory of quantiza-
tion is well-known for the homogeneous Kaehler case, !
A premise is necessary, however, on the “quantization
rule” w, i~ x which provides the representation ¢* of the
stability subgroup. According to the original Kostant—
Souriau theory, the prescription is simply A =iw, which
gives, in our case,

e*[exp(qos + 2 «JM)]

. exp[’(“”’ (“’S *z ""“”M“"»]

= exp(- i o). (16)
It has been pointed out by several authors that this
choice for A does not always lead to reasonable re-
sults. #!* In particular, let % be an element in the Weyl
group Wy of 80(2)* @ so(n)* with respect to a fixed Car-
tan subalgebra h. Then w(w;) e sz but the representa-
tions induced by exp(iw,) and expliw(w,;)] are not equi-
valent, in general. A Wy~invariant quantization rule is
given by

w; A =iw; - p, (1)

p being half the sum of positive roots (this fact follows
from results of Schmid on Langland’s conjecture ), Any
other rule, such as

w; A =iw, - p+wl(p) + 2y, (18)

is again W-invariant, provided that w e W [Weyl group
of 8o(n, 2),] is such that w(iw,;) + p, belongs to the highest
Weyl chamber and Wgh, =X ,; here p, is half the sum of
positive compact roots. We prefer Eq. (18) to the
former one for the following reason, if the group under
consideration is compact, then 2=0, p.=p and we have
A =iw-p+wl(p), which is the correct quantization rule
in the compact case. In our specific problem we obtain

A=1i(l +n/2 +l0)Sb, (19)

where I; is still to be fixed [see the appendix for the
proof of Eq. (19)]. We make the choice I;=- 1 (inde-
pendent of n); whether the introduction of symplectic
spinors or some other geometric structure¥®* could
account for this is still unknown. It must also be
stressed that we are also going to consider noninteger
values for [ +3n - 1; this means that we shall obtain a
projective representation of SO, 2), in general.

Let us now exhibit the homogeneous complex struc-
ture of sz‘ Let £ € C" be represented by a one-row
matrix (§y,...,&,); let £’ be its transpose, so that £g’
=Y, &. In the following we shall adhere to the notation
of Ref. (16) as closely as possible. Let o=(o,...,0,)
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be defined as in Sec. 1 by o, =2, -iw,.
Wyt O‘*’z ~C", defined by

= z o+ oo’ o
~ 2s 2s(s +1)~00’ ")’
is differentiable and nonsingular everywhere (s is a

well-defined function of 0, on (J,,,). The following holds:

2l(s +1)
s +[41%s° + loo’ [Z]T72°

The map

(20)

¢t =1~

>4l P2
1- 268+ |68 *= 2ls + 4% + loo’ 1272 °

The range of u; is then the homogeneous bounded domain
of type IV ¥ (Cartan domain),

pr={cect|gt’<1, 1- 2T+ [ee'[*>0h  (22)

0., inherits from D' the structure of a SO@, 2)-
homogeneous Kaehler manifold. The inverse mapping
pit: D' —son, 2)* is given by

o £-gL't
0==2 T 1T

PR T f 14
s=lT e (23)
m,, = 2il N Pl S

1-2¢ + e’ 1F

uil is precisely the “moment” of the symplectic action
of SO(n, 2) on /' which is given by

(1,-¢)C’+2¢D' +(1,4)C'tL’

6= AN 2B (N + ATANEL (24
where
-
_ ALB.) te
g‘ CiD }n ’
AB(I(“ 0>(;c,)_<1(z> 0>
cC D 0 __I(n) ’ Dl — 0 _I(YI) )
(25)

AAN=(1,-9)A(}), AAN=(1,9A(]).

By holomorphic induction from exp[i(l +7/2 - 1)Sb],
we obtain the following representation of SO(x, 2),

U)(E) = G0 (g7 ) = wlg, £) W (g™E). (26)
where

- gt

Jelg™e) =det 3E |l g=emte

=[3A04) - tC{}) +za°A)eL’T (27)

[the proof of Eq. (27) is given in the appendix]. The in-
variant inner product is given by

@ [y =N ]y HOEE)

X (1-288 + e/ [ E
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N is a normalization factor which can be chosen in such
a way that the constant function ¥ (£)=1 has norm 1,
i.e.,

N= [fn(’l) (1=~ 2e2+ |’ |2/t C] -1

_ 2 (@-1)T@+n/2-1)

s T({l-n/2)

(29)

It follows from a theorem of Harish~Chandra?® that the
Hilbert space 4, of holomorphic functions ¥(£) such that
[|W]] <, is nontrivial if and only if I >3n. The repre-
sentation of SO, 2) in #, is unitary and irreducible; it
is the quantization of 00,1. Since we are interested in the
limit = 0, we shall need a definition of /4, which make
sense also for I < 3n; this will be done in Sec. 3. For
the moment, let us examine some properties of the
representation for I>3n.

As is well-known, there exists an overcomplete basis
{1&) € /,} in a one-to-one correspondence with the
points of /). The vectors ¢} are usually called “co-
herent states” or “principal vectors” 142022 ynd provide
the most simple way of taking the “classical limit” of
expectation values and probability distributions, ?3%

The properties of coherent states in //, can be sum-
marized as follows:

W) & W=N [ o TOEE
X (1= 288"+ g8/ 1D/ E=9(y),

(1) (&) =(E[&) = (1 - 268" + ££' EE)I /¥, (30)
{(reproducing kernel),

({ii) A fD(,,) le) (1 /{etey t=1, (completeness),

(iv) U, |©)=n(g™,¢) | g&) [transformation
property under SOz, 2)].

It follows from Eq. 30 (ii) and (iv) that

U,l0)

o0y = A (31
l2:0)= g7 U,10)

which shows the connection with the general definition

of coherent states given in Ref. 22 [see also Ref. (25)].

The state |¢) corresponds to a probability distribution
pe on (),,, given by pe=pg(g~o), with {=g-0 and

472 /o
00(0)2/\/<m) Ten/2-1

_ 4l2 ) 1+n/2-1
= - L2~ T
N ((s +1) =3 pce,

Let us note that in our units #=1; Planck’s constant
would appear at the exponent in Eq. (32) in such a way
that in the limit %#— 0, p, would converge to a Dirac dis-
tribution centered on (s, nzw,zwwu).

(32)

The reproducing kernel contains all the properties of
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the representation. Let {¢;(£)]ic I} be a sequence of
linearly independent holomorphic functions in D™ such
that

€9 =2 o000,

Then it follows that the set { ;| i< I} is orthonormal
and complete. This fact will be used in Sec. 3.

The representation X X of the Lie algebra so(n, 2)
is easily obtained by differentiating Eq. (26),

§:(l+g—1> +ZE Cudyu,
é“:i(l+-g -1) Lo +i20 <§“§v— 1;“ éw> 9, -

N 1- ’

Muv:_ i(gu.av— gl/au,) '

3
(a“= acu)'

We know that in general (¢ 1X1£)/{¢1¢) coincides with
the classical generating function x(¢, ¥) !%; this can be
easily verified here, except for a factor ([ +3n—1)/1
due to the new quantization rule Eq. (19).

The representation of so(r, 2} is found to be identical
to that of Ref. 26 if we are allowed to take [ =0 and
real ¢!

3. THE QUANTIZATION OF THE KEPLER
MANIFOLD

We now come to the main result of this paper, namely
that it is possible to take the continuation of the rep-
resentation of SO(%, 2) for ! < 31 and the limit ! — 0 yields
the quantization of the Kepler manifold. We shall study
the limit I =0 of (J,,, of y;, and finally of the
representation,

1t is clear from the definition that Oy = limgag sz con-
tains (), . What happens is that (), is not homogeneous;
it splits into {0}={0=0}, 0, ={00’ =0} and a 2n-di-
mensional orbit Os={06’#0}. Let us note that for any
point in (J;, the following holds,

2

mt=3 25 mi, =s*~ |oo’]. (35)
wy

0“0 is then the homogeneous component of (), where m?

[the canonical invariant of SO(2)] is a function of s alone.
This corresponds to the fact that the submanifolds Z
={s= constant) are SO()-homogeneous. A similar
property will hold for the quantization of SO, 2).

When [ — 0 the map u, becomes singular. From Eq.
(21) it follows that:

(i) 0=0=2¢=0,

(ii) Joo’ | =L#0=¢8'~1, 1-2¢2'+ |¢¢’|*~o0,
(iii) 00’ ~0=1- 222" + |¢£’ |20, (36)
but ¢€’ has no limit.

Eq. (36 (ii)) means that a limit map can be defined on
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(s and its range is the Bergman—§ilov (B=S) boundary

Df 0("),

i
§="2; (O’+

i.e.,

4

3) e §™ixs!, (37)

g7 _
loo’|

¢ =xexp(iv), w=13 arg{oo’}+ g )
x :IRe{exp[— (i/2) argloo’}] g } .

In case (iii) all that we can define is a map v,: 30 —
(the energy surface). From Eq. (23) we obtain

v (L) = < :l E—_(_CEQ% .

2s T ¢ 1-=1]¢¢]

where £ now belongs to the boundary 3 ), Let (|,
={£c 3™ 1¢LL" =0}, then all points £ =&, +A T, with
Zo€ Cy, I1A1<1 belong to 30 and are mapped into the
same point vy(£) =0/2s =~ i£,. The boundary 3/ (sub-
tracted from the B—3 boundary) is fibered with base
space C, and fiber NV, C, is diffeomorphic to =,. By
restricting to CO, we can associate a function on Owo to
any function on '™ which extends to the boundary; the
converse is not true, however, since there does not
exist any Cauchy formula for C,, analogous to that for
the B—3 boundary.

(38)

Let us now consider the limit of the representation.
We know that //, is nontrivial only for I>%n. But #,
can be equivalently defined in a way that preserves its
meaning also for 1< in. This can be done as follows: H,
is a space of holomorphic functions on 0("); it is the
linear span of {U,¥,| g SO, 2), ¥,(£)=1} (completed
according to the topology given by uniform convergence),
explicitly,

(qu,o)(g) :jg(g'lé')'(l/")“'"/2'“. (39)
The norm is implicitly defined by requiring that the
kernel K(¢, £)=(1 - 2¢& +£L"EE") /23 e yepro-
ducing, i.e., K0} =K({, ) e A, and K, B =¥(¢). The
action of SO(n, 2) is unchanged. The point is that this
new definition is equivalent to the previous gne for
I>%x but makes sense also for I < 3n (the difference
being that the representation is square-integrable for
1>3n while it is not for I < §n). %’

Now, let us examine the case [ =0,

K, £)=(1~2LF + L Ee)m/2

=2 0i(0) (2. (40)
=7

The holomorphic functions ¢,(£) are uniquely charac-
terized by their values on the B—S boundary; then it is
sufficient to consider the following expansion, %

K(x exp(é9), y exp(- iw))

=(1 - 2%y’ exp[i(9~ w)] + exp[2i(9 — w)])™/ 2!

4t s explis(9- )] Y)Y 0.

TIw/2-1)s% 2s+n—2 (41)
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{Y,, ()} is an orthonormal set of spherical harmonics
of degree s on S™!, o =(ky,...,ku) With s 2k = k)= eee

=k, 120 (see Ref 29 Sec. 3.6); the number of
linearly independent Y, is

N{n,s)=(2s +n~2)T(s +n-2)/T- DIT'(s +1). (42)

By analytic continuation we find an orthonormal basis in

/7/0:

27{";2 172
¢sa(g)=[r(%n_1)(s+§r’1-l)}
X Cg’ S/2Ysa<_§_ . 43
(e @_) (43)

The functions ¢,, are homogeneous polynomials of
degree s; then
S‘ﬂsa :(%n'l)_*'s(psa“ (44)

For a fixed value s, we have a N(z, s)-dimensional sub-
space where an 1rreducxble representatmn of SO} is
defined; the Casimir invariant M= 35,, M2, is simply
related to the Laplace operator on $™*! and

M@, (L) =s(s +7n - 2)@gq. (45)

We find that S has the same spectrum and multiplicity
as the operator mk/ (- 2mH)'?, wheve H is the usual
quantum-mechanical Hamiltonian for the (n— 1)-dimen-
sional Hydvogen atom (negative energy only).

The explicit form of ¢,, shows that a pariicular
vealization of our Hilbert space //; is the following.
#, is given by functions defined on 5™ such that

<‘I'1 “I'2> = —(_7:/2_1—)

X J T, (%) [~ A+ (En =122, (x) %. (486)
g1

Given such a ¥(x), a holomorphic function on /) is
constructed as follows,

=20 Uy, Voo (%)
so

ns/2 ¢
= U(E) = 2 ToalEL) Y(@)

The reproducing property of K(&, £) is then
sh—1)
=(K.|¥) = —(—73.—

[— a+(En=172P/20(y)
* j;n-1 lx = pl"2 Y

47

where [[x ~y [| =vV(x = y)(x - )’ . In particular for any
eigenfunction of S belonging to the eigenvalue s + m-1
it holds that

T(3n~1)

W (x) = —(2277"—7'2— (s+zn—-1)

%0) .
S T (48)
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which is exactly the SO (n)-invariant integral equation
discovered by Fock for n=4 (see Ref. 12 for the general
case).

The realization of #/, on the sphere is not the only one
at our disposal. We can represent our functions ¢, by
means of their restriction f}zm to Cy, that is to say to
the energy surface T, through v, [Eq. (38)]. The func-
tions @, are simply related to the matrix elements of
the representation D of SO{). Since C, is SOH)-
homogeneous, we have

(Dpsog (Rgo) = ([]R"1 wsa)(gﬂ)
=27 Poar (£ D2 (RT), (49)

where ¢, =(37,3,0,...,0). Now (Zsa(éo)=0 unless @
=(s,S,...,s) (highest weight). Then @, (¢) is propor-
tional to the “first column” of the representation D:

(psa(g) D(S)(Rgo‘z:) (SSlUje{ elSOl) (50)

which shows that the reahzatmn on C; is “coherent” with
respect to SOm).**% As a matter of fact, the realization
on ™! is coherent too, in the generalized sense of

Ref. 22,

Yo (0) =D R31)= G0 UR, _[sa), (51)
0=(0,0,...,0) and x,=(0,0,...,1) 8™ (see Ref. 29).
The stability subgroups of the rays [so) and |ss) are
SO — 1) and SO - 2) respectively, and correspondingly
we have functions on §™! and (, respectively.

Let us note that, as a by-product, we obtain that the

two columns “O” and “s” of the representation are

connected by an analytic continuation! Explicitly we
have (by Cauchy’s formula),

Psa () & f x
sn=t
Y, (x) explisw)

2r
st dw [1-2x2 exp(—iw) + & exp(- 2Ziw)]*"?

ns/2 el n/2 xg,
«(¢¢") f Framct (52)

sn=1

Taking into account the explicit form of Gegenbauer
polynomials and restricting to Co (£2'=0) we have ™

PoalO) [ 0y ¥ Vql0) (2)° (53)

(a similar formula can be found in Ref. 31).
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APPENDIX TO SEC. 2

A. Root spaces for SO (n,2) = quantization rule
) n=2r-1, sof,2)~B,, iw=le;=ilS".

*e, (k=1,2,..s,r),

Roots:
tey,te, (1sk<hsw),

Positive roots: —e,, —epte,,

Positive noncompact roots:
—ey, —e ey,
p—pe==(r=zey,
iw;=p+pe=U+7-2)e;=1+n/2e,.
(i) n=2r -2, so,2)=D,.
Roots: te,te, (1 sk<hsv),
Positive roots: — e, = e;,.
Positive noncompact roots:
—ejxe, p-p.=-(r-1ey,

iw,—pt+p.=0+7r- 1)e1=(l+n/2)el.

B. The multiplier u (g,£)

The most convenient method to calculate u(g, &)
=j(g71¢)™'" is the following, based on the existence of
the basis |¢&),

(W) €0, ]0)=1(g, ) (g7t ]|0)=p(g™,0) (| g-0),
(i) 0|U, [0)=p(g,00=p(g™T,0),
(1) + (1) plg, OD=plg,0(lg- 0
Ijg-i(O) (1+n/2-1)/n (§ I g°0>
We are left to calculate j,-1(0). From Eq. (24),

g8, | 2D,AMAY)=2(C,, - iC,,) By, +iB,,)
&, o AATY

:___&_...w g [5 y__]‘l-’.é(cpl_icpz/)(Bjﬁ iBZV) ],
a@’) v Ald’)

7e(0) = (—A—%) 7 detd (1 - i[(f_&':f_)'] ) .

Taking into account that BDIC=BB A=A ~A'"! and
that detD =detd, we obtain

2 AA) T\ 2
Finally
~Q+n /2-1) .
wig, )= (A—Z(A—)> [1-2—*&—&1—Zg (g(A)”—&LC )
~len/2+1

; 2
S

_ i(‘_é_) AC(A) , =1-n/2+1
—[2 —§C(})+——2—§§] .
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M2
IO}
@ ®
@ @ @
-0 0 @@ FIG. 1. The level structure
e oo (weight diagram) for »n=3,
lz' e e e ® S-I| 1>0.

e e @
® @

APPENDIX TO SEC. 3: DETAILSON THE CASEn =3

Let us examine the representation corresponding to
120, n=3. We have

(A-268 + e[ =5 B 2 (ol 68)

=0 m==g

%3

where

221+k-1

¢smk(€) = m

N (s=R) 20 +k) /2
T+2+k) (I‘(s +k+2l+1)>

T+ +m)/2]T[1 + (k- m)/2]
(e +m)/ 211 (R = m)/2]!

XLy +iLy) ™2 (g = k)

- £
x(gg/)(s k)/zcl:k+1/2 ( 3 ) s (55)
k takes on only the values such that (k- [m 1)/
=0,1,2,..., [(s-1ml)/2] and Cl(x) are Gegenbauer

polynomials.

@sme are eigenfunctions of S and M,,; % labels the vec-
tors belonging to the same weight. This means that the
subspace corresponding to a fixed value s is reducible
under the action of SO(3) as follows (see Fig. 1),
Z,=D®® DV B ® D, e=s-2 [%J . (56)
At this point we take the limit /-~ 0. We find that all
normalization factors vanish except for k= |m|; cor-
respondingly,

Gamimi (6)~ VET/ (25 7 1) Y™ <i> P, (57)
vee
and we are left with simple weights (s, m) and irre-
ducible energy levels [with respect to SO(3)]. The rep-
resentation of SO(3,2) that we obtain is well-known as
one of the “Majorana” representations.

The explicit form of ¢, when restricted to the sub-
manifold (, is the following,

° (2s)!
m 8=
@snl®) 2% V(s ~m)! (s +m)!
x(§1+i§2)(m+lm“/2 (- §1+i§2)(lml-m)/2 (58)
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Since (,*S0(3)~8U{(2)/Z,, we can introduce complex
coordinates a, a, defined by

&y +iky=ai, la, P + |ay|* =1,
~ &y +i§z=a§, (@, ay)=(-ay,—ay), (59)
$y=aqa,.

In terms of a; we have the more familiar formulas:
> ( )._ (ZS}' S+m ,8-m (60)
Com\@ @)= 95 1 V(s —m)1 (s + )] 21 %2 -

We can easily check Eq. (50) in this particular case:

V(2s)! &
2%s!

PemBRE) = D) R™). (61)

The expansion of the kernel
(1-2LF + L8 BB 2 =[1= (@b +a by)* ]
= ZT/sm &’sm(al s az) &)sm(bb bz)

is simply given by the binomial theorem.
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On the equality of S operators corresponding to unitarily
equivalent Hamiltonians in single channel scattering

A. W. Sdenz and W. W. Zachary

Naval Research Laboratory, Washington, D.C. 20375
(Received 12 September 1975)

Some years ago, conditions in order that unitarily equivalent Hamiltonians H and W* H W yield the same
S operator were investigated by Ekstein and by Coester and his collaborators in the framework of
nonrelativistic time-dependent single-channel quantum scattering theory. This subject has turned out to be
of considerable importance for nuclear physics, since it constitutes the foundation of a widely used method
for constracting phase-equivalent nucleon-nucleon potentials. In the present paper we derive a rigorous

and concise necessary and sufficient condition for a pair of unitarily equivalent Hamiltonians, governing the

dynamics of a pair of nonrelativistic particles in the center-of-mass system, to yield the same S operator.
Our theory, based on a time-dependent approach, applies to very general types of short-range potentials,
with or without hard cores, and to an extensive class of long-range potentials. Qur necessary and sufficient
condition simplifies when certain strong limits W, , related to W, are unitary and when W, = W_.
Requirements sufficient for each of these properties to hold are determined. Various examples of operators
W such that H and W*H W have the same S operator are discussed.

1. INTRODUCTION

Using time-dependent methods, Ekstein! and Coester
and his collaborators? determined, some years ago,
conditions sufficient to guarantee that unitarily equiva-
lent Hamiltonians lead to the same S operator in the con-
text of nonrelativistic single-channel scattering. This
type of transformation of the Hamiltonian has recently
been employed in many nuclear physics investigations,
in particular, for generating phase-equivalent poten-
tials to study off-shell effects in nuclear few-body prob-
lems and nuclear matter.2® However, as of this writing,
a systematic study of this transformation method was
not available in the literature.

We propose to initiate such a study in the present
paper by a rigorous time-dependent scattering theory
approach. The Hamiltonians dealt with here are non-
relativistic ones governing the behavior of a pair of
interacting particles in the center-of-mass frame. Qur
methods can also be used in the case of multichannel
scattering, as we shall show in a separate publication.

In Sec. 2, we consider a pair of unitarily equivalent
Hamiltonians H and W*HW, supposing that H contains
~only a short-range potential, which is allowed to be of
a very general kind. Some of the topics discussed in
this section are as follows. We prove a concise neces-
sary and sufficient condition for the above two Hamil-
tonians to yield the same S operator. A special version
of the sufficiency aspect of this condition was given pre-
viously.!? Qur necessary and sufficient condition in-
volves certain strong limits W,, related to W, which
are shown to exist under very general circumstances.
The condition simplifies if W, are unitary and if W,=W_.
Sufficient conditions for these two properties to hold are
obtained. It is found that, when they exist, W, are uni-
tary if W has a gap in its spectrum or if W, commute
with appropriate observables. The relation W,=W* is
shown to follow if W is assumed to be rotationally and
time-reversal invariant. It is proved that W,=W_ is a
necessary and sufficient condition for the equality of
the S operators pertaining to H and W*HW, provided,
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in particular, that the appropriate operators commute
with suitable observables and that the former S operator
is unitary,

In Secs. 3 and 4, we generalize most of the theoretical
developments of Sec. 2 to apply to Hamiltonians with
long-range potentials without hard cores and short-
range potentials with hard cores, respectively, under
very weak conditions on these two types of potentials.
The Coulombic potentials and spherically symmetric
hard-core potentials included in this generalization
have special relevance for nuclear physics applications.
The pertinent results in Sec. 3, when specialized to
the former potentials, provide a rigorous foundation for
the procedure employed recently by Sauer® to construct
phase-equivalent potentials for proton—proton
scattering.

In Sec. 5, we discuss examples of unitary operators
W which are such that the S operators corresponding to
a pair of Hamiltonians H and W*HW of suitable type
coincide.

Appendices A and B are devoted to the proof of certain
mathematical results connected with subjects discussed
in Sec. 2-5.

2. FORMULATION AND RESULTS FOR SHORT-
RANGE POTENTIALS WITHOUT HARD CORES

In this section, we first formulate our problem in
a time-dependent manner for a pair of nonrelativistic
spinless particles, assuming that the pertinent poten-
tials are of the above type. We then establish a number
of theorems concerning the scattering properties of
two-particle systems of this kind having unitarily equi-
valent Hamiltonians.

We will work in the center-of-mass system of the
pair of particles of interest. All operators considered
in this and the next section have domains dense in the
Hilbert space #/ = L2(R®) and ranges in/. Our units are
such that the kinetic energy operator H, of the latter
pair is the unique self-adjoint extension of the negative
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Laplacian — & on CJ(R%. The self-adjoint Hamiltonian
operator governing the dynamics of the pair in the above
system will be denoted by H. In general, we will not
find it necessary to specify whether H is a self-adjoint
extension of — A+ V, where V denotes the potential de-
scribing the interactions of the pair, or whether it is

to be interpreted as the sum of the quadratic forms of
Hjand V in certain cases in which this self-adjoint ex-
tension does not exist.* The potential V is not required
to be local.

Letting
U, =exp(—-itH), V,=exp(~itH) (2.1
for each real f, we define the Mgller wave operators by
Qt:st-lim Q, (2.2)

in the present section, whenever these strong limits
exist, Here

Q, =V¥U, (2.3

over the range of ¢ just stated. ®

There have been many investigations of the self-
adjointness of H, the existence of the limits (2.2), the
unitarity of the corresponding S operator, etc. for
“nonsingular” as well as “singular” short-range
potentials.

The work of the present section applies to short-
range potentials of nonsingular or singular type, pro-
vided that the respective requirements stated explicitly
below are fulfilled. As was stated in the Introduction,
generalizations to long-range potentials and to those with
hard cores will be made in later sections.

We now consider a “transformed” system, whose
kinetic energy operator is again H, and whose Hamil-

tonian 1is
H=W+<HW, (2.9

where W denotes a unitary operator. Hence it is natural
to set

V, = exp(— itH) = W*V, W (2.5)
and to define new wave operators by
3, =s-lim®,, (2.6)
t s>
whenever these limits exist. Here
Q, = VEU, = WAVEWU,. (2.7

We shall be mainly interested in the case when W is
such that the scattering operators
S=0kQ, S=QQ. (2.8)
pertaining to A and I;, respectively, are equal.
It is convenient to define the operators

W,=s-1im W,

t =t

(2.9

when these limits exist, where
W, =UrwWU,. (2.10)

The special case when W, =2, where A is a unimo-
dular complex number, and I the identity operator on
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#, can evidently be reduced to the one in which W, =1
by considering the unitary operator AW instead of W.
Only the case W,=1Iis considered in Refs, 1 and 2,
where in the former reference W, corresponds to an
operator H; different from the one defined here. In or-
der for W,=1I to hold, it is clearly necessary and suffi-
cient that
s-lim (W - U, =0,

texe

(2.11)

A familiar sufficient condition for (2. 11) to hold is that
W 1 be compact, but this condition is not necessary.’
One easily shows that the requirement W, =X is suffi-
cient for the equality
S=8§ (2.12)
to obtain when S exists. However, it is not necessary
in order for (2.12) to hold, contrary to a statement in
Ref. 2. In Sec. 5 we will discuss an example illustrating
this last remark.

Symmetry properties play an important role in the
present paper. Thus, we shall have occasion to consi-
der the invariance of appropriate linear operators 7,
which may be either bounded or unbounded and self-
adjoint, with respect to

(a) spatial rotations: 7 commutes with the three self-
adjoint operators L; (i=1, 2, 3) corresponding to the
angular momentum components,

(b) time reversal: T commutes with the operator 6
defined by

(0Nx) =Fx), fet,

where the bar denotes complex conjugation. ®+°

It is not necessary to invoke translational invariance
explicitly because the pertinent operators act in the
center-of-mass frame of the two-particle system,
Furthermore, we do not gain anything by postulating
invariance under spatial inversion because we impose
rotational invariance and consider only spinless par-
ticles. Similarly, in the case of time-reversal invari-
ance, because all particles are spinless, we need only
consider the case in which 6 is a conjugation.

Our first result provides a simple criterion for the
equality of S and S.

Theovem 2.1: If §, and W, (2. and W.) exist, then
Q. (Q) exists. Moreover, if all four operators $,, W,
exist, then S=S if and only if

WrSW_=S.

Proof: By virtue of (2.3), (2.7, (2.10), and the uni-
tarity of Uy, one concludes that

Q, = W, W,.

(2.13)

(2.14)

From this result, together with (2.2), (2.6), (2.9), and
the familiar theorem that the strong limit of an operator
product is the product of the strong limits of its factors
when all the latter limits exist, we obtain

Q.= W*QW, (Q.=W*Q_W.) (2.15)
if Q, and W, (2. and W_) exist.
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If all the operators {2, and W, exist, we infer that

S= WHSW._ {2.18)

by invoking (2.8), (2.15), and the unitarity of W. The
last assertion of the theorem follows directly from
(2. 186).

This theorem makes it plain that W, =1 is sufficient
to guarantee that S=S.

It is natural to ask under what circumstances W, are
unitary and when do W, and W_ coincide, since these
two properties involve obvious and desirable simpli-
fications of the necessary and sufficient condition
(2.13).

As to the first question, W, are isometric when they
exist, since they are then strong limits of unitary oper-
ators. However, it is not known whether the mere exis-
tence of W, guarantees their unitarity in general. On
the other hand, the following example (due to Ekstein!)
shows that it is possible to have W,# W_, Suppose that
Q, exist and are unitary. Then W,=1, W_=S* for W
=Q,, and W,=8, W_=I for W=Q_. Hence W.# W_ for
the nontrivial case S I in this example.

We mention the following desirable, easily derivable,
consequences of the unitarity of W, and of the equality
of W, and W_, similar remarks applying in Sec. 3 and 4.
If W, are unitary, then S is unitary if and only if S is
unitary. Furthermore, if £, exist and W, are unitary,
then a necessary and sufficient condition for £, to have
the property of strong asymptotic completeness!® is
that Q, have this property. The following simple result
implicitly specifies a class of operators W which are
such that the corresponding transformed systems yield
no scattering: If S=1 and W, are unitary, then S=I if
and only if W,=W_. A more general result of this last
type is stated in Theorem 2. 4.

A sufficient condition for the unitarity of W, is given
by the following theorem, which is a special case of
Theorem A.1 of Appendix A.

Theorem 2.2: Let the spectrum of W be a proper sub-
set of the unit circle. Then W, are unitary whenever
they exist.

We have already mentioned a class of unitary oper-
ators W which satisfy the spectral condition of Theorem
2,2 and are also such that W, exist, viz., those for
which W~ is compact. In Sec. 5 we will discuss ex-
amples of unitary operators W which do not satisfy the
spectral requirement in question, but nevertheless have
the property that the corresponding W, exist and are
unitary.

The next theorem furnishes further sufficient condi-
tions for the unitarity of W,. It will be convenient to use
the terminology of von Neumann algebras'**? in its
proof. Thus, if /denotes a set of closed linear opera-
tors (not necessarily bounded) with domains dense in
4 and ranges in /4, /¥ " will denote the collection of all
bounded operators from / to/# which commute with
each operator in/l, M "=(h "), ete.

Theorvem 2.3: When W, (W_) exists, the following state-
ments hold: (i) If W commutes with L? and L,, then
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W.(W.) is unitary. (ii) If W is invariant under spatial
rotations and time reversal, then W, and W_ are unitary
operators such that

Wr=Ww_,

Remavks; Part (i) of this theorem can be immediately
generalized as follows. Suppose that {T‘, ic 7}, where
/ is an arbitrary index set, is a set of self-adjoint op-
erators such that each 7; commutes with H, and W, and
that {H,, T;,7< 7} is Abelian. Then W,(W.) is unitary
whenever it exists. Theorem 2.4 and the pertinent por-
tions of Theorems 3.1 and 4.1 can be analogously
generalized.

Pvyoof of Theovem 2.3: We first note that the exis-
tence of W, or W_ entails its commutativity with ;.
This follows from (2. 9), (2.10), and the fact that
{U,, -~ <t <=} is a unitary group.

As before, we shall only prove the theorem for W,,
whose existence is henceforth assumed in this proof.

Proof of (i): It is well-known that A ={H,, L?, L,}" is
a maximal Abelian von Neumann algebra (4'=4). This
is a consequence of the fact that the von Neumann alge-
bra{(Hy),." generated by the restriction (H,);, of H, to
any given #/,,, is maximal Abelian, Here #/,,, is the sub-
space of // spanned by the simultaneous eigenfunctions
of L? and L, of given  and m. Now, W,eA if W com-
mutes with L% and L;. On the other hand, sinceA is an
Abelian von Neumann algebra, all of its operators are
normal. Because W, is isometric, we therefore infer
that it is unitary when W commutes with L? and L,.

Proof of (ii): Let us confine our attention to a fixed
! and m. From the maximal Abelian property of {(H,); ",
in particular, one deduces that the restriction (W,),,, of
W, to#,m is in {(H); 4" and, therefore, is a function
(in the sense of the usual functional calculus)
Fyo{H) ) of (Hy),,, whenever W commutes with L? and
L,.

Let W, and hence W,, possess the stronger property
of rotational invariance. Denote by {E(}), — = <A<}
the spectral family of H,, take arbitrary f, g</,;,, and
let L, =1L, +iL,. There exist f;, g,<//;7 such that f,
=L*fand g=L%g,, where [ =~ and k=1+m, and we
have

(f’ W+g) = (f’ W+Lsg0) = (fO’ W+g())

= f.:Fzr(A)d(fo: E()\)+g0) = f_:sz(h)d(f; E()\)g),
(2.17)

where we have used the commutativity of W, and of each
E(X) with L,, In other words, the function F;.{A} cor-
responding to (W,);,, is independent of # in the present
case.

If W is time-reversal invariant, then (2.9), (2.10),
the existence of W,, and the antiunitarity of 8 jointly
entail that W_ exists and is given by

W_=86w.9, (2.18)

When W is rotationally and time-reversal invariant,
we have for arbitrary f, g€/, making use of (2.17)
and (2,18), and of the antiunitarity of 6, its commuta-
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tivity with £(A), and the fact that it leaves &} . /,, in-
variant,

(f, Wg) = (6, W_6g) = [.2F,;(0d(6f, E(V6g)

= [2F,;(Vd(f, EQ)g) = (f, Wrg). (2.19)

The assumed rotational invariance of W, implies that
of W, and hence W, and W¥ leave each #,,, invariant
when W, has this property, whence (2.19) and the ro-
tational invariance of W, yield (2. 18).

A necessary and sufficient condition for the equality
of S and S when S is unitary is a particular case of the
following theorem.

Theovem 2.4: Let H and W commute with L? and L,,
and, in addition, let S, W,, and W_ exist. Then we have:

(i) ¥
W, =W,
then S =8S.

(2. 20)

(ii) If S is unitary and §=§8, then (2. 20) holds.

Proof: When £, exist, the commutativity of H with
L% and L, implies that S also has these commutation
properties. Since S commutes with H; when it exists,
the assumptions in the first sentence of the theorem
therefore imply that SeA4. If these assumptions are
made, Theorem 2.3 guarantees the unitarity of W, and
an argument in the proof of part (i) of that theorem en-
tails that W,eA. It follows that

[S, w.]=0 (2.21)
under the latter hypotheses.

Suppose now that the conditions in (ii) are also satis-
fied. Then (2.13) and the unitarity of W, imply

W.S=8W_.

From (2.21), (2.22), and the unitarity of S, (2. 20)
follows, and therefore (ii) has been established.

(2.22)

To prove that (i) obtains, we observe that (2, 22) fol-
lows from (2. 20) and (2. 21) and that (2.16), (2.22), and
the isometry of W, imply (2.12).

An immediate consequence of Theorems 2.3 and 2. 4
is stated in the following corollary.

Covollary 2.1: Let H be rotationally invariant and W
rotationally and time-reversal invariant, let W, and S
exist, and let S be unitary. Then a necessary and suffi-
cient condition for the equality of S and S is that

W, =W_=I-2P,
where P is a projection.
Pyoof: Notice, particularly, that it follows from the

hypotheses of the corollary that W, are both unitary and
self-adjoint.

To arrive at the previous results of this section, we
have assumed that W, or W_ exists. The next theorem
gntails that the existence of W, and W_ is necessary for

S to equal S for a very large class of scattering systems.

In that theorem, R.(R.) denotes the range of ,(€2). It
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is obvious that a necessary condition for the validity of
either of the inequalities dim(% © R,) < < pertinent in
Theorem 2,5 is that H should possess at most a finite
number of linearly independent bound states and that
this condition is also sufficient when strong asymptotic
completeness obtains for $2,.

Theovem 2.5: Let §2, and SNL (2. and §~2_) exist, and
let dim{(/ ©R,) <= [dim(/ ©R_) < =], Then W,(W_) exists,

Proof: We limit ourselves to the case of W,.
Using (2.7) and the unitarity of W and V,, we find
W, = QFWQ,,
which we write in the form

W, = QFP, W, + QFQ.WS,. (2.23)

Here @,.=1-P,.

We proceed to prove that each term on the right-hand
side of (2,23) approaches a strong limit as # — = if the
conditions that @, and 2, exist and that dim(/ ©R,) <
are all fulfilled.

That this statement is true for the first such term
follows by combining the theorem concerning strong
limits of operator products already invoked in the proof
of Theorem 2.1, with the circumstance that the exis-
tence of 2, implies that of s-lim;.,$2fP,.

As for the second of these terms, the identity

QFQWR, =UFQ.WU, (2.24)

holds when 2, exists, as can be shown by invoking, in
particular, the commutativity of @, with V;. Now, the
requirement that dim{// © R,) < = entails the compactness
of @, and therefore that of @, W, Since U, is unitary and
converges weakly to zero as £ —~>, we infer that
U¥Q.WU, converges strongly to zero in this limit when
this finite dimensionality requirement is satisfied. This
completes the proof of the theorem.

3. GENERALIZATION TO INCLUDE LONG-RANGE
POTENTIALS WITHOUT HARD CORES

1t is well known that the Mdller wave operators (2. 2)
fail to exist for local potentials which are O(|x|"*) for
some 0<a <1 as Ix|=-=, For appropriate Coulomb-like
potentials'® and for much wider classes of long-range
potentials, 1 it has been shown that the modified wave
operators

Q,=s-1im &/ (3.1

tto
exist if the operator G, mentioned below is appropriately
selected. Here,

Q) =ViU;. (3.2

In (3.2), V, is given by (2.1) in terms of a self-adjoint
extension H of — A+V on Cy(R%, where V denotes a
suitable long-range potential. For the class of such
potentials considered by Alsholm, ' such a self-adjoint
extension always exists. The operator Uj in (3.2) is
defined by

U; = U, exp(—iGy), (3.3)
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where G, is a self-adjoint operator of multiplication by
a real-valued Lebesgue-measurable function G;(k) on

the momentum-space representation of R, A definition
of G,(k) is given in Appendix B. If G,(k) is defined in
this manner, and as discussed more precisely in the
latter appendix, the pertinent results of Ref. 14 entail
that G, possesses the following two properties for a
large class of long-range potentials and that, in addition,
the 2, in (3.1) exist for such potentials:

S"limexp[i(ct*s_ct)]=ls ~®0<g< ™ (3°4)
t-gw
w-lim U{ = 0. (3.5)

tetoo

Whenever (3.4) or (3.5) is assumed to obtain in sub-
sequent discussions, this hypothesis will be mentioned
explicitly.

When the present Q, exist, (3.4) is a necessary and
sufficient condition for them to have the intertwining
property

Vo0, =0, (3.6)

as follows by a trivial generalization of a theorem of
Prugoveéki. 15

_ We again consider a unitary operator W and define
H and V, by (2.4) and (2.5), respectively, in terms of
this W and the operator H mentioned in the sentence
following (3. 2). The wave operators pertaining to this
H are given by
?2* =s-lim & ,
PREX S

3.7
where

Q, = VEU! = WxVFwWU!.

In this section, the notation W, will refer to the
operators

W, =s-lim W,

et X

when these limits exist, where

W, =UM*WU,.

(3.8)

(3.9

It is thus clear that the existence of any of the opera-

tors ,, £,, or W, introduced in this section implies
its isometry.

_ In the next theorem, we shall understand R,, S, and
S to be defined in the same way as in Sec. 2, but with
82, and §2, specified by (3.1) and (3.7), respectively.

Theovem 3.1: In Theorems 2.1—2,5 and Corollary
2.1, letH, ,, R,, W,, &, S, and S be understood in
the generalized sense of the present section. Then these
theorems and corollary are true, provided that in the
cases of the generalized Theorems 2,3 and 2. 4 the addi-
tional condition (3. 4) holds and that in the case of The-
orem 2.5 the conditions (3. 4) and (3.5) obtain.*®

Preof: The generalizations of Theorems 2.1~2.5 can
be proved by steps analogous to those followed in estab-
lishing the original versions of those theorems. As far
as the generalizations of Theorems 2.3 and 2.4 are
concerned, these steps include the fact that W,, when
they exist, commute with H,. This commutativity fol-
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lows from (3. 3), together with the definition of G;, (3.4),
(3.8), (3.9), and obvious arguments. Naturally, (3.5)
plays a role in our proof of the generalization of Theo-
rem 2,5 parallel to that played by the corresponding
property of U, in the earlier proof of that theorem,

Assuming that S exists in the sense of the present
section, the generalized Theorem 2.1 referred to in
Theorem 3.1 entails that W,=1I is a sufficient condition
for §=S to be true in the present sense, a result pre-
cisely analogous to one in Sec. 2. This sufficient condi-
tion is fulfilled when W -1 is compact, if (3.5) obtains
in addition.

4. GENERALIZATION TO INCLUDE SHORT-RANGE
POTENTIALS WITH HARD CORES

In this section we shall deal only with short-range po-
tentials whose hard cores, if any, are velocity indepen-
dent. This restriction is made in the present treatment
to avoid cumbersome complications which would obscure
the ensuing theoretical developments. Certain short-
range potentials with velocity~dependent, or more prop-
erly angular-momentum-dependent, hard cores!” can be
treated by a straightforward extension of the formalism
of this section.

This formalism can also be generalized to apply to a
wide class of long-range potentials with hard cores by
defining &2, as in (4.1) and (4. 2) below, but with U, in
the latter equation replaced by an operator analogous
to the “renormalized” operator U; of Sec. 3. As we
shall show in a separate paper, these 2, exist for a
large family of local hard-core potentials of long range.
With this result and the definitions just sketched, the
theorems of the present section can be readily extended
to potentials of this family satisfying suitable conditions.

Let [ denote an open subset of R? whose complement
v is compact and may be empty. If ¥ is of positive mea-
sure, we interpret it as that part of R® occupied by the
velocity-independent hard core of interest. In this case,
we assume that the boundary oI or I’ is a closed sur-
face of class C?. The Hilbert space of relative motion
of the two interacting particles is K =/ 3(I'), where,
given any measurable subset M of R%, /[ ?(M) is defined
as that subspace of /7 = L%(R®) whose elements vanish
a.e. on the complement of M. In the generalization of
the theory of Sec. 2 developed in this section, it is con-
venient to employ suitable spaces / 2(M), rather than the
customary spaces L%(M),

Tkebe'® and Hunziker!® have developed time-dependent
scattering theories for local short-range hard-core po-
tentials for single channel and multichannel scattering
systems, respectively. We have found the former for-
mulation to be particularly convenient as a base for
our discussion, Thus, for the case when 7 is nonempty
and 3 is of the above mentioned type, Ikebe?! has
proved that there exists a self-adjoint extension 4°
{(called H in Ref. 20) of — & appropriate to the exterior
domain I' when hard-core boundary conditions are im-
posed on 3I'. This extension has domain dense in L*I)
and range in L3(1') and is explicitly characterized in
Ref. 20. We define the self-adjoint operator H'= U1y
with domain dense in / 3(I') and range in / 3(T'), where
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U is a unitary operator mapping of / 3([") onto L3(I') such
that (U)(x) =f(x) a.e. on T for each fe/%I). Similarly,
in the present section, ¥ will denote a self-adjoint op-
erator H°+V whose domain and range have the proper-
ties just mentioned, V being an appropriate potential.

To allow for the presence of hard cores, we define
wave operators €, for the system with Hamiltonian H
in the same way as proposed in Ref. 18, except that we
permit ¥ o be empty and for trivial modifications occa-
sioned by our use of K. When they exist, these £, lead to
the same S operator as do the corresponding wave opera-
tors defined in the sense of the latter reference. We set

2, =s-lim, (4.1)

Eokw
whenever these limits exist, where
Qt = V;kp Ut .

Here and for the remainder of this section, the opera-
tor V, :K—K is defined by

Vt = exp(— ltH),

and / is a projection operator with domain / and range
K.

Using, in particular, results and methods in Refs.
18 and 20, known results on self-adjointness and on the
existence of wave operators for appropriate short-range
potentials without hard cores, and straightforward argu-
ments, one readily arrives at the following conclusions.
Let V be a multiplication operator by a real-valued func-
tion in some class [ 3(I) +/*(T) N L7(R®%) [L?(D) is de-
fined analogously to / ()] or let V be a self-adjoint op-
erator of finite rank. Define H as H'+ V. Then H is
self-adjoint and the wave operators (4. 1) exist for this
H. Local potentials similar to the first class mentioned
above are considered in Ref. 19 for multichannel
scattering.

Let I' denote a subset of R® whose complement ¥ is
compact and may be void. We set X =/ %I) and denote
by 7 the projection with domain // and range K. We let
W stand for a unitary operator from K onto K and, of
course, define the Hamiltonian H of the transformed
system by

H=w+HW.

In analogy with the case of ¥, ¥ is to be interpreted as
the region occupied by the hard core of H if ¥ has posi-
tive measure. Notice that the elements of the domain of
H do not generally obey the usual hard-core boundary
conditions. Specifically, and contrary to the case of the
elements of the domain of the operator H in the last
paragraph, they need not be equivalent to continuous
functions on R® tending to zero when x < R® tends to an
arbitrary point of T .

If they exist, the wave operators for the transformed
system are

%, =s-lim%,, (4.2)

t et

where
fzt = ﬁ?‘/jUt .
The operator V;:A ~A is defined by
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V, = exp(— itH) = W*v,w,
Provided that the limits exist, we set

W,=s-lim W,,

t-too
with
W, = Urwhu,.

By means of an argument in Ref. 18 which exploits,
in particular, the compactness of ¥ and Y, one easily
shows that the operators £,, ,, and W, of this section
are isometric when they exist.

We shall now generalize the results of Sec. 2, with
the exception of Theorem 2.2, tc apply to the type of
hard core under discussion. Naturally, in the remainder
of this section R, will stand for the ranges of the oper-
ators §2, in (4.1) and the scattering operators S and S
will be defined by (2.8) in terms of the 2, and 5* in
(4.1) and (4. 2), respectively.

Theovem 4.1: In Theorems 2.1, 2,3-~2,5, and Corol-
lary 2.1, let H, @, R,, W,, %, S, and S be given by
the generalized definitions of the present section. Then
these theorems and corollary hold, if in the case of
Theorems 2.3 and 2.4 and Corollary 2.1 the operators
H and W are replaced by H” and WP, respectively, and
in that of Theorem 2.5 the conditions dim(*/ ©R,) < =
are changed to dim(X O R,) < =,

Pyoof: The generalizations of Theorems 2.1 and 2. 3-
2.5 can be proved similarly to the way in which these
theorems were established earlier. In particular, com-
ments analogous to those in the second and fourth sen-
tences of the proof of Theorem 3.1 apply here.

The conditions that # commute with L% and L,, im-
posed in Theorem 4.1, are both fulfilled if each of the
following requirements is satsified: (i) » is a finite
closed sphere of positive radius centered at the origin;
(ii) H is a self-adjoint operator H'+V, where Vis a
potential of one of the two types mentioned in the para-
graph immediately after the one containing (4.1) and,
moreover, commutes with L? and L%, Examples of op-
erators W having the properties assumed in Theorem
4.1 will be given in Sec. 5.

5. EXAMPLES

A1l of the examples of operators W considered in this
section are such that the S operators corresponding to
the Hamiltonians H and H of the relevant original and
transformed scattering systems are equal, In subsec-
tion A we discuss a W for which the operators W, de-
fined in Sec. 2 are not equal to /. In subsection B we
deal with two cases in which W is a Bohm—~Gross—Baker
transformation, a name chosen to honor three pioneers
in the study of such transformations.® In these two
cases, which include the possibility of velocity-indepen-
dent hard cores, we show that the pertinent operators
W,, understood in the sense of Sec. 4, are equal to /.

It is an easy matter to generalize the second of these
transformations (W,) so that it also applies in suitable
cases involving angular- momentum-dependent hard
cores, while preserving the last mentioned property of
the pertinent W,.
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A. Example for which W, +/

In the absence of an explicit indication to the con-
trary, all operators occurring in this subsection have
domains dense in /= L%(R® and ranges in /.

The following statements hold:

1. Let H be a self-adjoint operator and let S, the
scattering operator pertaining to H in the sense of Sec.
2, exist. Denote by W, a unitary operator commuting
with H, and S and different from /. If S is the scattering
operator pertaining to the transformed Hamiltonian
WEHW, in the sense just specified, then S=§,

2. Suppose that S and § are defined as indicated in
Sec. 3, but that all of the remaining definitions and as-
sumptions in Statement 1 are made and that the U; con-
sidered is a function of H;. Then S=S.

Statement 1 follows immediately by using the assumed
properties of W, the commutativity of S with H,, and
Theorem 2.1, and Statement 2 follows by similar argu-
ments, including the use of Theorem 3.1. In connection
with the latter statement, notice that U; can be chosen
as a function of H, for local potentials V for which
(B1)—(B3) of Appendix B obtain and which, moreover,
are such that ¥, (x) in (B2b) is spherically symmetric.

Clearly, one has W,=W;#I for the operators W, cor-
responding to W= W in the sense of Secs. 2 or 3, pro-
vided that the U; involved is a function of H, when these
W, are understood in the sense of this last section.

Let S be as prescribed in Statements 1 or 2. Then an
obvious example of such a W, is a unitary operator W(']
which is a function of H, and S, i.e., W,c{H,,S}”, and
which differs from /. If, in addition, the S in question
commutes with L% and L, and W} is also required to be
rotationally invariant, then Wf) reduces to the form

W(;':ZFIPM
1=0

as can be seen by using arguments similar to ones in-
voked in the proof of Theorem 2.3. For each !, F, is

a unitary operator which is a function of H,, and P, is
the projection onto 4, =& . A,

Notice that Wé' is time-reversal invariant if and only
if each F; is of the form

F,=1-2G,,

where, for every !, G, is a projection operator which
is a function of H,, whence, by a theorem of Stone?® and
straightforward reasoning, we may write for each /
without loss of generality

(G.N" (&) =x,(|x7®),

for fef{,, where g is the Fourier transform of g/ and
X; the characteristic function of some measurable sub-
set of [0, =),

B. Bohm-Gross-Baker transformations

These are the operators Wy and W, which we proceed
to specify. The first applies to spherical and large
classes of nonspherical hard cores of the original and
transformed systems, while the second applies only
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when the hard cores, if any, of both of these systems
are spheres centered at the origin. However, W, is a
subcase of W, if and only if all the functions g; defined
below are the same.

To define W;, we consider a pair of open sets I'; and
T’y whose complements are compact and we introduce
the following function:

1. his a function from Iy into I} which maps in a
gne—one manner an open subset (/ CI'y onto a subset
0 €Ty, where the complement of () in I'y(T;) has mea-
sure zero. Furthermore, for each xc(J, all the carte-
sian components of h(x) are continuously differentiable
with respect to each cartesian component of X and the
Jacobian J(X) of the mapping X+ /(x) is nonzero.

Let Ky =L 3(1y), Ky=L%F,), and define W, :K, ~K, by

o(x)f(h(x)) a.e. on Iy,

(Wlf)(x):{ 0 (5.1)

c
a.e. on [y,

for each feK,, where o{x)=1J(x)|'’2 on (/ and, for any
subset A of R3, A° gignifies the complement of A.

To define W,, let [, denote either the set
{xe R¥: |x!>a} for some 0<a<% or R3, and let I, de-
note either {xc R3: |x|> b} for some 0<b<w or R3, For
every [, h, is a radially symmetric transformation sat-
isfying the conditions which we now state:

II. h; is a one-one transformation from [, onto f‘z of
the form

0, x=0,
h’(X):{[g,(lx\)/lxl]x, xer, {0},

where

(5.2)

g =8+ [Jp(O)dt, »=>a.

Here a=a(a=0) when I',#R® ([, =R%), B=b (8=0)
when I',# R® (T, =R%), p, € L'({@, %)), and p,(#) >0 a.e.
on [a, =),

Let K, =/ %[,), K,=L%T,), and define /<2,<f€z,) as the
subset of HLwhose elements f have the property f(x)=0
a.e. on [3(T5). It is clear that the subspaces K, (K 5,)
are pairwise orthogonal and that

/<2:ﬁ7/<2,, /<2:&7/<zzo
1=0 1=0

For each r=1,2, we denote by /,(”,) the projections
from// onto K,(K,) and, for every I, Py (/) signity the
projections from /4 onto A, (K,).

The operator W, :/<~--/<2 is now defined by
Wy= & W,
1=9

where the W, :K,; =K, are given by

o (x)g(h(x)) a.e. on [y,

(W 2)(x) :{ 0 (5.3)

C
a.e. on [,

for each gcK,,;. Here 0;(x)=1J,(x)1*/2 a.e. on [y,
J;(x) being the Jacobian of the transformation x~ h,(x).
One has
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oy (x) = p,/z(‘x|)g,(\x|)/’x\ {(5.4)
a.e. on I,
It follows directly from the definitions that
szzzzo Walyi. (5.5)
1=

" The operators W; and W, can be shown to be unitary
by invoking standard theorems on changes of variables
in Lebesgue integrals and other equally familiar theo-
rems of integration theory. It is easily seen that W,/
and Wz/O are time-reversal invariant and that szz is
rotationally invariant.

The principal objective of this subsection is to show
that

s-Uim U¥W,P,U, =1

t=p

(5.6}

for ¥=1, 2, provided that certain conditions which are
physmally very natural are satisfied. In general, these
conditions do not entail that W, /5 —1 is compact for
these 7.

Theovem 5.1: Let h satisfy I and also each of the fol-
lowing requirements:

sup |h(x) - x| <=, (5.72)
xzT'y
lim Inx) - x| = (5.70)
i A (5.70)
1i|m o(x) = (5.7d)
Ixf =

Then (5. 6) holds for ¥=1.

Moreover, if each of the h, fulfills II and also each of
the conditions (5.7) with h(x), o(x), and I'; replaced by
h,(x), o;(x), and I',, respectively, then (5.6) obtains
for v=2.

Remarks; Suppose that h fulfills the conditions of the
first paragraph of the theorem and that, in addition,
h(x) ¥ x only when x lies in a bounded subset of (/. Then
the first assertion of the theorem follows in a substan-
tially simpler fashion than in the proof below, by argu-
ments which include exploiting the unitarity of W; and
the familiar fact that lim, .,./|AU,fIl =0 for each fin a
suitable dense subset of # when A is a projection from
# onto L 3(N), N being a bounded and measurable subset
of R3.

It is easily shown from (5. 2) and (5. 4) that the con-
ditions (5. 7) imposed on the h, in the second paragraph
of Theorem 5.1 are obeyed if each of the reguirements

lim{g; () - 7} =0,

rw

lim Py (7") = 1:

7~

sup p; (v} <=,
r€ﬂ

is satisfied for every I, where ¢ denotes [a, =) ({0, =)
when £, TR (T, =R?).

Proof of Theorem 5,1. To prove the assertion pertain-
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ing to »=1 it is sufficient to show that

s-1im (W,/, = DU, @]l =0, ac RS, (5.8)
t-gw
where
Po(%) = al?)
Indeed, (5.8) is equivalent to
- Lim (W, Py -nU, =0, (5.9)

teteo

by virtue of the uniform boundedness of the operators
of the family {(W,/, - DU,, - = <t<=} and of the known
fact that the set{¢,, ac R%} is dense in L%(R%). In turn,
(5. 9) is clearly equivalent to (5.8) in the case when »
=1,

To derive (5. 8), we first observe that a straightfor-
ward computation, using, in particular, (5.1) and a
familiar formula for (U,¢,)(x), yields

(W7, = DU, 12
~ L , exp(= ly|? {cﬁ(y, t) exp [‘ ;aiyité)]
(5.10)
Ay, D) ]cos[”\a(Y: 2 ]+ 1} ,

- 20,(y, 1) exp [“ 31 + 45 31+ 45)

where we have introduced the change in variables

y=(1+4/)""?(x~a) (5.11)
and have set
a,(y, £) = o(x),
Ay, )= |h(x) - x|2+2(x-2) - [h(x) ~x]" :xec [y, (5.12)

oy, ) =2,(y,) =0, xelf.

Invoking (5. 7b), (5.7d), (5.11), and (5.12), we con-
clude that o,(y,#) =1 and Aa(y, 1)/(1+4r?) -0 for given
y,ac R as t ~+=, Hence it only remains to show that
it is permissible to interchange lim, .,. with the inte-
gration in (5.10) in order to complete the proof of (5.8).

Now, M =supzer,0(x) and N =sup,cr, Ih(x) ~ x| are
finite by hypothesis. From (5.11), (5.12), and obvious
estimates, we therefore conclude that the integrand of
(5.10) is bounded in absolute value on R® by the f-inde-
pendent, R3-summable function {M exp[N(N + 2|y )]+ 1}?
Xexp(— lyi? for —w <t <, The legitimacy of the inter-
change of the limits in question now follows from the
bounded convergence theorem.

For our proof of the assertion pertaining to »=2 we
consider, for each /, the operator W, :K, ~K, defined by

~ g (x)g(h, (x)), a.e. on Iy,
(We)(x) = . (5.13)
0, a.e. on Iy,
for each gc/<~2 From (5.3), (5.5), and (5.13), itis

clear that W,, is the restriction of W to K. 5 for any
given /.

From arguments essentially identical to previous ones
in this proof, we infer that our hypotheses for »=2 en-
tail that

s-lim (W, 2, = )U, =0

feto

(5.14)

for every /. Using, among other facts, the ones that
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the #, reduce U, and that X, C/H, for each /, the rela-
tion between W, and W,;, and (5.5), one concludes that
(5. 14) implies that

s-lim (W,/, - U, =0.

§ =k 90
The truth of our assertion for » =2 immediately follows
from this result,
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APPENDIX A: THEOREM ON STRONG LIMITS OF
SEQUENCES OF CERTAIN UNITARY OPERATORS

Let W: 9~ 9and each U,: 9 —~ P be unitary operators,
where n runs over the positive integers and 9 is an
arbitrary separable Hilbert space. Define

W=s-limW, (a1)

N o
whenever this limit exists, where

W,=UrWU, (A2)
for each n.

For an arbitrary operator B: § — O let ¢(B) be its
spectrum and N(B) the closure of its numerical range.®
Then we have

Theorem A.1: Let 6(W) be a proper subset of the unit
circle. Then {/ is unitary whenever it exists.

Proof: Since o(W) is a closed subset of the unit circle
C, we may suppose that o{W) lacks some closed arc of
positive length. In particular, it will be sufficient to
prove the theorem under the assumption that o(W) lacks
an arc of the form

{z GCj ’argz|< 90 for some 0< 9()<7T}’ (A3)

since all other cases in which a closed arc of positive
length is missing from o(W) can be reduced to the case
(A3) by multiplying W by an appropriate unimodular
complex number,

If i/ exists, it is isometric. We shall prove that o({/)
does not coincide with the closed unit disc iz|<1. This
will show that (¢/ is unitary by virtue of a theorem? on
the spectra of isometric operators.

Take 2, N{/), The existence of i/ is easily seen to
entail the existence of a positive integer Ny(¢) such that
the distance between z; and N(W,) is less than € for all
n= Ny(€). Now, it follows from the fact that the numeri-
cal range of an operator is a unitary invariant®® that
N(W,) =N(W) for each n. Hence, the distance between
Zy and N(W) is zero. This and the fact that N(W) is
closed imply that z,< N(W) and therefore that

N{) CN(W). (Ad)
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Consider the closed, convex, proper subset_/ of the
disc |z|=<1 which is the intersection of this disc with
the half-plane Rez < cosf,< 1, Since W is normal, N(W)
is the smallest closed convex set containing o(W), %6 so
that

N(W) } (A5)
because f 2 o(W),

The isometry of {f/ implies of/) < N{#/)*" and we there-
fore infer that o{f/) C7 from (A4) and (A5). Hence, o({/)
does not coincide with the disc |zl< 1, and the proof is
complete,

APPENDIX B: WAVE OPERATORS AND RELATED
OPERATORS FOR LOCAL LONG-RANGE
POTENTIALS

In this appendix, we summarize for the reader’s con-
venience some results concerning modified wave oper-
ators and other operators for a wide class of long-range
potentials. Most of these results are simplifications of
conclusions of Alsholm,!*

We shall be concerned with a local potential V such
that
V=Vs+ Vi (B1)

Vs and V, being multiplication operators in L%(R®) by
real-valued functions Vs(-) and V. (), respectively,
where

1+ 1xD"Vs(x)e LAR®) + L=(RY), (B2a)

[V, ()| < c(1+ [x])*-,

p=0,...,2m, (B2b)
for some €, m, and & such that

€>0, m=1, m+1)t<asi. (B3)

Here m is an integer and ¢ a constant independent of the
other constants. It is clear that if the decomposition
(B1) of a given V into short-range and long-range parts
Vs and V; satisfying (B2a) and (B2b) for values of the
constants mentioned above is possible it is not unique.
This fact leads to nonunique wave operators and is a
well-recognized property of long-range potentials. 28
Hereafter in this appendix, until further notice, V, Vg,
and V, will denote arbitrary fixed operators fulfilling
all the requirements stated above.

Since Vg(+) + V. () is a real-valued function in
L3*R% + L™(RY), it follows that the operator H=H,+V
is self-adjoint. %* We define V, just as before in terms
of this H and also define self-adjoint operators G; by

(GO (W) =G (K (k),

at each f&/ in their respective domains. The functions
G{{k) exist and are specified by the recursive formulas

Gk =0

G = [ Vi (sk+ VuGI (k) ds,

for j=0,...,2m, in particular, if m is a positive in-
teger such that (B2b) is satisfied.

From the next two theorems, it follows that for the
pertinent class of long-range potentials there exist op-
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erators G; satisfying (3.4) and (3. 5) and that, in addition,

the modified wave operators (3.1) pertaining to these
G, exist.

Theovem B.1.%": Let m and a be such that (B2b) and
(B3) obtain. Then

s-lim exp{i[G{™ ~ G =1, —w<gs<o,

t et
and

w-lim U, exp(— i{G{™) =0,

t et

Theovem B.2 3': Let ¢, m, and a be such that (B2a)
- (B3) hold. Then the modified wave operators

Q™ = g-1lim VU, exp(- iGf™)
t

“to

exist,

To apply these theorems in the important special case
when V is an operator of multiplication in L%R®) by a
real-valued funetion

V() =Vs(:)+ V()
where Vg(-) satisfies (B2a) for some € >0 and
V(0 =c|x|™
for some 0< a<1, we write
V(. )=Vs(-)+ (),
with
V() = V() + el - (1 + [x[)],

Vo) =1+ [x ], (9
Plainly, V() and V,(-) in (B4) are such that Vs obeys
(B2a) and V() satisfies the inequality (B2b) at all non-
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Upper and lower bounds are proved for the static admittance of observables in a KMS state on a von
Neumann algebra. As an application some exact results for the transverse Ising model are derived.

. INTRODUCTION

Recently Roepstorff! derived a new upper and lower
bound for the state admittance of observables in a Gibbs
state. They are given in the case of a finite lattice
system.

As is well-known the states of infinite systems (i.e.,
in the thermodynamic limit) are no longer of Gibbs’ type,
and it is now widely accepted that an equilibrium state
of an infinite system should be described by a state
satisfying the KMS condition. ?

In this paper we give rigorous proofs of the upper and
lower bounds given in Ref. 1, and derive new bounds

for KMS states on a von Neumann algebra of observables.

Hence the results are valid not only for infinite lattice
systems but also for continuous systems.

In Sec. II we introduce the necessary mathematical
material and prove some more properties of the
Bogoliubov or Kubo—Mori scalar product, which was
studied in Ref. 3. In Sec. III two upper bounds and es-
sentially two lower bounds of the static admittance are
derived. Finally in Sec. IV we apply the inequalities to
prove some exact results for the transverse Ising model.

1. MATHEMATICAL FRAMEWORK

Let // be a von Neumann algebra on a Hilbert space 4.
Let {— U, be a strongly continuous map from the real
numbers IR into the group of unitaries on #, then there
exists a self-adjoint operator H on /4 such that U,
=expitH, and let x,=U,xU¥. Furthermore let w be any
vector state on /), i.e., wlx)=(R,xQ) for all xc /M, with
with € a cyclic element of /. The state w is called an
equilibrium state if it satisfies the following definition.

Definition 1I. 1: The state w on /) satisfies the KMS
condition at inverse temperature g=1/£T, if for any
pair x,y of observables in /, there exists a complex
function F,, ,(z), defined, bounded and continuous on the
strip - B <Imz <0, and analytic inside, with boundary
values F, ,(t) =w(xy), F,,{-iB)=wbx,).

Without restriction of generality, let =1 in the
sequel. Any state w satisfying the KMS condition has the
following properties?:

(i) the vector Q is separating;

(ii) for all t, U Q=g;

{iii) there exists an operator A = exp(~ H) on #/, such
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that A =FS where S is the closure of the map xQ — x*Q,
xe /M, F is the adjoint of S; furthermore, $=JA!/? is
the polar decomposition of S and JA =A'tJ, At =U,,
JQ:Q, AQ:Q;

(iv) there exists a subset 3 of elements of /| such that
A is invariant under left multiplication with A%, acC
{complex numbers), and such that A is dense in the
Hilbert space /)(A%) (domain of A%). f is generally
called the set of analytic elements.

In Ref. 3 we defined the Hilbert space /4, as the
closure of / with respect to the scalar product (x, ).
=(TxQ, TyQ); x,y € M, T=[(6 - 1)/mma]'’?,

Furthermore the following results were proved:

(i) there exists a unitary operator U from %N/ onto #,
defined by Ux =Tx82, x€ /};

(ii) let
Xe,s(0) = 1im & [ dt exp(Fizt) w(lx,y])
be the static admittance of the pair of observables
x,y €/}, then
(X%, 9)a=Xx,5(0) + (2, xEyQ), L

where E; is the orthogonal projection on the set of U,-in-
variant vectors of .

If E, is one-dimensional then
(X%, 3w = Xx, y(0) + w(x) ().

In the following we derive bounds for the scalar pro-
duct (x,y).; the implications for the static admittance
are given by formula (1).

(iii) for each pair x,y of elements in /),
0 .
(x;y)~:,[1 dt Fx,y(Zt)’

1/2
= a{xe,ah0) + o, alvq)), 2)

Now we prove some more properties of this scalar
product.

Proposition 11, 2: For all x,y < /)|, we have
1
(x’y)~=_é_[1 dt (A(1+t)/4xﬂ’ A(““/d‘yﬂ), (3)

Proof: Starting from formula (2}, after a few sub-
stitutions for the integration variable one gets
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0
(x,sv)~=-éf1 dt (A0 yQ)dt

1
+§f dHAUD 1 2yxQ x*Q),
0

But
(A(1/2)(1-t)y*9, x*Q): (A(I't)/4JA1/2yQ, A(l-t)/4JA1/2xQ)

— JA(t-1)/4A1/2yQ, JA(t-l)/4A1/2xQ)

(
(JA(1+t)/4yQ, JA(1+t)/4xQ)
:(A(1+t)/4x9’ A“"””yﬂ),

and the result follows. QED
For any x ¢ /}], denote

fx(t):logIIA“*””xQHZ. (4)
As is easily checked:

fil=1) = logw(x*x}), (5)

f(1) = logw(xx*). (6)
Furthermore

d
2explf(t)] 77 filt) == (AU ix@, HAD/4xQ)
for te(-1,1).

Hence, if x*Qc HH)

(1) = w(xHx*)/ 2w (xx*), (M
and if xQ ¢ O(H)

fi=1) = — w(x*Hx)/2w(x*x). (8)

Proposition 11, 3:

(i) for all x € /), the function - f,(t) is convex on the
interval [- 1, +1];
(ii) for all x=x*< /}, the function satisfies f.(¢)

:fx(— t)-

Proof:. For any xc 3 (analytic elements), the function
t— f.(t) is analytic, hence it is sufficient to prove
F:(t +5)/2) <3[ £.(t) + f.(s)]. But this follows from
Schwartz’s inequality,

”A[1+(t+s)/2]/4xQ“2: (A(1+t)/4xQ, A(1+s)/4xQ)

< ||A(1/4)(1+t)xQ” ”A(I/zl)(l-»s)xs-z”'

Let now x be any element of /), from definition II.1
(iv), there exists a sequence of elements {x,} in 3, such
that x, tends to x§2 and A%y Q tends to A/ %Q.

Hence f,,n(t) tends to f,(t), and f.(f) is also a convex

function as the limit of convex functions, This proves (i).

Now, if x =x*, then

”A(1/4)(1+t)x9”2:” JA(1+t)/4xQ”2
= (| JAE DAL 200 2

=[]t/ DU kg2 o AU /DU o2
and (ii) follows. QED
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IH. BOUNDS
Theovem T1.1 (Roepstorff): For all x </}, we have

wlxx*)
wlx*x)’

(o, 1)< w((x,x*])/log
Proof: From formula (4) for all x €/,

(,5)n=3% fi dt exp f.(t).

From Proposition IL. 3 (i), tc[-1,1],

fx(1)~2fx(-— 1) . £Q) +2f(— 1) > £(t) [see Fig. 1,
curve (1}],
hence
< exp fx(l) — eprx(— 1)
W A D
and by (5) and (6),
(x, %), < w(x, x*))/loglw(xx*)/w(x*x)]. QED

Covollary 111, 2. (Bogoliubov—Roepstorff). For all y
of /1 and elements of x of // such that ¥ and x*Q belong
to the domain /)(H) of H we have,

lw(ly*, D) [* < 2wy, y*Do(((x. H], x*])gtr),
where
2r

<1
log(1+7/1-7) ’

7= oy, y*])/ oy, y*D.

gr)=

Proof: Under the conditions of the corollary, as in
Ref. 3, Theorem III. 8, one gets

lw((v*, 2D *< ¢, 9) wlx, H], 2*]).

Using Theorem III. 1 to majorize (v,y)., the corollary
follows. QED

Remark: g(r =0)=1, so that the inequality above is
not stronger than the original Bogoliubov inequality in
the case w(¥y*) =w@®*y), in particular if y =y* or if w is

bt

M

~Y

FIG. 1.
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a central state. On the other hand lim,., g(») =0. Hence
the interest of the stronger version lies in the region
r=1. A stronger upper bound is obtained in the following
theorem.

Theovem II1. 3: For all x e /)

_1 wlx* exp(~ H/2) - 1]x)
b, < 5 (logTw(x* exp(— H/2)x)/w(x*x)]

wx{exp(— H/2) - 1]x*) )
log[w(x exp(~ H/2)x*)/w(xx*)]] *

Pyoof. From Proposition II, 3 (i) [see Fig. 1, curve

2],

(fx(o)_fx(_1))t+fx<0)2fx(t)9 tE[_lyO]:
(f:() = £ O+ £(0)= folt),  te[0,1].

Hence

(r,20u=3 [ dt exp £(0)

- l (exp[fx(o)] - exp[fx(_ 1)]
2 (0} = fi(=1)

exp[fx(l)] - exp[fx(o)] )
fx(1) = £ (0) '

Using formulas (5) and (8), and the fact that
£.(0) = logw(x* exp(— H/2)x) = logw(x exp(- H/2)x*),

+

one gets the result. QED

Remark: In any case, the inequality of Theorem IIi. 3
is a much stronger inequality than the one of Theorem
III. 1. The associated Bogoliubov inequality will also be
much better. We do not elaborate on this point here.

Now we turn to the lower bounds.

Theovem 111, 4: For all x& /¥,

(,x).> sup exp{fuls) - sfis)} sinh[ £1(s)]/Fils).

~1sss]
In particular,

(1) if xQ € DH),

wx¥x)?

b, 2). = 2w(x*Hx)

w(x*Hx) .
l:l - P (_ 2 w(x*x) )] ’
Gi) if ¥*Qc H(H),

w (x*)?

>
). 2w{xHx*)

wxHx*)\| .
[1 ~ &xp (_ 2 w{xx*) )] ’
(iii) if % =x*,
(x,x), = wlx exp(— H/2)x).

Proof: From Proposition I1. 3 (i), for all s (-1,1),

S:(6)= fols) + (¢ = s) fils) [see Fig. 1, curve (3)],

hence
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(yx), > & [ dt explf(s) + (=) (s)).

After integration one gets
(x,x).> exp[ £ (s) = sf'(s)] sinh[ f'(s)]/f'(s),
yielding the first part of the theorem.

If xQ < )(H), then using (5) and (8) one gets (i) by
takll'lg s=-=1.

If x*Qe HH), put s =1 and use (7) and (8) to get (ii).
If x =x*, then by Proposition II. 3 (ii) the function £,(t)

is symmetric around f =0 and fi(ft =0) =0, hence

(x,x). = exp f,(0) = w(x exp(~ H/2)x). QED

Finally we derive another lower bound, which was
first derived in Ref. 1 for finite lattice systems. We
prove it only in the case of elements x =x* < /.

Using the same proof it may be derived in the general
case,

Theorem II1. 5: For all elements x =x* of /) such that
xQ e HH),

_ ,-C
e, 0. o) (152°)
where
C =3 w(xHx)/w(x?).

Pyoof. From Proposition II. 3 (i) and (ii) it follows that
[see Fig. 1, curve (4)],

@)z =D +1) + 1 (-1) if —1<¢<0,

L= (D) -1)+ £,(1) if 0st<1.

Hence
0
(e, %).2 3 [, dt explfi= Dt + fo(= 1) + fil= 1)]
3 [t exsl AW+ £,0) - 7))

Using (5}, (6), (7), and (8) and the fact that f,(1) = f, (- 1);
fi(=1)== fi(1), and one gets the proof. QED

Remark: There is no strict relation between the two
lower bounds which we proved. However the last in-
equality is stronger than the particular cases (i) or (ii)
of Theorem III. 4. The essential difference consists in
minorizing the convex function respectively by one or by
two straight lines.

1V. APPLICATION

As an application we derive some exact results on the
transverse Ising model,® sometimes called the Blinc
model or Tunnel model, ® described by the following
Hamiltonian. Let Z* be a v-dimensional lattice, A any
finite subset of Z”, then the local Hamiltonian is given by

x 4
Hy,=§ k%)A of+3 k'%AJ(|k-1|)c:of,

where £ and J(|k[) are real numbers and we take J(0)
=0. Furthermore, 0y;a=x,y,2z; pc Z® are the Pauli
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matrices, satisfying [0%,08] = 24e,40%5,,,. The local
algebra of observables for the volume A is the completed
tensor product of the 2X 2 matrices M,,

A= ®

< Mz'
RCSA

The C*-algebra of observables ¥ is then the norm
closure of U,z v U,.

We suppose that 7, -5v | J(k) | <=, such that the map
te R— a,{x)= lim exp(itH,) x exp{—itH,), xc¥
A=~
exists and yields a strongly continuous group of *-auto-

morphisms of ¥ .’

As is easily checked, the following limits exist, and
define a not necessarily bounded derivation H of the C*-
algebra,

H{(o}) = lim [H,,0}] = 2iT,03 (9)
A=~eo
where

7= 2, J(k=pl)f,

H(O}) = 11\1m [H,, 03] = 2iQ0} - 2iT,03, (10)
H(o)) =lim[H,, 05| =~ 2iQ03. (11)

A=

Let w be a time-invariant state on , and let {7, Q, U,}
be its GNS representation, i.e.,

wx)=(Q,7(x)Q), x<A,
where Q is a cyclic vector of 4 for n(¥),
(%)) =U, nlx) UF
M=7(30".
Consider the extension of w to M; we denote it by the
same symbol w. From now on we drop the notation 7.
Finally let us suppose that w is a KMS state of M for the

time evolution x, = U,xU¥. Now we are in a position to
apply the inequalities.

Using (11) and Ref. 3, Theorem III, 2 we get
(03,05, =~ (1/2) wio}) = 0.

PZe B A
|
, ai
B || -
vy r» 2
1 - +A
i ;2(]'99(9,‘ ))
[
) l
Lty I
a2 |
|
|
1 -
(Pe) min Px
FIG. 2.
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FIG. 3.

Let us first apply Corollary III. 2 with y =0} and x =07.

Using Egs. {9)—(12) one gets immediately
0 -w(o))/as1. (13)

This means that for any fixed temperature w(o}) tends
to zero, if the frequency © tends to zero. Or in other
words the phase transition in the Ising models (i.e.,
2 =0) is not due to a breaking of the symmetry along
the x direction, which makes the model a quantum-
mechanical one.

A lower bound for the spin polarization in the x direc-
tion at fixed temperature and fixed frequency §2, can be
found by applying the inequality of Theorem III. 5. Take
x =0}, then again using (9)

- (/Ruwloy) z 1-e¢/C, (14)

where C =Q[- w(0})/Q +A],
A=—ow(ro)/Q.
As now
(Hoj, Ho}) =-4w(t,07) =0,
it follows that A = 0.
Denote
P,=-w(0)/2,

then (14) becomes

PLiAP, > —éz{l - expl- Q*(P, +A4)]},

vielding a minimum value (P,)m;, fOr the polarization P,
as is shown in Fig. 2.

It is easy to reintroduce the inverse temperature 8 in
the formulas and then Fig. 3 represents a numerical
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calculation of the bounds (13) and (14) as a function of
the temperature. The quantity A in (14) has been
majorized as follows:

*Postal address: Institute for Theoretical Physies, K. U. L.,
Celestijnenlaan 200 D, B-3030 Heverlee, Belgium.
1G. Roepstorff, “Correlation inequalities in Quantum Statisti-
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cal Mechanics and their Application in the Kondo Problem,”
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’R. Haag, N.M. Hugenholtz, and M. Winnink, Commun.
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Conformal algebra in superspace and supergauge theory*

Peter G. O. Freund

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637

(Received 6 October 1975)

The conformal algebra in a superspace with orthosymplectic metric is found to be an orthosymplectic
algebra with two extra Bose dimensions. It is argued that all supergauge fields are also Nambu—Goldstone
fields. In supergauge theory the nature of the gauged internal symmetry is found to be severely restricted:
It must be O(2 N), where N is the number of fundamental Dirac fermions or alternatively one-eightth of

the number of Fermi dimensions of superspace.

1. INTRODUCTION

Of the classical graded Lie algebras (GLA’s)! the or-
thosymplectic algebras are characteristic of graded
vector spaces endowed with a metric. They are the
graded version of the ordinary (ungraded) orthogonal
algebras.

In particle physics an important role is played by the
conformal algebra® which supplements the orthogonal (or
pseudo-orthgonal) algebras by the translations p,, dila-
tation D, and conformal boosts K. If the metric of the
underlying space is pseudo-Euclidean with m plus signs
and » minus signs then the pseudo-orthogonal algebra is
O(m,n). The corresponding “Poincaré” algebra I0(m,n)
[20(m,n) + translations] is embedded in the conformal
algebra C(m,n)=0(m +1,n+1). The nonlinear action of
the group C(m,n) on the m + n-dimensional pseudo-
Euclidean space is that on the homogeneous space O(m +
+1,n+1)/10(m,n)® L () = Abelian group of dilatations),
Here we generalize these concepts to the graded case.
Specifically the inhomogeneous orthosymplectic algebra
I0Sp(21s,,s,) (of a pseudo-Euclidean superspace® with
27 Fermi dimensions and s, + s, Bose dimensions with
Bose sector metric with s; plus signs and s, minus
signs' can be again embedded into a conformal GLA
C(27ls,,s,)=08Sp(2r!s, +1,s,+1) with a nonlinear re-
alization over the 2» + s, + s,-dimensional superspace.
One can then generalize to the graded case the argu-
ments® that show the gravitational field in Einstein’s
theory to be simultaneously a gauge field (of the Poin-
caré group) and a Nambu—Goldstone field associated
with the spontaneous breaking of general covariance.

All fields (Bose and Fermi) in supergauge theories®® are
thus simultaneously gauge and Nambu—Goldstone fields.
They are gauge fields of the inhomogeneous orthosym-
plectic “group” and Nambu—Goldstone fields correspond-
ing to the spontaneous breaking of the general covariance
in superspace. In fact supergauge theories are the only
theories involving Fermi fields where every field
appearing in the Lagrangian is both a gauge and a
Nambu—Goldstone field. The remarkable thing is that in
supergauge theories even the nature of the admissible
gauged internal symmetry (i,e., symmetry with
Lorentz-scalar generators) is severely restricted. As
we shall see, it must be of the form O(2N) with N the
number of “fundamental” Dirac fermions (quarks +
leptons).

2. A CANONICAL BASIS FOR AN
ORTHOSYMPLECTIC ALGEBRA

Consider the operators x® and 3, (a=1, ..., N=27
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+ s, +55). Let the first 2» (last s=s, +s,)2*’s and 3,’s
be Fermi (Bose). The bracketing rules are

[x,x*]=[8,,2,] =0, [3,,x%]=0?, (2.1a)

where as in Ref, 1 the bracket [ ] stands for commuta-
tor except when both bracketed operators are fermionic
in which case it is an anticommutator. The (pseudo-)
orthosymplectic metric

2v s; S, o F
e (€0 O\ ¥ e
0 +1 0 | s - . "
0o 0 -1/ s, “io,
(2.1b)
can be used to raise or lower indices, i.e.,
V,=Vbg, , Vo=V, g%, (2.1¢)
where we defined g% by
L& =0, (2.1d)

The alternative definition I7a =g,,V? only gives f/a
=(~1)3V_ where « is the grade of V, (+1 for Fermi,0
for Bose in a mod 2 grading),

Next we define the operators
(2.2)

of grade a+ b (mod 2). They obey the structure relations

M=%, — (= 1)7*¥abx go

(M2, ME] = 65M2 — (- 1)38B+Ba-aga ppe
+(= 1)E+55055gacgmM;n —(- 1)? '&"gbdgmcM;z", (2.3)

so that they span a GLA. This GLA is precisely
OSp(27ls,,s,) as can be seen from

(43,52} =0, .9

which means that the metric form x*=xx°=g xx® is
left invariant by the M¢. The canonical basis (2. 2) will
be extensively used below.

3. GRADED CONFORMAL LIE ALGEBRAS

Consider the canonical basis of Eq. (2,2) of the GLA
0Sp(27!sy,s,). To these 7(2r+ 1)+ (s, +s,)(s, + s, - 1)/
2+ 27(s, +s,) generators M¢ add the 2(2r+s, +s,) + 1
generators

P,=3,
D=x%3_, 3.1)
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K, =xx9, - (- 1)5xax°ac,

for a total of #(2r+ 1) + (s, + s, +2)(s, + 5, +1)/2 + 29(s,
+s,+ 2) generators, i.e., the right number for
OSp(271s, +1,s,+ 1), By direct computation it is readily
checked that the generators (2.2) and (3.1) do indeed
span OSp(27ls, +1, s,+1). The P,’s are obviously
translations, the K ’s conformal boosts, and D a dilata-
tion. We thus see that the graded conformal algebra is
C(271s,,5,)=0Sp(2rls, +1,s,+1), and in Egqs. (2.2)

and (3.1) we possess the nonlinear action of this algebra
on {2y + s, + s,)-dimensional superspace.

4. SUPERGAUGE FIELDS AS NAMBU-
GOLDSTONE FIELDS

It has been shown by Cho and Freund® that non-Abelian
gauge fields can simultaneously be Nambu—Goldstone
fields corresponding to the spontaneous breaking of
general covariance in a higher-dimensional space. As
long as these higher dimensions are bosonic, just as in
Kaluza—Klein theory, one has a hard time avoiding their
observability, It was therefore suggested® that all
dimensions in excess of the four basic dimensions of
space—time are fermionic. They are then trivially un-
observable, as fields depend only polinomially on them.
Gauge invariance of the second kind for internal sym-
metries emerges just as in the case of extra Bose
dimensions treated in Ref. 6. We are now dealing with
a supergauge theory and are gauging the “graded
Poincaré€ group” I0Sp(8N|1,3) where N is the number of
Dirac fermions among the superspace dimensions (four
Fermi dimensions build a Majorana spinor, eight a
Dirac spinor). Just as in the ungraded case this cor-
responds to the spontaneous breaking of general covari-
ance in superspace, We do not wish to reproduce here
the details of the generalizations of the arguments of
Refs. 4 and 6 to this case. Rather we briefly note some
of the novel features of such a generalization.

First of all the general coordinate transformations in
superspace have a simple finite dimensional graded Lie
subalgebra that is not classical (in the sense of Ref, 1)
i.e., a hyperexceptional GL subalgebra. Indeed, the
general coordinate transformations on the Fermi part
of superspace have generators

(x1)m oo (x®)%end,, a=1,...,8N,

and in virtue of the exclusion principle (x!, . ..,x®" are
Fermi dimensions) the n; here can only take the values
0 and 1 so that there are only a finite number, to wit
8N(28¥) such generators. This is precisely one of the
hyperexceptional simple GLA’s mentioned in Ref. 1, Its
representations are not fully reducible and this algebra
does not lead to a classification of fields into multiplets,
a feature not unexpected for a nonlinearly realized
symmetry.

Finally, just as in the purely bosonic case, in the
course of the spontaneous breaking of general covariance
one breaks the conformal invariance {(of superspace).

In the four-dimensional ungraded case this leads to the
appearance of five Nambu—Goldstone fields, a scalar
(dilaton) and a vector field corresponding to the breaking

425 J. Math. Phys., Vol. 17, No. 3, March 1976

of dilatations and conformal transformations. The vector
field can be set equal to the gradient of the dilaton field.
Were one, however, to keep this vector field as an ind
independent field, it would play the role of a gauge field
of dilatations as in Weyl’s unified field theory.” Similar-
ly in the graded case one picks up one scalar and one
“(4 + 8N)-vector” Nambu—Goldstone fields. The latter

is the analog of the Weyl field but now along with the
4-vector field it also has N Dirac fermion supersym-
metry partners. Again these correspond to the breaking
of conformal transformations generated by the K ’s of
Eq. (3.1).

These arguments will be more fully presented
elsewhere.

5. PHYSICAL ASPECTS OF SUPERGAUGE THEORIES

In the absence of matter (or matter fields), Einstein’s
theory of gravitation has the feature that all fields (i.e.,
the gravitational field) appearing in the Lagrangian are
simultaneously gauge fields and Nambu—Goldstone
fields. Supergauge theories share this property with
Einstein’s theory with the additional virtue that Dirac
fields are present and can provide a realistic description
of matter. If the vector fields appearing in the super-
gauge Lagrangian are to have a Yang—Mills part, then
the supergauge Lagrangian is fixed to be the scalar
curvature density (in superspace) and not one of the
scalars quadratic in the Riemann—Christoffel super-
tensor. Such terms are induced upon renormalization
but at the classical level the theory is essentially un-~
ambiguous (modulo a cosmological term). It unifies
fields of spins 0, 3, 1, %, and 2 all of which are gauge
and Nambu—Goldstone fields. It is a very tight and well-
defined structure, At this point we wish to note that this
structure even restricts the nature of the gauged internal
symmetry group. As we now show, not any compact Lie
group but only certain orthogonal groups are candidates
for internal symmetries compatible with supergauge
theories. To see this recall that supergauge theories
gauge OSp(8N11,3), the Bose sector of which is Sp(8N)
®0(3,1). 0O(3,1) is the Lorentz group and Sp(8N) the
group that shuffles all components of 2N Majorana
spinors. Therefore, not all generators of Sp(8N) are
Lorentz scalars. The Lorentz scalars are only those
that shuffle corresponding components (ith component
with ith component, ¢=1, .. .,4) of the 2N Majorana
spinors. These span the subgroup O(2N) of Sp(8N). It is
this O(2N) which is® the maximal internal symmetry
contained in OSp(8N11,3). It thus follows that only O(2N)
internal symmetries are gauged in supergauge theories.
This by no means implies that the O(2N) symmetry is
to be exact. There are sufficient scalar fields around to
spontaneously break O(2N). But for N Dirac-fermions it
is O(2N) and not SU(N) which is the internal symmetry
of the supergauge theories. Thus, e.g., for the anti-
quated but familiar case of three quarks one would ex-
pect O(6) and not SU(3). O(2N) contains SU(N) and as a
result of the spontaneous breaking chain SU(N) is an ob-
vious intermediate step. The important feature is that
the Fermi dimensionality of supevspace (8N) uniquely
determines the nature of the intevnal symmeltry group
[O(2N)]. This makes it all the more interesting to work
out such theories in full detail.
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It is proved that whenever two probability distributions, on a finite set, p and p’ are given such that p'
has a bigger mixing character than p, it is possible to find a unitary matrix U, such that p’; =X|U,’p;.
This theorem ensures that Ruch’s principle of increasing mixing character provides the strongest assertion
to be made upon the diagonal of the density matrix of some quantum mechanical system at time ¢> O,
without one’s knowing the Hamiltonian operator but given that the density matrix was initially diagonal

with a known but arbitrary diagonal.

INTRODUCTION

As the notions Ruch has introduced into statistical
mechanics to formulate his principle of increasing mix-
ing character are very new and thus not commonly
known, some ideas are briefly recalled here.

Let S(N) be a finite set with N =>2 elements. If con-
venient, §(N) will be tacitly identified with the set
{1,2,...,N}. To each element ic §(N) let a number
p; be attached such that p,; =0 for all i §(N) and
Yicsop pi=1. Such a function p: $(N) —~[0,1] is called
a probability distribution on ((N). Let the set of all
probability distributions on §(N) be denoted by V- ‘¥,
Now, one defines the following.

Definition 1: Two probability distributions p,p’c V° ‘¥
are called mixing equivalent, if there exists a permu-
tation s € S such that

pi=bs-
As Sy is a group this defines an equivalence relation.

Definition 2: The class of probability distributions
that are mixing equivalent to p< V° ‘¥ is called the mix-
ing character of p and is written [ p].

Definition 3: p’< V* ‘¥ is said to be more mixed than
pe V¥ ¥ if there exists a probability distribution ¢ on
Sy such that

pri= L

[ .
sSsy sps(i)

Obviously, definition 3 provides a relation on the set
of mixing characters. If p’ is more mixed than p the
mixing character [p’] is said to be bigger than [p];

[p'] »[p].

One can prove that [p’] - [p] is equivalent to the exis-
tence of a bistochastic matrix M such that p;=3,M;;p;.
Note that there may exist several ones. A matrix M is
called bistochastic, if the following conditions hold

Ml'i = 0:

N

Z; Mij_]"
=1

N

E M‘jzl.

i1

Another equivalent way to define the relation “ }” is
the following: Let p< [p] and 5’ < [p’] be class-repre-
sentatives in decreasing order, i.e., i>j=(p; <}p;
APi<P).
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Then the assertion [p’] ¥ [p] is equivalent to
1 1
v<l€ S(N))(_ZZ Bi<L 13.-)

From this one concludes that “ }” is a partial order-
relation on the set of mixing characters. Finally, we
mention that [p’] - [p] is equivalent to?

vie®) (i Z;(N)lp:_lls i 2 N)lpi_l‘)

IS (SIS

Let {/ be the set of all unitary NXN matrices. The
assertion (Ve (/) (p}=73,;1U,;;1*p,) will be abbreviated
p'>p. As the matrix (1U;; %) is bistochastic if Ue {/
we have

VN2V (p,p'c VI O)(p' o p=[p]t [p)
Our theorem is exactly the reverse implication,

Theovem 1:

V(N=2) V(p,p'e VI (p'] ¥ [p]=p'ep).

First, we shall prove this theorem, and then illustrate
its physical meaning.

THE PROOF OF THE THEOREM

Before proving the theorem we shall state some lem-
mas which provide us with knowledge necessary to ad-
vance a concise proof,

Lemma 1: Let P, P’ be any permutation matrices.
Then

vp vp' (p'>pe=P’p’'> Pp).

Pyoof of Lemma 1: Lemma 1 can easily be inferred
from the fact that permutation matrices in each row and
column have the number 0 exactly (N~ 1) times and the
number 1 only once.

Lemma 2: Let M be a bistochastic 2xX2 matrix. Then
it is possible to find a unitary 2X2 matrix U such that
M;;= U1

Pyoof of Lemma 2: M can be written as

(5 %)

where a, =0 and a +8=1. A suitable U for instance
is

(% %)
N
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FIG. 1.

It is remarkable that bistochastic NXN matrices
(N = 3) do not have this property. Note however that this
does not contradict our theorem.

The next lemma tells us something about two prob-
ability distributions, p and p’, which are in decreasing
order. The differences pi - p; will be denoted by 6,.
Two subsets of §(N) are needed,

6,={i|i= SV, 8;>0}, 6.={ili= SV, 5, <0h
We shall assume p#p’, so that 8, and &_ are not empty.
Supposing all this, we state Lemma 3.

Lemma 3: If [p'] & [ p], there exists a mapping
£:6,x6_—[0, 1] such that

; €;= ]éjl, and 2 €,;="0;, and €;*0=2i>j.
&6, i€,
(Independent variables are written as indices.)

Proof of Lemma 3: As p and p’ are hoth probability
distributions, we have };- ; (x,08; =0, or to put it differ-
ently, 3;=5,0; =2sco 16,1, Thus, we have two partitions
of the interval [0, 3;c,,5;] namely,

0< ;< Oy, +0;)< By, + 0, +08; <o L6,

- - i i b "o i

0'\(511!<\.6j1|+|§j2|'\ jg_iéj
The sequences of indices i,= 0, and j,= 6_ are nothing
but the elements of 6, and §_ in their natural order,
i.e.,

V=i, <1, P<p=j,<i,.
Now, we construct the product (intersection of intervals)
of these partitions, as shown in Fig. 1.

1f the interval {, with the length 5iV has a nonempty
intersection with the interval j, with the length \Gjul we
determine € ; to be equal to the length of the interval
of intersection. Otherwise, ¢ ; is determined to be 0.

Obviously, this construction ensures the conditions

€;2 0, Z; ;= 18,1, Z €;="0;

iS6, F=6_
to be valid. We still have to prove €;,;#0=i>j, As p’
is more mixed than p and both are in decreasing order,
one has WIS pt <%l ,p;). This can be expressed by

using the quantities &; as

vii= S(V)] Z:Jﬁ 0; < ;‘ 15,11
=0, I=6_
;=1 it

Suppose that i< 6, is given. Specializing the latter
assertion, we get
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22 8, 25 |6,].
tZo, h= 6
t=i A<iat
To give an idea of what the meaning of this inequality
is, we sketch an example given by Fig, 2.

On the right of the interval i only intervals with
indices j < ¢ can be found. This concludes the proof of
Lemma 3.

Let us now assume that p and p’ are given as in
Lemma 3 and the mapping € whose existence has just
been ensured, has already been chosen. Let
{6, )1, 1) = 6,%x05_/\e;; # 0} be denoted by M. Then we
have Lemma 4,

Lewna 4: Let {n, m}< M be given, The probability
distribution
p! if i#nAi#m,
pi= |\ pi-¢,, if i=mn,
pi+e,, if i=m,
is more mixed than p, i.e., [p] § [p].

Proof of L emma 4: We can assume that M \{(z, m)}
is not empty, otherwise we would have p=p and thus
(7]} [p]. Now, choose a pair (i,7) & M\{(n, m)} and de-
note the permutation matrix which permutes just 7 and

j by @,. With the aid of @, we define the probability

distribution.
pr=a{p+a,Qp,
where
01126“//(1’]""/’1'); a{zl_al‘
On the other hand, p! can be written as
b1 if 1#iNl#m,
pl= pr+€; i 1=,
pr—&; i I=j.
As (i, 1) = M we have i> j and thus p; <p}. Using
piz=hi+ Lras_ € and pi=p; - =, €; we infer
Pit €y Spi—€ye
This entails of course @y >0 and @, >0. Thus p' is a
convex linear combination of p and @, p. Therefore, p!
is more mixed than p. If p! =p the lemma has already
been proved. If p!#p we can choose another pair of in-
dices (7%, %) = M\{(n, m), (i, j)} and define a new probabil-
ity distribution with the aid of @, permuting just the new
pair and using p! instead of p, i.e.,

| Eis,
Theb
dinao-t
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Pr=aypt+ ay @ pt
where

€% %

- pix = Pix’

..
o, ay=1-a,.

Continuing in this way, one obtains p by a finite
number of steps. With the same argument which has
been used to show [p?] } [p] one can easily prove that
[p**] % [p*] holds for any step. As ¢ is transitive, this
provides the desired assertion.

Pyoof of the theorvem: Let the assertion

vip,p'c VEO)(p'] ¥ [pl=p'>p)

be denoted by G{N). The desired assertion ¥(N = 2) G(N)
will be proved by induction on N. Lemma 2 ensures that
G(2) is true. It remains to show that V(N = 2) [G(NV)
=G(N+1)]. Suppose N =2 is given, Lemma 1 tells us
that it is sufficient to deal with probability distributions
in decreasing order. Let p,p’c V5¥*1 pe given such
that both are in decreasing order and [p’] } [p]. If
[p’]=[p] we have p’=p because they are both in de-
creasing order, and then p’>p is true. If {p’]#[p] we
construct the map € using the method which was success-
ful in proving Lemma 3 (see Fig. 1). If 8;, < 5; | we
denote the index ¢; by n and the index j,; by m, other-
wise, we label 7; as »m and j; as n. After doing this, we
construct the probability distribution

pr+ 20 g, if 1e 8, \n},
i€s6_

i*n
— ) =20 &y if 1 b \{n},
b= i<s,
i*n
8 if Ie SIN+1)N\(5,UB),
DPn if I=mn.

p can be expressed by means of p’, i.e.,

pi if 1¢{n, m},

51: prlz_enm if l:n’ if ne 6+
Pt if I=m,
b1 if 1¢ {n, m},

Pr=( ph+€,, if l=n, if ne 6,

Dh— € if I=m.

According to Lemma 4, this entails [5] > [»]. Because
Pa=D,, the distributions p and p can only differ in the
remaining N elements. » is defined in such a way that
p.#1. Let us denote the restriction of p and p to
S(N+1)\{n} by ¢ and g. The probability distribution
(on SN+ NP (1/(1 - p,)]q is more mixed than

(1/(1 - p,)]g. This can easily be inferred from [5] ¥ {p]
by using ¥p,p’{[p’]  [ple=v(Ic R, 1p] 1!
<3;1p;-11)}. Thus, according to G(N), there exists

a unitary NXN matrix U such that

7=2 |0, q,.
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U can be enlarged in such a way as to obtain a unitary
(N+1)X(N+1) matrix U such that p,=3,1U;;1%p,, i.e.,
Uy if 4,j#n,
U= (0 if (i=nAj#+n)V(E+nN\j=n),
1 if i=j=n.

To give an idea of what U looks like, we write it
schematically in its explicit form, i.e.,

/-U“ U12..' 0 Uln*i.'. \

Upp Uppee+ O

0 0 1 0 Qe-- .
Un+1,1 e 0 Uml,mi eee
0 .

If we denote the permutation matrix which permutes
just » and m by P and the unit matrix by 1, we can write
p' as
p'=(al+BP)p,

where a and 8 are defined by
ﬁ:enm/(ﬁm-ﬁn), ﬁzemn/(j—)n_ﬁm),
a=1-8, a=1-j,

if ne 6, if ne 6_.

We have a =0 and 8= 0, because

Pa<bm DS D

Pnt Cam<Pm=Cms | Pt €mn <D= Emms
0<2¢, <p.=Pn 0< 2€,, < Pp= Do
if ne d,, ifnsd

Let us now have a look at the unitary matrix V defined
> 1 ifi=jAi+nN\i+m,
Ya if i=jAlG=nVi=m),
Vi=( VB ifi=uANj=m,
-VB8 ifi=mAj=n,
0 elsewhere.
It looks schematically like
({ Qoo \
01,

Obviously we have (@1+ 8P);;= | V;;|?. Combining this
with the previous result, we get

PQ:?(Z,) Ivit|2|Ulj|2>pj .
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As both U and V are unitary, 7,V;,U;; is unitary too.
If we can show that |3,V;,U,;|2=3,1V;,U,; 1%,
the proof will be complete. By using the definition of
V and U it can easily be shown that the sum 3,1 V,,U,;
consists of one term at the most. This ensures that
i1 ViUy; 2= 13, V,,U,; 1% for any { and j and concludes
the proof of the theorem.

THE PHYSICAL MEANING OF THE THEOREM

Let us consider a quantum-mechanical system whose
density operator initially (¢£=0) has a finite (N) dimen-
sional range HY, where H" is an eigenspace of some
invariant of the motion. The density operator p(f) will
then have this range for all times = 0. Thus H" can be
regarded as the space of states. Let {I1),..., IN)} be
an orthonormal basis of H¥ and suppose that the density
operator initially has the form

N
0(0) :g PYEGE
i=
Let /> 0 be given. The density operator at time ¢ is

p(t) = expl - (i/%) /1] p(0) exp[(i/7) /1],

where // is the Hamiltonian operator of the system. We
are interested in assertions concerning the diagonal of
p(t), i.e., p;()=<ilp(t)!i). The number p; and p;(f) can
be lumped into probability distributions p and p(#) so that
that the notion of mixing character applies. We call an
assertion concerning p and p(f) general if it is indepen-
dent of the special properties of the system (represented
by the Hamiltonian operator) and if it does not refer to
special initial distributions only. Or to put it different-
ly, a general assertion can always be written in the
form

V(/  Ham) Y(p) F(p, p1),

where Ham is the set of all operators which can possi-
bly be the Hamiltonian operator of the system. As Y
is finite dimensional, #/am is nothing but the set of all
Hermitian operators. F(p,p’) is an assertion that de-
pends on the probability distributions p and p’ but it
must not explicitly depend on /. We call the general
assertion V(/ < ffam) ¥p S(p, p()) better than

Y (/i = Ham) ¥p F(p, p(1)) if the condition

v(p) Y(p' ) S(p, p ) =F(p,p")
holds. Now let us look at p(f):
pi(l) = | expl— (i/7) Ht] p(0) exp[(i/7) H1t]| D)
=2 || expl= G/ AL [P s

As exp|- (5/7)#4t] is a unitary operator, this entails-
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V(H e Ham) Y (p)(p(H) e p)

Thus p’ > p provides a true general assertion. As
every unitary operator can be written as exp(iA) where
A is Hermitian, we have

v(p) Y(p) {p'>p =AY o)l p =pWD ]}

Let F(*,*) be given such that V(4 < Lam) Y(p) F(p, p(t))
is true. We then infer from the latter assertion that

v(p) W(p)p'>p=F(p,p")].

Thus V(4 < #am) V(p}(p{H) > p) is better than an arbi-
trary true general assertion and therefore it is the best
true general assertion. Our theorem tells us that this
best assertion is equivalent to V(4 < fam) Y(p)([ p()]

& [pD. Ruch’s principle of increasing mixing character®
is therefore distinguished.

The assertion [p(#)] > [p] can be interpreted very in-
tuitively. Let us assume that, referring to a certain set
of instruments, the diagonal of p(f) is the only part of
o(f) that is experimentally relevant at time {. The knowl-
edge which is represented by the off-diagonal elements
has then lost its relevance (later it may of course be-
come relevant again). In the course of time a part of
the knowledge which was initially located in the diagonal
of p(0) flows into the off-diagonal elements and loses
its relevance thereby. This phenomenon of relevancy-
loss is described by the assertion [p(1)] % [ p] and our
theorem ensures that this is the best and hence a com-
plete description. For many reasons it will be sensible
to require that any principle of statistical physics which
describes the knowledge-decay that occurs if an iso-
lated system approaches to equilibrium provides a de-
scription of the phenomenon of relevancy-loss as well.
(The entropy principle, for example, provides a
description of the phenomenon of relevancy loss.) As
according to our theorem the assertion [ p()] % {p]is
the best description of this phenomenon, we are justi-
fied in calling Ruch’s principle of increasing mixing
character the strongest principle of statistical physics,
that means, any other principle can be inferred from
this one.
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A general formula for such matrix elements is obtained, in terms of a sum of terms each proportional to

the square root of a product of eight binomial coefficients.

1. INTRODUCTION

Consider a wavefunction qons(aq o °xN) describing the
N electrons in an unfilled atomic shell, Here X;= (r]., oj)
with r, the position vector and o, =23 the spin Z com-
ponent variable of the jth electron. We assume that ¢
is an eigenstate of the N-electron spin with eigenvalue
S, and of the N-electron spin z component with eigen-
value s=-S5, -S+1, ..., S; the label S is suppressed
since it will be assumed to have the same fixed value
for all wavefunctions ¢,, involved. The label »n stands
for all other quantum numbers necessary to specify the
state. If direct spin—spin (dipole—dipole) and spin—orbit
interactions are negligible and the shell is not more than
half-filled, then those ¢ , describing the (2S5 +1)-fold de-
generate ground state are expressible according to
Hund’s rule in the form

NCAERE M ESTH( SEERE SR (- RRT W (1)

where the spatial function #, is completely antisym-
metric, the spin function x, is completely symmetric,
and the total spin S=3N. In a case in which the shell is
more than half-filled, ¢, must be expressed not as a
single product (1), but as a sum of such products in
which the spatial factor is not completely antisymmetric
and the spin factor not completely symmetric. Such
more general cases will not be considered in this paper,
although the spin parts of exchange matrix elements be-
tween such wavefunctions might be derivable by a gen-
eralization of the method used here.

A product wavefunction @, (x,° = x,)@, o (x}+°x%) is
not completely antisymmetric under all permutations of
the 2N electrons {x, - e XXy oo exj\,) but can be made anti-
symmetric by premultiplication by the 2N-electron anti-
symmetrizer /,,. Let A be a permutation-invariant
operator representing any physical observable indepen-
dent of the spin variables (0,° * - 0,0/ 0}). The matrix
element of 4 between two wavefunctions of the form
Aztvwns(pms' is

(mys4, H3S2 ‘A ' N3Sgy MgS4)
0y 2 ) O (o))
XAy Oy (1220, (] =+ xf)
X, dvy A+, @)

where each [ dx stands for an integration over r and a
summation over o=z 3; the projection property A;N
2742N of the antisymmetrizer has already been used in
eliminating one factor of A,, from the matrix element.
Upon writing/ZZN as a sum of terms involving all possi-
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ble permutations of the 2N variables (x,° ccxyxf = oo x%)
and noting that the product ¢@_(x;°*-x,)@, (x| °x%) is
already antisymmetric under infra-atomic permutations,
i.e., those involving only permutations within the set
(x,° °*x,) and/or within (x} -+ - x%), one can write (2) as
a sum of terms involving j-fold inferatomic exchange,
with § running from 0 (no exchange) to N. The term in-
volving j-fold interatomic exchange is found from (1) to
be proportional® to

Mmoo n )L (s, s,) (3)

where M, is the matrix element representing the cou-
pling between the observable A and j-fold spatial inter-
atomic electron exchange,

M(ny - ny)
= f 1,{;:‘1(];'1 e rN)u’".‘z(rll sae r;v)
o UM REEEES i SORERES OECJERES 3 FRETES W0
Xd37.1 e .d31,N d31’1’ “es da’)’N', (4)

and I, is the matrix element of j-fold interatomic elec-

tron spin exchange,

Ij(sl o ‘34)

= 2 2

01"'°N ‘71"“‘71\1'

XXy (0 * 22 0,70y 0 22 O, (0y 0 22 050507+ » 2 0y7). (5)

X, (01222 0)x, (0,7 oo+ 0))

Note that 3, carries all the dependence on the observ-
able A and on the spatial quantum numbers (%, « * °,) but
is independent of the spin z-component quantum numbers
(sy***s,), whereas I, carries all the dependence on
(s;°°°s,) but in independent of the observable A and of
the spatial quantum numbers (», * - *#n,). The phases of
the x, can be chosen so that they are all real and posi-
tive; reality has already been assumed in (5). Since the
Xs are also assumed to be normalized, one has

0<I(sy*es,)<1 (6)
by the Schwartz inequality.

In the investigations of the magnetic effects of many-
electron exchange®=* which served as motivation® for the
calculation reported here, the relevant observables A
were the interatomic Coulomb interaction and the total
intra-atomic Hamiltonians. However, since the I, are
independent of A, they are of more general significance.
In Sec. 3 we shall sketch the derivation of the general
formula for the 7, as a function of (s,*-+s,), j, and N.
Before doing so, in Sec. 2 we shall point out some rather
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obvious selection rules which severely restrict the com-~
binations of spin quantum numbers for which the matrix
elements I, are nonvanishing.

2. SELECTION RULES

In the first place, since electron exchange between
two atoms does not change the sum of the spin z com-
ponents of the two atoms, we have the selection rule

St s,=83+F5,4 (M
or
As:-—AS' (8)

where As and As” are the changes in spin z components
of the two atoms whose spin wavefunctions are involved
in (5),

As=8,~8;, As’'=8,-5,. (9)
In addition, since each electron has total spin 3, the
maximal change of spin z component of each atom as a
result of j-fold electron exchange is equal to j,

|Asi 7. (10)

The /; necessarily vanish for any combination of

(s, ***s,) violating (8) and/or (10).

3. EVALUATION OF /;

Expressions for I, and I, for certain values of N have
been worked out by Popovi¢-Bozid?; the calculation de-
scribed here leads to a general expression for all values
of Nand all j, 1<j<N, by a different method based on
combinatorial analysis.

According to Hund’s rule, the x, in (5) are totally
symmetric and belong to total spin S=3%N. Recalling that
we have assumed a choice of phase such that they are
real and positive, the normalized x, of maximal spin z
component s =S =3N is

N
X1 o n(0y 0 Oy)= Soptrso *** Qopa/r = ir_ll 50{(1/2) ] (11
where 8, ,,, is the usual Kronecker delta, equal to unity
if o=1 and zero if o= -3. The other x, can be generated
by repeated application of the spin lowering operator S-,
defined implicitly by

(s7]87]$)=[GN+3s) GN=-s+ D]}/, (12)
and explicitly by
S x(o, s+ 0y)= é x(o, - oi_l,%, Tpay® °~)5ai,-1/z- (13)
This iterates to
N!
(S7Px(oy+«+0y) = (S7Pxcas2yn(0y e 20 0y)
XGGN-pd,-I/Z. "GUN,'I/Z]’ (14)

where S, is the N-spin symmetrizer.® For the special
case (11) this reduces to

(CR P AR oy)
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N!
(N=p)! SRR Oy _p1/2)%

a2ttt 60N.-1/z)'

N-p+1!
(15)

By iteration of the standard expression’ relating x, and
Xs.p [cf. (12)] one has

(GN+s)! 1z e
X(0,0000,)= [m (S-)(1/2)N=s
XX(I/z)N(Ol.HON), —3N<gs <3N, (16)
Then by (15)
xs(o-l-.uorN)
N! 1/2
- [(%N+S)‘(%N—S)‘:| ‘S-N(éol(l/z) b 501/21“5“/2)
>(60‘1/2’)1“5»«1-'1/2 “.601\;:'1/2)' amn

It i~llows that x, is only nonzero if (3N +s) of the o, are
equal to ; and the remaining (3N —s) are equal to - 3,

and that this nonzero value is the same for every set of

0, satisfying this criterion. The constant value is easily
found by normalization, noting that there are [N!/(;N+ §)!
X (3N - §)!] terms in the sum over o, « + - 0, satisfying

the aforementioned criterion. Thus

X0, o0 =[N+ GN =s)1/NH25 (0, -0-0,)  (18).
1, if (3N+s)o, are 3 and GN-s) are -3,
0 (19)

The same result can be found by using the definition® of
SN in (17) and counting the number of permutations
giving rise to the same combination of values of 0,°°-0,.

b5(0y - ON):{

, otherwise.

Upon substituting (18) into (5) and noting the selection
rules (7)—(10), one can write the matrix element I, in
the form

Ij(slo ces,)
J
=N 2 [GN+s ) GN+s, =GN = s )IEN =5, + )}
k==f

XN+ EN+ s, IV GN —s N GN =5, = R)I]'/?

X653,51-k634,sz+kc(j,k;slsz)s (20)

with

c(j,kis,s,)

!
- 2 ,Z) 'ésl(olu-UN)Gsz(cl---oN’)
Ulo'.GN Ul ostUN
Xésl-k(o-li aew Gj’oj+l cae UN)6s2+k(01 (RPN Gjojd’ PRP g)\’r)
= E Z ’
Byeaes oyteen 551(01 cee crN)(Ssz(O'1 cenay), (21)

(0. 400040 220, +eco+0 =R}
1 i F

1

where use has been made of the fact that with the indi-
cated restrictions on the summations, 631-12 is nonzero
if and only if 551 is, and similarly for 632”@ and 632.
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To evaluate this combinatorial factor, note first that
8, (0, 0y) is nonzero if and only if (3N +s,) of the o,
are+3, and (3N -s,) are —3. Let n be the number of
the set (o oee oj) which are + 3; then (j —#) of the same
set are -3, (3N+s, -n) of (0 j,l- ++0y) are +3, and 3N
-s,—j+n)of (0, <+~ 0,) are - 3. Furthermore, be-
cause of the constraint on the summation in (21), (n-k)
of the set {0," -+ 0,’) are + 3, (j—n+#&) of the same set
are -3, (zN+s,-n+k) of the set (0,,, "t Oy ’y are +3,
and (zN~s,~j+n-k) of (g,,,'»+0,/) are —3. For each
possible value of » [the number of the set (0, <+ 0;)
equal to + 3], the contribution to ¢ is the number of
choices of the set (0, +°+ 0,0 +++0,’) consistent with
these constraints. Consider any choice of (o;* -+ oj)
such that » are + 3 and hence (N —j) are - 3. There are
j! possible permutations of these j quantities, but the
corresponding combinatorial factor is only [71/n! (4
-n)!], since the permutations of the » + 3’s among
themselves or of the (j —») - 3’s among themselves do
not correspond to distinct choices of the summation
indices (g, ¢~ oj). Determining the combinatorial fac-
tors for (0, =++0y), (0/ +++0/), and (0" +~+0,') simi-
larly, one finds

c(j,k:s,8,)

3 I (N =)

—j+n)!]

X jI
(n-R)N{(j=—nt+k)

(N =)
—n+k)‘.(§N-sz_j+n_k)!] . (22)

X
[(%N*L S2

To make this expression more explicit it is necessary
to determine the possible values of the summation index
n. Note that j can take on all integral values from 1
{exchange of a single electron) to N (exchange of all N
electrons), whereas k can take on all integral values
from —j to j. Both s, and s, can take on the (N+1)
values — 3N, —3N+1,++<,3N, where N is an integer
> 2. The summation index » then ranges over all integer
values such that the quantities »n, (j -n), GN+s, —n),
(GN-s,-j+n), (n-k), (j-n+k), GN+s,-n+k), and
(3N - s,—j+n—Fk) are all nonnegative, These restric-
tions are all incorporated if one rewrites (22) in the
form

f] : ; ; i
o (I [ N-j J N=j
C(],k.slsz)‘_’g (n) (%N-!-sl—n\)(n—k) (%N+Sz‘"+k>

(23)

and notes that the binomial coefficient ("1) vanishes if
either n, or (n, —n,) is a negative 1nteger 8

433 J. Math. Phys,, Vol. 17, No. 3, March 1976

The desired expression for I;, found by substitution
of (23) into (20) and use of appropriate identities for
binomial coefficients (or their definition), is

Ny-2 [(%N+s1>
><(§N+s1-k> (%N—sl> (%N—slﬂ“k)
n—k j—-n j=—ntk
y (§N+ s2> (%N+sz+k>
n-%k n
i L 1/2
N —-s, sN—-5,—-Fk
* (] -ntk j=~n 583'51"‘(354'52""

(24)

The desired constraints on the range of the summation
over x again follow from the vanishing of ("1) when
either n, or (n, - #,) is negative.®
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SThe calculations in Refs. 2~4 were all carried out in second
quantization representations, rather than in the Schrodinger
representation implied by (2). However, the same matrix
elements (3) have to be evaluated in the end, although use of
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(Zl) =T(ny+1)/Ty+ 1) Ty —my+ 1)
p)
vanishes if #, or (n;— ng) is a negatlve integer can be re-

placed by the statement that (;1} vanishes if n, or (n;~n,) is
negative, which implies the desired summation constraint.
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We construct the expansion of 2 Bloch wave with energy E into a complete set of multipole waves around
a “center” of a crystal as an analog of the expansion in spherical waves in free space. Crystal point group
symmetry is used to classify the set. The density of states in a cell is then analyzed into multipole
components whose magnitude depends on the cell's distance from the “‘center.”

1. INTRODUCTION

The band theory of crystalline solids considers a
single expression for the electronic density of states of
each band, states which are regarded as fully de-
localized with periodic probability over the whole crys-
tal. Emphasis on delocalized states becomes, however,
inappropriate when treating phenomena which select a
particular lattice site, as, for example, in the presence
of an isolated impurity or in photoabsorption from inner
shells which leaves a localized hole. Experimental evi-
dence of the nonuniqueness of the relevant density of
final states can be seen, for example, in the difference
between K and L spectra of solid Al,! which has been
accounted for recently in a qualitative way by Hayes and
Sen.? In effect, the introduction of a “center” spoils the
translational invariance of the lattice and shifts the
analysis toward a local point of view.

Central symmetry is, of course, essential to the
states of isolated atoms. Here, orbital momentum eigen-
states represent a very natural basis for analysis. In-
deed one can resolve the density of states into contri-
butions from separate orbital momenta. In crystals,
however, anisotropy spoils the conservation of angular
momentum and a corresponding analysis of the density
of states requires the construction of a new suitable
basis. Orbital momentum eigenstates are replaced in a
crystalline medium by states that transform according
to the irreducible representations of the appropriate
crystal group. However, the number of representations
of finite groups and their dimensionality are finite in

contrast to the infinity of angular momentum eigenvalues.

In a crystal, therefore, a complete basis must include
an infinity of states which transform according to the
same row of the same irreducible representation. What
we need, then, is a systematic classification of such
states, The “appropriate” crystal groups we consider
in this paper for the classification of the new set of
states are the isogonal point groups of the space groups,
whose elements, together with the inversion, transform
the constant energy surface onto itself.

A solution to this problem has been sketched in a
brief communication.® In this paper we develop the
solution in some detail, with explicit application of the
point group symmetry, and with the specific aim of re-
solving the density of states in a cell into contributions
from different multipole waves. Further applications
remain to be develaped.
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2. MULTIPOLE WAVE EXPANSION OF THE
DENSITY OF STATES

In accordance with the local character of impurity ef-
fects and related phenomena, we consider a set of
localized Wannier wavefunctions {rifn) of an electron,
where { is a band index and n is a lattice vector. We
shall drop the band index throughout since all our con-
siderations will refer to a simple band. A Bloch wave,
eigenfunction of the perfect lattice Hamiltonian corre-
sponding to the energy E, can be expressed as a super-
position of Wannier functions:

<r|k>E: ? (r ’n> <n"k>Ea
(2.1)
|k g =wk/2(k) exp(in » k).

The wave vector K is restricted to the first Brillouin
zone and ranges over the constant energy surface de-
fined by the dispersion relation

D(E; k) =0, (2.2)

which we assume to be known and which incorporates
the crystal field properties relevant to our problem.
The amplitude {nlk); includes both the phase factor ap-
propriate to the nth lattice point and a normalization co-
efficient. The definition (2. 1) sets the phase of the
Bloch wave at zero in the central cell, n=0, in ac-
cordance with the recent work of Kohn.? Since we will
work at a fixed energy E, the Bloch wave (2.1) will be
normalized per unit range of energy and of the solid
angle centered around the wave vector’s direction k.
The density of states is thus incorporated in the nor-
malization of the wavefunctions, by identifying the co-
efficient of (2.1) as:

Q, E, B \™
wsl) =5 (a(kx,ky,kz)>

Q, R?
@7)° 15V E(®)!

s (2.3)

where Q. is the volume of the unit cell (which we take as
the symmetrical Wigner—Seitz cell) and the last factor
takes into account the obliquity of the constant energy
surface. The Jacobian of the fransformation is evaluated
from the dispersion relation (2.2).

The points of the constant energy surface are in one
to one correspondence with two continuous parameters
(the polar angles of K). Our goal is to replace the two-
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parameter set of Bloch waves (2.1) of given energy by a
new set, whose elements will be called multipole waves
because of their analogy to the orbital momentum eigen-
states of free space. These waves will be labeled by in-
dices which are discrete but must run over an infinite
range of values. Their construction by a unitary trans-
formation of the set (2.1) will preserve the normaliza-
tion per unit energy.

The space variables of the new set of multipole waves
are the coordinates n of the Bravais lattice nodes,
whose point-symmetry elements form the holosymmetric
point group of the crystal system. This group always
includes the space inversion. However, since we are
constructing the multipole waves at fixed energy E, we
will classify them according to the irreducible rep-
resentations of the symmetry group of the constant
energy surface E(k)=E which is a subgroup of the holo-
symmetric group. We call T" an irreducible representa-
tion and 7 one of its rows. As previously noted, the set
of T and ¢ is finite and, therefore, insufficient to clas-
sify a complete set. Thus, fo7 each T and i, we re-
guire a further set of fwo discrete indices L and ¢ which
can run over an infinite range of values and whose
meaning remains to be determined.

The matrix elements (I'iLq |K}5 of the unitary trans-
formation, which we seek to construct, constitute the
coefficients of the expansion of the Bloch wave am-
plitudes,

(n{kp=27 2 (n|TiLg)p(Tilq K, (2.4)
1

into multipole waves (n|TiLq)g; each of these waves will

in fact be constructed by working out the inverse ex-

pansion:

(n|TiLg)p= [ dk(n|k); k| TiLq). (2.5)

The integration extends over the solid angle subtended
by the constant energy surface. Both the varying radius
of this surface and its obliquity are taken into account
in the integrand of Eq. (2.5), in particular through the
factor wg(k) which appears in the expression (2.1) of
{nik)z and will also appear in k{TiLq)g.

The role of these multipole waves in the analysis of
the density of states can be described even before their
actual construction. The translational invariance of the
crystal ensures that the total density of states N(E) is a
sum of equal contribution N{E;n) from the various cells

of the crystal, where
= f dk w5 (K)

:f dk{n|K)y &k |n}g.

as,
N(E;n) 2n)3f TE®T

2.6}

If we substitute here the expansion (2.4) of (nlk); into
multipole waves,

NEW =) 225 2, [ dkn|Tilg)s (Tilg |K)g

Ti pq rvieLl’q

X (k |Ti'L'q") g (T"i’L'q’ |n)g, 2.7
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the unitarity of the transformation

[ dk(TiLg |K)g (| T/7L ") 5 = Spps 6440 b7 11 Oges (2.8)
reduces N(E;n) to the form:
NE D=2 2 [l TiLa) [ (2.9)

This expression subdivides the density of states per cell
into contributions from the various multipoles. The
squared magnitude of the multipole wave (niTiLg); thus
represents the density of states belonging to the I'iLg-
multipole at the n cell. The expression (2.6) of N(E;n)
can also be interpreted as a “sum rule” for the set of
multipoles waves,

The “local” density of states—as defined, e.g., by
Heine and Weaire®—is similarly subdivided by trans-
forming the multipole waves and (2. 9) itself to the posi-
tion representation by means of the Wannier functions,

n(E;r):%% L_Z) [{r|TiLq)g |2, (2.10)
where
(r|TiLq)s = E (cin) (n|Tilg)p. (2.11)

3. CONSTRUCTION OF THE TRANSFORMATION
*®ITiLg)e

The set of Bloch waves with energy E reduces to plane
waves with the same energy when the crystal becomes
isotropic (empty lattice). In this limit the constant ener-
gy surface is a sphere of radius |k| = V2mE/% whose
symmetry group is the full rotation group so that the in-
dices I" and Z coincide with the indices L and m of the
angular momentum theory. The transformation (kiTiLq)
consists then simply of the spherical harmonics YLm(I;)
which indeed form a complete set of orthonormal func-
tions with weight factor 1 over a sphere of arbitrary
radius. What we want now is to construct a generaliza-
tion of the set of spherical harmonics for a nonspherical
surface with the symmetry discussed above. The func-
tions of the new set must, however, depend both on the
direction and the magnitude of k because this magnitude
varies over the surface,

(a) To allow for the variation of |k| explicitly, we
rewrite the condition of unitarity, Eq. (2.8), by ex-
tending the integration formally over the whole Brillouin
zone and then restricting it to the constant energy sur-
face by insertion of a factor 8[E — E(k)] which represents
the surface equation E(k) =E. Indicating the analogs of
the spherical harmonics by P (k), we write then the
orthonormality condition in the form

[Q./@2n)] [ dk PV () PEL" () 6(E - E(k)]

= [ dk PEP (R wp(k) PE (k)

=8prs 6y Opp0 Bgqr - 3.1)

Comparison with Eq. (2.8) shows that the nonspherical

shape of the surface requires the unitary transformation
to include a weight factor wk/2(k):
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(& [TiLg)e =w}'2(k) PRV (), (3.2)
while the remaining factor P’ (k) may reduce to a
polynomial as it does for a spherical surface.

(b) Following a general procedure of mathematical
physics, we determine the P{LP (k) as orthogonal poly-
nomials belonging to the weight function wz(K) which is
positive over the constant energy surface. The proce-
dure starts from any convenient set of linearly inde-
pendent homogeneous polynomials in the components of
k. In our case we want the polynomials to be symmetry-
adapted, that is, each of them should transform ac-
cording to a row ¢ of an irreducible representation I'" of
the point group. We make explicit the symmetry of the
polynomial by factoring out its angular part as a sym-
metry-adapted spherical harmonic X&) (%), which is
the Ath linear combination of spherical harmonics of
degree ! that transforms according to the I'i irreducible
representation of the point group (see, e.g., Bradley
and Cracknell 1972 %), Symmetry-adapted homogeneous
polynomials in k are then obtained by multiplying the

X&), (k) with the invariant quantity {k!* and any additional
power of 1k!?, which is itself an invariant polynomial
in Ry, Ry, R,

Proceeding now to regroup ail the polynomials which
are homogeneous of degree [ in k, we identify
5(I +1) (I +2) symmetry-adapted polynomials for each I
which we write as:

viBI k) =A@, s) | k| XIS (R),
(3.3)
A, s)={4r/[2@-s) +1]11(s1)2s} /2,

where s =0,1,...,[3l] (integer part of 37). The co-
efficients A(l,s) are so chosen that the expansion of the
plane wave exp(éir «K) has the form

Ez N (rek)i = 20 20 i G (o)L (),

Ti Isx

(3.4)
with each term factored into identical polynomials in r
and k, The series (3.4) represents a rearrangement of
the usual expansion of a plane wave into spherical waves,
designed for easy adaptation to nonspherical sym-
metries. Successive terms of the power expansion of
each spherical Bessel function j;» have been incorpo-
rated, in Eq. (3.4), into the various polynomials v{5*’
with equal I’ =1 — 2s and different I. This parcelling out
of the Bessel series was made necessary by the fact that
each factor |k!? is no longer independent of Fina

crystal.

explir k) =

It is emphasized that for nonspherical surfaces over
which |k! is not constant there are
[4‘21 .
;0 [20-2s)+1]=30+1) (1 +2) (3.5)
linearly independent polynomials v{L homogeneous in k
with degree [, in contrast to the familia}' number
21 +1 of harmonic polynomials Ik[’Y,,(k) for the case of
a spherical surface. In the spherical case the or-
thogonalization problem requires no special attention
because different I values correspond to different group
representations.
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(c) The determination of the orthogonal polynomials
P (k) is worked out separately for each T and for each
i because both the constant energy surface and the weight
function wg(k) are group-invariant. Moreover, each of
the irreducible representations I' is even {(+) or odd (-)
under inversion since the groups we deal with include
this operation. The degree ! of the symmetry-adapted

polynomials »{5f’(k) is similarly even or odd for each T.

The orthogonalization of the P{T¥ (k) will be carried
out, as usual, by recursion, starting with the lowest
degree, l,, that occurs for the given I in the process of
symmetry-adapting the spherical harmonics. This value
is given in the compatibility tables for the representa-
tions of the full orthogonal group and the representations
of the point group (e.g., Bradley and Cracknell®). Gen-
erally, there 1s a single symmetry-adapted polynomial
of degree [, vk 0 (k), for each I and 7, and we can set

PO =000, 5.6)

where the indices ¢ and X, which distinguish polynomials
of the same degree, have been dropped as superfluous
in this particular case. (For the cases when the irre-
ducible representation I' occurs more than once at /,
orthogonalization of the corresponding Pm)(k) should
present no difficulty.) The normalization coeff1c1ent
d'* is determined by (3.1) as

A% =, [ W (Td) [040) % 3.7
the matrix elements
(Uzsx|WE(Fi) ’Ul’s’h'>

= [ dk v{5 (K)w 5 (&)w FEUK) (3.8)

constitute the essential structural parameters for our
problem,

For each L >1,, we set up the orthogonalization pro-
cedure by representing each polynomial P{5*)(k) as the
sum of one group of terms homogeneous of degree L and
of a second group of terms of lower degree designed to
insure the orthogonalization to all P{ti)(k) with L’ <L,
Thus we set:

P(Pt)(k)

’

L
ZoEWdge + L PELRHY, (3.9)

where the coefficients gi¥% will be determined by
Schmidt orthogonalization and the di® by a separate
procedure. The orthogonality condition for L’ <L reads:

<PL'q' WE(Fl) IPLQ>

—E(PL,Q, We(Ti) |0 o )dF

LML
+ 2o (P |Wa(Ti) | Prweelg i =0, (3.10)
”qll

Owing to the previous orthonormalization of the PSP (k)
with L’ <L, this condition gives simply

81 == 20 Pyt [Wa(Ti) [ o)d . (3.11)
S
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Substitution of this result in (3.9) reduces the ortho-
normalization condition on the PP’ (k) with equal degree
L to the form:

(Pro, | Wa(T9) [Prq,)
5% défaﬂ{ 02 [ W (T 03003

L°<L
- 2 @alWe(TD) [Pure)

X(P psge |Wg(TE) IL)LM,)} d{Be) = L (3.12)
The construction of the polynomials of each degree L
thus reduces to the determination of the eigenvectors

d“*?® of the symmetric and real matrix
@ra ‘—VV—E<F7:) les' A

3.13
=<L‘LsAIWE(Fi)[vLs'x'> ( )

L<r
= 2 wral We(Td) [Prg) (Prog |[WallD) [v0n).

The order of this matrix equals the number of sym-
metry-adapted polynomials v§{5i’(k) of degree L. The
normalization of the eigenvectors d'*¢’, implied by
(3.12), coincides with that given by (3. 7) for the special
case L =1,. Examples of the construction of the Py '’ (k)

are shown in the Appendix.

4. PROPERTIES OF THE MULTIPOLE WAVES

Entering the symmetry-adapted expansion of the plane
wave (3.4) into the expression (2.5) of the multipole
wave (n|I'iLq)g, yields

(n|TiLgyp = [ dk explin-kw (k)PP (k)

:g o ) (v | We(TD) | Py 4.1)
Because of the orthogonality of P{5¥(k) to the entire
space of polynomials of degree lower than L, the ex-
pansion (4.1) starts with terms of degree I =L, This
property was introduced by Fano® as the characteristic
of the dependence of each multipole wave on the dis-
tance from the “center”,

This result permits us now to specify that the first
term of the series expansion of the multipole wave
520 24, 08 () Wi(Td) [vpgen )& 4.2)
Recalling that d‘*? is eigenvector of the matrix
_@_Lsx [Wg(T'4) v 4 ) corresponding to the eigenvalue
Wrie Wwe obtain that the first term of the series ex-

pansion of the density of states |(nITiLg)y 2 belonging
to the I'iLg-multipole is of degree 2L and is given by
2

Wrre 20 vEs @) dis” 4.3)

Since the eigenvectors d‘*® are normalized in accor-
dance with (3.12), we conclude that (4. 2) is linear,
rather than quadratic, in the eigenvalue W, of the

matrix (3.13).
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This conclusion represents the central result of the
paper; we have shown how the density of states around a
center cell in a crystalline medium can be characterized
in practice by a few parameters only of the constant en-
ergy surface, namely the eigenvalues W 1q for rather
low L. More specifically, the structural similarity of
the polynomials »{5f’(n) and of the Bessel functions
7.(In!) shows that 2{5i’(n) « 1 whenever In{ < L. How-
ever, we regard this result as the first step of a broader
investigation of physical parameters appropriate to the
study of phenomena with local character.

This point of view is close to that which motivated
Kohn* and collaborators to express energy band prop-
erties of solids directly in terms of Wannier functions
and of such local quantities as the matrix elements
{O |H,In), where H, is the 1-electron Hamiltonian of the
crystal. As an example of the connection of the two ap-
proaches, the equation of the constant energy surface,
which is given by Kohn as a Fourier series with co-
efficients (O |H,In), can be expressed in terms of the
symmetry-adapted polynomials belonging to I';*:

+
1"1)

Bl =2 Egvit (K, (4.3)
where
By =1 20 |He|m)vi5" @), (4.4

Owing to the localization of the Wannier functions, the
sum over n extends in effect only to a limited number
of cells around the center. Owing, once again, to the
properties of the polynomials v,,,, the sum in (4. 3) also
converges rapidly with increasing [.

APPENDIX: EXAMPLES OF ORTHOGONAL
POLYNOMIALS FOR THE GROUP O,

We use the notation of Bradley and Cracknell®:
Y= (2)-1/2(Y’m +¥,"), Y,/ = - i(2)'1/2(Y1'"— Y, ™.

Case 1: I';*
@) 1=0, vk)=1, Py(k)={vg|Wg|vge)’2.

(b) 1=2, vy (k)=(6)"1"? [k|?,

Py() = (a1 | Wi [020)™ {0y (&) = Py (R)(Py | W |03)].
(c) I=4

v40(k) = (47/945)172 |k |4 ()12

YO k) + (§)127,4R)],

vyp(k) = (120)7172 |k |4,

Pu(l) =W, (W~ g | W [v49))?
+ @i [ W 042021712 040 W [0 ) (K)
+ (W= (040 | W [0,0040 )],

where

uys(K) =v45(K) = Py(K) (P, | W |05
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- PyK) (P [Wg o)) (s=0,2),
and W,, are the roots of the quadratic equation
((vyo ’WE lU4o> - W4q) (v IWE |U42> - Wu) ={vy |WE {7142>2-

Case 2: T~

(a) =1, 010“)(1{) 47 \1/2 Y11'C(IE) ky,
(10 :(?> k| v, 5@) =k,
o (i) vo®) |k

Pl(i)(k) - <1J10 ‘ WE(Z) ‘Z)10>'1/21210(”(k) (1 =1, 2, 3)

(o) 1=3, vypV(k)
USO(Z)(k)
1)30(3)(1{)

o [ (3172 Y31,c(,;)_ @)1/2 Y33’°(I;,),
:< _4.71_) IkIB (%)1/2}/31.5(1%)+(%)1/2y33,s@),

105 .
- Y %),
1) 1,¢(3
vy (K) 47 \!/2 Y, C(k),
(2) N = 3 1ys(s
1)31(3)(k) —< 30 ) lkl Y1o “(k)’
V3 (k) Y (),

Py (R) = Wy, 1 2(Wy, - (vg9 | We(D) |030))?
+ @ao | W) g2
X[ | Wr (@) |09z (k)
+ Wy, = 50 | Wald) [0g)y ()]

(i=112’3);

where
s () =05, (K) = P, D (K) Py [ We () [vs) (s=0,1),

and W, are the roots of the quadratic equation
(v |WE(i) ’Uso> - W30 (s .WE(i) .031> - W)

= gy | Wg (D) |v3)%
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Case 3: I'5*
@) 1=2, vy (k) ,(4_w)“2 k|2 {720,
020(2)(1‘) = 15 YZZ,C(E),
Py R) = g [ W) 090071 20y P (K) (1=1,2).

() 1=4 vy, (k) }

7)40(2)(1{)
47 \I/2 \ s (%)1/2 Y, (k) - (@ orelk),
= (945) [¥] 2—Y2'°<13),

v“m(k) :(iym lk|4 Yzo(/;);
vy, P (k) 210 Y2 er),

PR =W, Wy - a0 | Ws(i) |040)
+ 4 |Ws(@) [0)°17?
X [0 W) [varhese ()
+ Wy = 00 | W @) [va)huy 0] ((=1,2),

where

s (8) =0,V (k) = Py (K) (P [ W) [0, (s =0,1),
and W,, are the roots of the quadratic equation
(eo [ Wa(@) [v40) = Wi (@ay | Wi (@) [vgp) = Wy,)

= {vg |[We(@) |yt
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Duality transformation in a many-component spin model
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It is shown that the duality transformation relates a spin model to its dual whose Boltzmann factors are
the eigenvalues of the matrix formed by the Boltzmann factors of the original spin model. The duality
relation valid for finite lattices is obtained, and applications are given.

The duality relation for two-dimensional spin models
can be considered both from a topological and an alge-
braic point of view., A comprehensive discussion of
these aspects for the Potts and the Ashkin-Teller (AT)
models has been given by Mittag and Stephen.? More
recently, Wegner? has reformulated the duality relation
as an instance of a more general transformation. In this
note we point out one further aspect of the duality trans-
formations. Qur result helps to clarify the reasoning
in Wegner’s formulation and also provides straightfor-
ward extensions of duality to other spin models,

Consider a g component spin model on a two-dimen-
sional lattice L which has N sites., Let £;=1,2,...,9
denote the spin state of the ith site. The Hamiltonian
can be generally written as

=- (_2) I(Eis £7), 1)

where - J(&, £’} is the interaction between the spin
states £ and £'. The summation in (1) is over all inter-
acting pairs (ij) which we assume to be noncrossing.
The partition function is

z= 25 I ultt), 2)
with

u(g, £') =explJ (&, £")/RT). 3)
We shall restrict our attention to the case that

u(&i’&j):u(gi—gj)s (mod CI)a 4)

Thus the matrix U whose elements are u(%, £') is cyclic.
It is not necessary for our discussion to further assume
that U is symmetric, although in most applications this
will be the case. In order to distinguish §; from ¢, for
a given edge connecting sites 7 and j, we place an arrow
on it pointing from 7 to j. Thus the lattice is directed.
We shall also have occasion to consider the situation,
such as for the AT model, that U is block-cyclic.

These cases will be explored in later discussions.

We can rewrite the partition function in two different
ways. First, instead of specifying the spin states by
£;, we may label the edge in (4) by the difference &,;
=¢, —&;. However, to ensure that each set of &;; will
correspond to some spin states, it is necessary (and
sufficient) to require

§ &= CCEW £i; (5)

around each face of L. Here the summation cw (ccw)
is over the edges carrying clockwise (counterclock-
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wise) arrows around the face. Clearly, the ey
mapping is ¢ to 1. Denoting the restriction (5) by a
prime over the summation sign, we can now rewrite
the partition sum (2) as

q

Z(u)=q E’ H) u(gij)- (6)

¢i=d iy

To make connection with the partition function on the
dual of L, or L®, we now cast Z into another form. Di-
rect the edges of L? such that the arrows on L? coin-

. cide with those on L if each edge of L? is rotated 90°

clockwise. The situation around a site on L is shown
in Fig. 1. Now the eigenvalues of the ¢ Xg cyclic matrix
U are

k(n)=é exp(2mitn/q)u(€), n=1,...,q, M
or, conversely,

u(e) = 2 e m) A0 7€), ®)
where

T(&,m) =g exp(2mitn/q). )

We substitute (8) into (2) and carry out the sums over
;. At each site of L, we have for each outgoing (in-
coming) arrow a factor T(t,n) [T*(,n)]. Denote the
spin states of the spin model on L? by 5, and identify
the n in (8) as n,;=7, ~ N where the arrow runs from
site « to site 8 on the corresponding edge of L?, Then
the summation over &; (cf. Fig. 1) leads to a factor

;Z.J; T(&45 M) T*(E;,mg3) « o= T(Ey, mni)

:(11-"5/251(1‘ (E Noug— E naB)’ (10)
cwW cew

FIG. 1. The directed edges around the ith site on L. The solid
(broken) lines are the edges of L (LP),
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where #; is the number of neighbors of the ith site. The
restriction imposed by the Kronecker delta on the rhs
of (10) is exactly the same as in {5) for a face of L”.
Thus, after combining (8) with (2) and using (10), the
partition function takes the form

q
Z=¢"% L' 11 Mgy, (11)
ngs=1 {ag)
where E is the number of edges of L (or L?). Finally,
by comparing (11} with (6) and using the Euler’s relation
for a connected planar graph,

N+Np=E+2, (12)
we obtain the identity
Z(u) :qi-ND Z(D)(X). (13)

This is our main result and it is valid for any finite
lattice. Here Z'?’(\) is the partition function of the spin
model on L? whose Boltzmann factors are given by (7).
While this result is implicit in Ref. 2, our discussion
does bring out in a natural way the role played by the

U matrix, thus clarifying the reasoning behind Wegner’s
formulation,

An example is the Potts model* with

ek 1 eco 1
K 560
U= ! . ¢ “oe : ° (14)
1 1 oo eK

The eigenvalues of U are

M=eFrg—1, == =el -, (15)
so that the equivalence (13) reads

Z(eF) =gt o(ek - 1)F Z2'D (eF*), (16)
where

eK*:)\i/KZ:(eK+q-—1)/(eK— 1), (17)

The above result is readily extended to the case
where U is block-cyclic. An example is the AT model
for which

U, U,

= (18)
v U, Uy |’

where U; and U, are themselves 2X2 cyclic matrices.
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Generally we consider a matrix U which is m-fold cy-
clic. That is to say, U is composed of g4 cyclic matric-
es, each of which in turn contains ¢, cyclic matrices,
etc., the dimension of U being g =¢49,°**q,. Thus, an
element of U, which specifies the spin states of the
model, is described by an m component vector
£=(L,..., &, whose componenis can take on, respec-
tively, 44,95,...,q, different values, Treating the pre-
vious £ and n as vectors, we can carry through all the
steps and again arrive at the equivalence (13), provided
that in place of (7) we have

r) =Zg) expl2mi(Eny/qy +°°  + £,/ g0 Ju(g).  (19)

For the AT model we have g, =g, =2, £;,7;=1,2.
Equation (19) then leads to the duality relations derived
by Ashkin and Teller.® As a further illustration consider
the six-component spin model whose U matrix is

Uy U, U,
v=| v, v, v, |, (20)
U, U, Uy
where U;= (¢ %) and U, =(§ £) are 2X2 matrices, It is

easily seen that the eigenvalues of U form a similar
cyclic matrix whose elements are

a*=x=a+b+2(c+p),
br=XN=a-b+2(a-p),

a*=M=N=a+b-(a+g),

21

B*=x=x=a-b-(a-p).
This is the duality transformation.

Note added in proof: Finally we remark that our re-
sult (13) is valid even if the Boltzmann factor (3) is
edge-dependent, In this case the eigenvalues (7) or (19)
are introduced for each edge ij and in (13) we have

u:{u”}, 7\:{)\”}.

*Supported in part by National Science Foundation Grant No.
DMR 72-03213A01.
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5J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).
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ERRATA

Erratum: Formula for the computation of the
representation matrix elements of the group SO(n)

[J. Math. Phys. 16, 334 (1975)|

Takayoshi Maekawa

Department of Physics, Kumamoto University, Kumamoto, Japan

(Received 7 October 1975)

(1) On p. 335, (2.7 should be changed as follows:

D(n)(ezh vees enn-l)

4
=D [kn Rupt (B ] Ry (6, o) B15(0,0q)
=n

0 4
=1 [( i1 R, k-1(9n-j n-jJe+1)> R31(9n-j n-j-z)

Jj=n=2 k=naj

XRlz(en-j n-j-l)

(2) On p. 337, the last condition of (4. 2) should be
changed to inequalify:

Moja,; = |y K l.

(3) On p. 338, the (+) sign of the second terms on the
right-hand side of (4. 6) and (4. 7) should be changed to
a (-) sign.

(4) On p. 338, (4.9) should be changed as follows
n
D™ :'312(921)Ra1(931)< I R, k-1(9k1)) Db,
k=4
(5) On p. 339, the (+) sign of the second term on the

right-hand side of (4. 16) should be changed to a ()
sign.

Erratum: On the stationary gravitational fields [J. Math.

Phys. 15, 1096 (1974)|

S. Kloster, M. M. Som, and A. Das

Department of Mathematics, Simon Fraser University, Burnaby 2, B.C., Canada

(Received 10 October 1975)

(1) The last sentence of the abstract |and the one
before Eq. (7.14)] should say that the class of metrics
found is mostly cutside the P.E. class.

(2) In the fifth paragraph of the introduction, C,
should be replaced by C*.

(3) In the sixth line of Eq. (2.6), a® should be replaced
by az, and in the seventh line, 2 should be replaced by
1.

(4) The first equation in (F,) should assert that g,
=0. The zero was omitted.

(5) The third term of the integrand in (3.2) should
be -5 expRw)f *8f,,.

(6) In the second line of Eq. (6.2), the factor (d6°
+7%5in%0 d¢?) should be replaced by »*(d6* +sin?6 do?).

(7) In Eq. (6.4), the signs should be as follows:

441 Journal of Mathematical Physics, Vol. 17, No. 3, March 1976

& = +(2B) (1 +m/2R)* +(1 = m/2R)*] [dR? = R¥(d4*
+sinh?¢ do®)| - 2k(1 - m?/4R?)*[(1 + m/2R)?
+(1 = m/2R)* ] [(2m/ k) coshy do + dt 2.

(8) The existence of conformastationary solutions
outside of the P.E. class is still an open question. The
coordinate conditions used form an overdetermined

system.
(9) In Eq. (7.1) the second dz? should be d6°.

(10) To be more precise, Eq. (7.13) should be written
= AL, O+
J’( - 1/40’)f(p’, z') +{w
¢’ -z

) M.M. Som's address is: Centro Brasileiro de
Pesqulsas Fisicas, A,V. Wenceslau, Braz, 71-Zc-82,
Rio de Janeiro-GB, Brasil.

’_1/ "NH ’ ’
o =1/4p) 7', 2 )dp’dz’.
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