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The set of pure quantum states is described as an abstract space with a geometry determined by transition 
probabilities. We describe all possible structures for three-dimensional transition probability spaces with less 
than ten states, as well as some even larger spaces of a certain symmetric type. It is shown that the 
orthoclosed subspaces of a transition probability space form an atomistic orthomodular poset. 

1. INTRODUCTION 

In an axiomatic study of quantum mechanics, Mielnik 
introduced the concept of transition probability space. 1 

The set of all pure states of a quantum mechanical sys­
tem is viewed as an abstract space with a geometry de­
termined by transition probabilities. In general, the 
states of a transition probability space need not be 
realizable in a Hilbert space. The existence of a repre­
sentation of pure states by unit vectors in a Hilbert 
space restricts the geometric structure of the state 
space. Mielnik provides numerical criteria under 
which a transition probability space can be embedded 
in a Hilbert space. His condition for embedding involves 
only two-dimensional subspaces holding up to ten states. 
As Mielnik points out, the two-dimensional subspaces 
are especially important due to their relation to the 
superposition principle. Nevertheless, it is also of 
interest to study the structure of three-dimensional 
transition probability spaces. We were led to study 
finite three-dimensional transition probability spaces 
in our effort to gain insight into the structure defined 
by the axioms. There are many more structures possi­
ble for a three-dimensional transition probability space 
than for a two-dimensional one. In the present paper, 
we describe all possible structures for three-dimen­
sional transition probability spaces holding less than 
ten states. We also prove a number of general theorems 
about transition probability spaces, using the three­
dimensional examples as illustrations. 

The axiomatic concept of transition probability is 
abstracted from the Hilbert space model of quantum 
theory. In this model, the transition probability be­
tween two pure states represented by unit vectors cp and 
</Jin Hilbert space is I (cp,</J)1 2

• 

There is a one-to-one correspondence between pure 
states and projection operators with one-dimensional 
range. We may therefore identify the set of pure states 
with the set S of all one-dimensional projection opera­
tors. If x is the prOjection operator whose range is the 
one-dimensional subspace spanned by the unit vector </J, 
then xcp= (</J, cp)</J. The absolute square of the inner pro­
duct of two unit vectors can be rewritten as the trace 
of the product of the corresponding projection operators. 
Thus, the transition probability p(x,y) between the pure 
states x and y is given by p(x,y)=trxy. This function 
satisfies O,,;;p(x,y)";; 1 andp(x,y)=p(y,x). Furthermore, 
p(x, y) = 1 if and only if x = y. Another less trivial prop­
erty is described in Sec. 2, and is used to define a 
transition probability space. 
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The plan of the remainder of the paper is as follows. 
Section 3 contains some general theorems needed for 
the construction of the examples as well as for the 
analysis of the subspace structure. Section 4 is devoted 
to a detailed analysis of all transition probability spaces 
of dimension three with less than ten states. In Sec. 5, 
we use these examples in the course of our analysis of 
the structure of the partially ordered set of all sub­
spaces of a transition probability spaceo If we restrict 
our attention to the orthoclosed subspaces, we obtain 
an atomistic or tho modular poset. In the final section, 
we analyze the structure of a certain class of sym­
metric three-dimensional transition probability spaces, 

The axioms for transition probability do not by them­
selves constitute a complete framework for quantum 
mechanics. Rather they represent a common core of a 
number of different axiomatic structures. By studying 
these axioms in isolation from others, we obtain a better 
idea of what they imply. 

2. AXIOMS 

In the sequel, we consider a mapping p: sxS - [0, 1], 
where S is an abstract set whose elements are called 
(pure) states. A subset B of S is a basis if every state 
x in S satisfies 

.0 p(x,y)=1. 
yEB 

When tne basis is an infinite set, the sum over all states 
in the basis here is to be understood as the least upper 
bound for sums over all finite subsets of the basis. For 
short, we often write p(x,B) for the sum of p(x,y) as 
y ranges over B. Heuristically, we may regard a basis 
as a sample space for an experiment, the states in a 
basis being the results or outcomes possible for that 
experiment. 

The mapping p is symmetric if p(x,y)=p(y,x) for all 
states x and yin S. If P is symmetric, then any two 
bases Bl and B2 have the same cardinality, #(B1 ) = #(B2). 
We can define the dimension of S to be the cardinality 
of any basis, provided that at least one basis exists. 
That all bases hold the same number of states was 
known to Landsberg2 in 1947, and was reproved by 
Mielnik. 1 When S is a finite set, the proof is just that 

States x and yare orthogonal if p(x,y)= O. A set of 
states is pairwise orthogonal if each distinct pair of 
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states in the set are orthogonal. A pairwise orthogonal 
set of states is maximal if it is not a proper subset of 
any larger pairwise orthogonal set of states. By Zorn's 
lemma, every pairwise orthogonal set of states can be 
extended to a maximally pairwise orthogonal set of 
states. 

The mapping p is said to satisfy the separation axiom 
if we have p(x, y) = 1 if and only if x = y. If· the separa­
tion axiom holds, then any basis for S must be a maxi­
mally pairwise orthogonal set of states. If p is sym­
metric and satisfies the separation axiom, then orthog­
onality is a symmetric and irreflexive relation. 

A symmetric function p satisfying the separation 
axiom is a transition probability if every maximally 
pairwise orthogonal subset of S is a basis. A transition 
probability space (S,p) consists of a set S and a transi­
tion probability p on S. 

It is an immediate consequence of the definition that 
each state of a transition probability space belongs to 
at least one basis. We obtain a trivial example of a 
transition probability space by taking S to be any set, 
and setting p(x,y) equal to unity for x=y, and zero for 
x"* y. In this case, the whole space is the one and only 
basis. 

The concept of transition probability can be used to 
characterize completeness for inner product spaces. 
An inner product space V is complete if and only if 
p (x, y) = tr xy is a transition probability on the set S of 
all one-dimensional proj ection operators on V. This 
follows immediately from Gudder's theorem3 that an in­
ner product space is complete if every maximal ortho­
normal set satisfies the Parseval identity. 

In any transition probability space one can introduce 
a natural topology by defining a metric d(x,y) equal to 
the least upper bound for I p(x, z) - p(y, z) I as z varies 
over all states. By the separation axiom, we always 
have 1-p(x,y)~d(x,y). The transition probability pis 
jOintly continuous in this metric space topology. In 
general, a transition probability space need not be a 
complete metric space. 

In the Hilbert space model of quantum mechaniCS, we 
have4 

d(x,y)=lub tr(x - y)z= IIx - yll. 
(2) 

Hence d(x, y) is the largest eigenvalue of the operator 
x-yo Since xyx=p(x,y)x, we have (x-y)3=[1-p(x,y)] 
(x - y), so this largest eigenvalue is d(x, y) = ,,11 - p(x, y). 
This formula implies that the quantity ,,11 - p(x, y) satis­
fies a triangle inequality in the Hilbert space model of 
quantum mechanics. This triangle inequality is one of 
Mielnik's embedding criteria. We may also describe 
d(x~y) as the minimum distance between unit vectors in 
the ranges of the projection operators x and y. 

3. GENERAL CONSIDERATIONS 

A subset T of a transition probability space (S,p) is 
a subspace if we obtain a transition probability on T by 
restricting p to TX T. Symmetry and separation are 
automatically true in T. Thus, a subset T is a subspace 
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if and only if every maximally pairwise orthogonal sub­
set of T is a basis for T. 

Any pairwise orthogonal subset of a transition prob­
ability space is a subspace. In particular, the empty 
set and all singletons are subspaces. 

The orthocomplement A.L of a subset A of a transi­
tion probability space is the set of all states which are 
orthogonal to every state in A. In general, A and Al 
are disjoint. The orthocomplement of the union of two 
sets is the intersection of their orthocomplements. If 
ACB, then BICAI. 

In general, the orthocomplement of a subset need not 
be a subspace. The simplest example of this phenome­
non occurs in a three-dimensional space with eight 
states to be discussed later. 

Nevertheless, the orthocomplement of a subspace is 
a subspace. To see this, we consider first the special 
case of a pairwise orthogonal set A. If B is a maximal­
ly pairwise orthogonal subset in AI, then A U B is a 
basis for the whole space. If x is a state in A\ then 1 
=p(x,AUB)=p(x,B). Thus B is a basis for A\ and 
hence Al is a subspace. To prove more generally that 
the orthocomplement of any subspace T is a subspace, 
we need only show that BI= TI for any basis B of T. For 
this, we note that if y is orthogonal to B, then B U {y} 
is pairwise orthogonal, so p(x,B) + p(x,y) ~ 1 for any 
state x. If x belongs to T, then p(x, B) = 1, so p(x, y) = 0 
and y E: r. Thus BI cr. The opposite inclusion also 
holds, because B CT. 

Any subset A of a transition probability space satisfies 
AcAll. A subset A is orthoclosed if A=All. The 
orthorcomplement of any subset is orthoclosed. The 
empty set and the whole space are orthoclosed sub­
spaces. In general, we can easily find the orthoclosed 
subspaces since every orthoclosed subspace is the or­
tho complement of a pairwise orthogonal subset. In fact, 
if T is an orthoclosed subspace, then T is the orthocom­
plement of any basis for r. 

If B is a pairwise orthogonal subset of a transition 
probability space, then Bll is the greatest subspace 
having B as a basis. Indeed, Bll is a subspace, and B 
is a basis for Bll since BI r; Bll = </>. If B is a basis for 
another subspac e T, then BI = r, and T c r l = Bll . 

As an application of this, we note that each singleton 
is an orthoclosed subspace: Any singleton {x} is pair­
wise orthogonal, and since {x} is a basis for {X}ll, we 
have p(x,y)=1, and hence x=y, for all yin {X}ll. Thus 
{x} = {x}ll. 

To determine whether a given subset of a transition 
probability space is a subspace, it suffices to know the 
orthogonality relation on the transition probability 
space. A subset T of a transition probability space is a 
subspace if and only if BI = TI for every maximally pair­
wise orthogonal subset B in T. We have already proved 
this condition is necessary. It is also sufficient. If BI 
= TI for each maximally pairwise orthogonal subset B 
in T, then T c Bll. Since B is a basis for Bll, we have 
p(x, B) = 1 for every state x in T, that is, B is also a 
basis for T. Hence T is a subspace. 
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Each subspace T of a transition probability space is 
itself a transition probability space, and thus has a de­
finite dimension, and dim T + dim r = dimS. In fact, any 
basis for T and any basis for T~ are disjoint, and their 
union is a basis for S. Any basis for a subspace T is 
also a basis for r\ so T and r~ have the same dimen­
sion. If orthoclosed subspaces Tl and T2 have the 
same finite dimension and satisfy Tl c T2, then Tl = T2. 
Here any basis E for Tl is also a basis for T 2, so ~ 
=E~=~, and T l =T2. 

If (Sup!) and (S2,P2) are transition probability spaces, 
then we can define a transition probability P on the dis­
joint union of SI and S2 by setting p(x, y) = 0 if x E: SI and 
yE:S2, or XE:S2 and YE:Su andp(x,y)=p/(x,y) if both x 
and y belong to Si where i = 1,2. 

A transition probability space is irreducible if it is 
not the union of two nonempty orthogonal subsets. If a 
transition probability space is the union of two orthog­
onal subsets Tl and T2, then Tl and T2 are orthoclosed 
subspaces, and Tl = T~. Therefore, it does not matter 
whether we frame the definition of irreducibility in 
terms of orthogonal subsets or in terms of orthogonal 
subspaces. 

The study of transition probability spaces reduces to 
the study of the irreducible ones. Every transition 
probability space is the union of a set of mutually or­
thogonal irreducible subspaces. 

We have described above a method for constructing 
transition probability spaces as disjoint unions. A 
modification of this method can be used to construct ir­
reducible transition probability spaces. If (SUPl) and 
(S2,P2) are transition probability spaces of the same 
dimension d ~ 2, then the disjoint union of SI and S2 can 
be made into an irreducible d-dimensional transition 
probability space by setting p(x, y) = 1/ d when x E: SI and 
y E: S2' or x E: S2 and y E: SI' and P = Pi when x and y be­
long to the same S i> where i = 1 or 2. For this construc­
tion' it does not matter if the spaces (SUPl) and (S2,P2) 
fail to be irreducible. Thus, for example, we could take 
them to be pairwise orthogonal. By repeating this con­
struction over and over, we can construct arbitrarily 
large irreducible transition probability spaces of any 
finite dimension d ~ 2. 

While there is no upper limit on the size of an ir­
reducible transition probability space of a given dimen­
sion, there does exist a lower limit. There are at least 
2d states in any irreducible transition probability space 
of dimension d ~ 2. In proving this, we may assume 
without loss of generality that the number of states is 
finite, so there are a finite number of bases, Eu E 2 , 

. . . ,Eb • For each integer n=l, . .. ,b, let In=El 
~,. on En and Un=El U 0' 0 U En' Each state x in I n-In+l 
is orthogonal to every state in Un because both belong 
to at least one of the bases Eu ... ,En' Hence 1 = p(x, 
En+l) = p(x, U n+l - Un)' and summing over all such states 
x, we find #(1n - In+l) is equal to p(1n - In+l' U n+l - Un)' On 
the other hand, since In - In+l is pairwise orthogonal, 
p(1n - In+l' y) "" 1 for all y, and summing over all states 
y in Un+1 - Un' we find the inequality #(1n - I n+l ) "" #(U n+1 
- Un)' that is, 

#(1n) + #(U n) "" #(1n+l) + #(U n+l). 
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For n=l, we have 11=Ul =E, so #(11)+ #(Ul )=2d. 
Hence 2d"" #(1n) + #(Un) holds for all n, and in particular 
for n= b. Since the whole space S is irreducible, and 
since d~ 2, no state can belong to every baSiS, that is, 
Ib= ¢. On the other hand, every state belongs to some 
basis, so Ub=S. Thus 2d"" #(S). 

A mapping h: SI - S2 from a tr ansition probability 
space (SUPl) to a transition probability space (S2,P2) 
is a homomorphism if Pl(X,y)=P2(h(x),h(y») for all 
states x and y in SI' By the separation axiom, it follows 
that every homomorphism is one-to-one. The image of 
any subspace T of SI under h is a subspace h[ T] of S2 
with the same dimension as T. In particular, h[S1] is a 
subspace of S2 and therefore dimS l "" dimS2. In general, 
the image of an orthoclosed subspace need not be ortho­
closed. If h is an onto homomorphism, then h-l is also 
a homomorphism. We may therefore define an isomor­
phism between transition probability spaces as an onto 
homomorphism. Isomorphisms do preserve orthoclosed 
subspaces. A symmetry of a transition probability space 
is an isomorphism of the space with itself. 

There can be only one state in a one-dimensional 
transition probability space, and since p(x,x)=l, all 
one-dimensional transition probability spaces are 
isomorphic. 

Two-dimensional transition probability spaces were 
studied by Mielnik. 1 Each state x in a two-dimensional 
transition probability space is orthogonal to exactly one 
other state x' because {xy is one-dimensional. Thus, 
each state belongs to exactly one basis, and distinct 
bases are diSjoint. It follows that a two-dimensional 
transition probability space must have an even number 
of states. If there are only two states, the space is 
pairwise orthogonal. If there are four or more states, 
then the space is irreducible. The mapping which takes 
x into x' is a symmetry, and x" = x. 

Transition probability spaces (SUP1) and (S2,P2) are 
similar if there is an invertible mapping f: SI - S2 such 
that states x and y in SI are orthogonal if and only if 
their imagesj(x) andj(y) are orthogonal states in S2' 
Two-dimensional transition probability spaces with the 
same number of states need not be isomorphic, but they 
are similar. 

Since the number of states in an irreducible two­
dimensional transition probability space is an even num­
ber greater than or equal to four, and since an irreduci­
ble three-dimensional transition probability space must 
have at least six states, it follows that there are no ir­
reducible transition probability spaces with 2,3, or 5 
states . 

4. THREE-DIMENSIONAL SPACES 

Two states in a transition probability space are ad­
jacent if they are neither equal nor orthogonal. The 
valence of a state x is the number of states adjacent to 
x. 

In an irreducible transition probability space, no state 
can have valence zero, unless it is the only state in the 
space. On account of the separation axiom, no state in 
any transition probability space can have valence one. 
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Thus, in an irreducible transition probability of dimen­
sion d'?- 2, all states have valence two or more. 

In a transition probability space holding a total of N 
states, there are exactly N - v-I states orthogonal to 
a state x of valence v. Since each state belongs to at 
least one basis, no state can have valence exceeding N 
- d. In a three-dimensional transition probability space, 
{xy is tWO-dimensional, so N - v -1 must be even. That 
is, in a three-dimensional space with an even number of 
states, each state has odd valence, and vice versa. 
Moreover, there is a one-to-one correspondence be­
tween bases B of the whole space holding x and bases 
for {x}~, because the other two states in B form one of 
the t(N - v -1) bases for {xY. Therefore, a state of 
valence v in a three-dimensional space belongs to exact­
ly t(N - v -1) bases. 

The minimum number of states in an irreducible 
three-dimensional transition probability space is six. 
In such a space with six states, each state has valence 
three, and thus belongs to a single basis. The whole 
space is therefore the union of two disjoint bases. All 
such spaces are similar. The transition probabilities 
can be represented by a 6x6 matrix, 

1 0 0 a-b l-c b+c-a 

0 1 0 I-a c-d a+d-c 

0 0 1 b d I-b-d 

a-b I-a b 1 0 0 

I-c c-d d 0 1 0 

b+c-a a+d-c I-b-d 0 0 1 

where a, b, c, d must satisfy 0 < b < a < 1, 0 < d < c < 1, 
b + d < 1, a < b + c, and c < a + d. These inequalities can 
be satisfied, for example, by setting b = d = t and a = c 

2 
=-3' 

If x is a state in a transition probability space, and if 
B is a basis not holding x, then x is adjacent to at 
least two distinct states in B. Indeed, if only one state 
y in B were adj acent to x, we would have 1 = p(x, B) 
= p(x, y), so that x = y, which is absurd. 

Given two distinct bases B1 and B 2 , there is at least 
one state in B1 not in B 2 , and this state must be adjacent 
to at least two states in B 2 • So there are at least two 
states in B2 not in B 1 • For three-dimensional transition 
probability spaces, this implies that two distinct bases 
can have at most one state in common. 

The union of three distinct bases B11 B2 and B3 in a 
transition probability space of dimension d holds at 
least d + 4 states. Indeed, if all states common to B2 
and B3 belong to B10 then since B2 and B3 each hold two 
states not in B10 we are done in this case. On the other 
hand, if there is a state x common to B2 and B3 not in 
B10 then B1 holds at least two states adjacent to x, and 
these states are not in the union of B2 and B 3 • Since the 
union of B2 and B3 itself holds at least d + 2 states, we 
are done again. 

Three bases form a triangle if no state is common to 
all three, yet each pair of them holds a state in com­
mon. No triangles can exist in a three-dimensional 
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transition probability space because the union of three 
bases in such a space must hold at least seven states. 

Three bases are linked if two are disjoint, and the 
third holds one state in common with each of the first 
two. In a three-dimensional transition probability space, 
no fourth basis is contained in the union of three linked 
bases because it would form a triangle with at least two 
of the three linked bases. 

In a seven-state three-dimensional transition prob­
ability space, there must be at least three bases. Their 
union holds all seven states. If the space is irreducible, 
no state can be common to all three bases. Hence the 
three bases are linked, and there can be no fourth basis. 
It follows that all seven-state three-dimensional ir­
reducible transition probability spaces are similar. We 
can number the states so that the three bases are 
{1,2,3}, {3,4,5}, and{5,6,7}. 

The transition probabilities for a seven-state three-
dimensional irreducible transition probability space can 
be represented by a 7 x 7 matrix, 

1 0 0 a I-a c -b a+b-c 

0 1 0 1 -a a l-c c-a 

0 0 1 0 0 b I-b 

a I-a 0 1 0 1 - b b 

I-a a 0 0 1 0 0 

c-b 1 -c b I-b 0 1 0 

a+b-c c-a I-b b 0 0 1 

where a, b, and c are positive numbers less than 1 satis­
fying a < c, b < c, and c < a + b. 

The states of a seven-state three-dimensional ir­
reducible transition probability space do not all have 
the same valence. Two of them have valence two, and 
five have valence four. 

A bivalent state is a state of valence two. A square 
subspace is a two-dimensional subspace holding four 
states. 

A bivalent state x in a transition probability space 
belongs to exactly one square subspace. Moreover, this 
subspace is orthoclosed. Indeed, if u is one of the states 
adj acent to x, and if B is a basis holding u, then x is not 
in Bi so B must also hold the other state v adjacent to 
x. Thus u and v are orthogonal. Since the state x is 
orthogonal to all states except u and v, it is orthogonal 
to {u,v}\ that is, x belongs to the two-dimensional 
orthoclosed subspace Q1 ={u,v}u. In a two-dimensional 
space, each state is adjacent to all other states, save 
one. But x is adjacent only to u and v, so Q1 is a square. 
The states u and v belong to any square subspace Q2 

holding x, so Q1 C Q~l. Since the orthoclosed subspaces 
Q1 and Q~l are both tWO-dimensional, Q1 = Q;l and so 
Q2 C Q1' Finally, since Q1 and Q2 both hold four states, 
Q1 = Q2' 

The only irreducible transition probability spaces 
holding two adjacent bivalent states are squares. In fact, 
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if x and y are adjacent bivalent states, then both belong 
to an orthoclosed square subspace Q. If there were a 
state z not in Q, then z is orthogonal to x, so there is 
a basis holding both x and z. Since y is not in this basis, 
it is adjacent to two states in this basis. Since y is 
bivalent, these two states must be x and the state x' in 
Q orthogonal to x. Since z and x' both belong to this 
basis, they are orthogonal. Similarly, z is orthogonal 
to the state y' in Q orthogonal to y. Hence z is orthog­
onal to every state in Q. That is, the whole space is 
the union of Q and (/. Since the whole space is irreduc­
ible, then Ql= ¢. 

As a corollary, it follows that the set of bivalent 
states in an irreducible transition probability space of 
dimension d;. 3 is pairwise orthogonal. So there can be 
at most d bivalent states in such a space. If there 
actually are d bivalent states, they form a basis B. 
Suppose there are N states in all. Each of the N-d 
states not in B is adj acent to at least two states in B. 
Hence the sum of the valences of the states in B is at 
least 2 (N - d). Since this sum is exactly 2d, then N ~ 2d. 
But an irreducible space must hold at least 2d states, 
so N=2d. For d=3, this would imply N=6, but for 
such a space we know all states have valence three. The 
upshot is that a three-dimensional irreducible transi­
tion probability space can hold at most two bivalent 
states. 

1 0 0 a 1-a b-c I-d 

0 1 0 I-a a I-b d-e 

0 0 1 0 0 c e 

a 1-a 0 1 0 f-c 1-g 

1-a a 0 0 1 1-f g-e 

b-c 1-b c f-c 1-f 1 0 

1-d d-e e 1-g g-e 0 1 

c+d-b b+e-d 1-c-e c+g-f e+f-g 0 0 

The seven-state three-dimensional irreducible spaces 
described above serve to illustrate these results. Here 
the two bivalent states 3 and 5 belong to the orthoclosed 
square subspaces {3, 4,6, 7} and {I, 2,4, 5} respectively. 
We may picture the whole space as two squares joined 
at a corner. 

There are two dissimilar structures possible for a 
three-dimensional irreducible transition probability 
space with eight states. The states in such a space can 
only have valence three or five, so no state belongs to 
three distinct bases. There must be at least three 
bases, and at least two, say Bl and B 2, must overlap. 
If the three states not in Bl U B2 lie on a third basis, 
then there is no fourth basis, because triangles are 
prohibited. The only other possibility is that a third 
basis has a state in common with Bl or B 2 • Since trian­
gles are prohibited and no state belongs to three bases, 
this third basis intersects only one of the first two, say 
B 2 • These three bases account for only seven states. 
There must be a fourth basis to hold the remaining 
state. The other two states in the fourth basis must 
be held in common with the first and third bases, re­
spectively. The ban on triangles rules out any further 
bases. We are left with four bases, each one intersect­
ing two others, and disjoint from the remaining one. 

Both these types of space exist. For the first type, 
the most general transition probability matrix is 

c+d-b 

b+e-d 

I-c -e 

c+g-f 

e+f-g 

0 

0 

1 

For the second type, the most general transition probability matrix is 

1 0 0 a I-a a 0 

0 1 0 I-a a I-a-b b 

0 0 1 0 0 b 
1-b 

I-a 0 1 0 I-b 
b a 

I-a 0 0 1 b 
0 a 

I-a-b b I-b 0 0 
0 

a 

0 b 1-b b 0 0 1 

0 I-b b I-a-b a I-a 0 

In the first type of space, one state has valence three, 
and seven have valence five, while in the second type, 
four states have valence three and four have valence 
five. 
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0 

1-b 

b 

I-a-b 

a 

I-a 

0 

1 

There are five dissimilar types of three-dimensional 
irreducible transition probability spaces with nine 
states. We shall describe them only briefly. The sim­
plest type has exactly three bases, which are mutually 
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disjoint, say {1,2,3}, {4,5,6}, and {7,8,9}. All nine 
states in this case have valence six. 

In the remaining types, each basis intersects at least 
one other basis. The states may have valence 2,4, or 6. 
At most one bivalent state can occur, and it occurs in 
only one type of space. This type has four bases, three 
of which meet in the one bivalent state, and a fourth 
basis which intersects just one of the first three bases. 
For example, we may take these bases to be {1,2,5}, 
{3,4,5}, {5,6,7}, and {7,8,9}. In addition to the one 
bivalent state, there is one state with valence four, and 
seven with valence six. 

In analyzing the remaining three types, the concept 
of linked bases is useful. Given any three linked bases 
in a nine-state three-dimensional transition probability 
space, the two states not in their union are orthogonal, 
as one can easily show by an explicit calculation. 

One finds there are two more types of irreducible 
spaces with four bases. For the one type, we can take 
these bases to be {1, 2, 3}, {3, 4, 5}, {5, 6, 7}, and {7, 8, 9}. 
In the other type, we may take them as {1,2,3}, {4,5,6}, 
{7, 8, 9}, and {3, 5, 7}. In each of these types of space, 
there are three states with valence four, and six with 
valence six. 

Finally, there is one type of space in which all nine 
states have valence four. Each state therefore belongs 
to two distinct bases. This type of space has six bases, 
which can be taken as {1,2,3}, {4,5,6}, {7,8,9}, {1,4,7}, 
{2, 5, 8}, and {3, 6, 9}. 

5. ORTHOCLOSED SUBSPACES 

The subspaces of a transition probability space are 
partially ordered by inclusion. In general, neither the 
union nor the intersection of two subspaces is a sub­
space. Moreover, even if the subspaces are orthoc1osed, 
their union and intersection need not be subspaces. 
Since singletons are orthoc1osed subspaces, any pair 
of adjacent states provides an example of this phenome­
non in the case of unions. For intersections, the sim­
plest counterexample is provided by the eight-state 
three-dimensional irreducible space with four bases. If 
we number the states as in the preceding section, the 
four bases are {1,2,3}, {3,4,5}, {5,6,7}, and {7,8,1}. 
The intersection of the orthoclosed square subspaces 
{1}1 = {2, 3,7, 8} and {5}l = {3 ,4,6, 7}, for example, is the 
set {3, 7}, which is orthoclosed, but not a subspace. As 
a matter of fact, the partially ordered set of all ortho­
closed subspaces in this case is not a lattice. The two 
square subspaces {2, 3, 7, 8} and {3,4, 6, 7}, for example, 
have no greatest lower bound since they both cover the 
two singletons {3} and {7}. 

Nevertheless, if two subspaces Tl and T2 in a transi­
tion probability space are orthogonal, then their union 
is a subspace. In fact, if B is a maximally pairwise 
orthogonal subset of Tl U T2, then B n TI and B n T2 are 
bases for Tl and T2, respectively, so that 

Bl = (B n TI)l n (Bn T2)1= Tin T~= (T1 U T2)1. 

Hence Tl U T2 is a subspace. 

If a subspace Tl in a transition probability space is 

290 J. Math. Phys., Vol. 17, No.3, March 1976 

contained in another subspace T2, then Ti n T2 is a sub­
space. For, if B is a maximally pairwise orthogonal 
subset of Ti n T 2 , and if BI is a basis for Tl! then 

¢ = Bl II (Ti n T2) = Bl n Bi n T2 = (B U Bl)l n T2, 

and hence B U BI is a basis for T2. If x is a state in Ti 
n T2, then 1=p(x,BUBI )=p(x,B), so B is a basis for 
Ti n T2 • 

If subspaces TI and T2 of a transition probability 
space satisfy TIC T2 and Ti n T2 = ¢, then Ti = T~. To 
see this, we note that if B is a basis for Tl1 then Bl 
= Ti, and therefore Bl n T2 = ¢. Then B is a basis for 
T2, and Ti=Bl=T;. 

The above results can be simplified if we consider 
orthoclosed subspaces. The union of two orthogonal or­
thoc1osed subspaces TI and T2 is a subspace, but need 
not be orthoc1osed. However, (TI U T2)1l is an ortho­
closed subspace, and it is the least upper bound for Tl 
and T2 in the poset of orthoclosed subspaces. If TI C T2 
and Ti n T 2 = ¢ for orthoc1osed subspaces, then TI = T 2 • 

An orthocomplemented poset is a partially ordered 
set (p, -'S) with a least element 0 and a greatest element 
1, and equipped with an operation taking each element 
a E P into another element a1 E P, such that 0 is the only 
lower bound for a and a1 , every element a E P satisfies 
aU=a, and if a -'S b, then bl-'S al

. 

Elements a and b in an orthocomplemented poset are 
orthogonal if a -'S b

l
• An orthocomplemented poset if or­

thomodular if every pair of orthogonal elements has a 
least upper bound, and if a-'Sb and all\b=O imply a=b. 

We may summarize the above results by saying that 
the set of all orthoc1osed subspaces of a transition prob­
ability space form an orthomodular poset. That the 
transition probability axioms imply orthomodularity 
was discovered another way by K. Bugajska. 5 

An element b in a poset covers an element a if a'" b 
and there is no element between a and b. In a poset with 
a least element, an atom is an element covering this 
least element. A poset is atomistic if every element b 
is the least upper bound of the set of atoms a such that 
a-'S b. 

The poset of orthoclosed subspaces of a transition 
probability space is atomistic since every subspace is 
the union of all singletons contained in it. 

Since orthomodularity is just one of several generali­
zations of the modular law in lattice theory, it is natural 
to ask if any other generalization of modularity holds for 
the orthoc1osed subspace poset of a transition probability 
space. A poset is upper semimodular if whenever two 
distinct elements both cover some common element, 
then some element covers both of them. 6 Lower semi­
modularity is defined dually. Neither upper nor lower 
semimodularity need hold in the poset of orthoclosed 
subspaces of a transition probability space. The sim­
plest counterexample is provided by the six-state three­
dimensional irreducible transition probability space. 
This space has two disjoint bases. If we pick one state 
in each baSiS, then their singletons are two atoms not 
covered by any common orthoc1osed subspace, so upper 
semimodularity fails. Lower semimodularity also fails 
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here. Even the MacLane exchange axiom,7 known to 
quantum theorists as the Jauch-Piron covering axiom, B 

fails here. 

There does exist another covering axiom which holds 
in any atomistic orthomodular poset. If an element c 
covers an element b in an atomistic orthomodular poset, 
then there exists an atom a ~ b~ such that c = a V band 
b=a1f\c. 

6. SPACES WITH SYMMETRY 

The most interesting examples of transition probabil­
ity spaces are those which possess a high degree of 
symmetry. Various symmetry requirements could be 
imposed. Von Neumann proposed three such axioms in 
his 1937 manuscript on continuous geometries with a 
transition probability. 9 While von Neumann's system 
differs from the axioms considered here, it is not hard 
to translate his requirements into reasonable equivalents 
for transition probability spaces. Recall that a sym­
metry of a transition probability space is an isomor­
phism of the space with itself. Each such symmetry 
induces an automorphism of the poset of orthoclosed 
subspaces. Von Neumann's first axiom is that all auto­
morphisms of the orthoclosed subspace poset are in­
duced by symmetries of the transition probability space. 
His second axiom says that if Tl and T2 are orthoclosed 
subspaces satisfying dimTl ~ dimT2 , then there is a 
symmetry h such that h(Tl)C T2. His final axiom says 
that in the special case that dimTl = dimT2 , then h can 
be chosen so that h(T)= T for every orthoclosed sub­
space T orthogonal to both Tl and T2. 

A somewhat weaker requirement was proposed by 
Mielnikl under the name "superposition principle. " 
Mielnik's requirement is that all orthoclosed two-dimen­
sional subspaces are isomorphic. 

Here we consider an even weaker reqUirement, name­
ly that all states have the same valence v. In the case 
of a three-dimensional irreducible transition probability 
space with N states, this requirement implies that each 
state belongs to exactly m = t(N - v - 1) bases. The 
total number of bases times the number of states on 
each basis equals the total number of states times the 
number of bases to which each state belongs. Hence the 
total number of bases in such a space is b = tNm. Since 
b is an integer, either N is divisible by 3, or else m is 
divisible by 3. Each basis holds three states. The N - 3 
states not on a given basis are each adjacent to at least 
two states in that basis. Hence the sum of the valences 
of the three states in the basis is at least 2(N - 3). 
Since this sum is in fact 3v, then 2(N - 3) ~ 3v, or m 
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~ i-(N + 3). In particular, if N is not divisible by three, 
then m? 3, and the space must hold at least 16 states. 

Thus the simplest examples of irreducible three­
dimenSional transition probability spaces with states of 
equal valence are those described by the parameters 
(N, m) below: 

N=6, m=1, 

N = 9, m = 1 or 2, 

N = 12, m = 1 or 2, 

N = 15, m = 1, 2, or 3. 

The spaces with N = 6 and N = 9 were already described 
in Sec. 4. The cases with m=1 are spaces with N/3 
disjoint bases. They can be constructed using the dis­
joint union technique described in Sec. 3. In fact the 
disjoint union technique applied to spaces of type (NI , 

mll and (N2 , m 2 ) yields another space of type (N, m) pro­
vided ml = m 2 = m and N = Nl + N2 • 

It is not difficult to construct an example of an ir­
reducible space with N = 12 and m = 2. Its eight bases 
fall into two groups of four each. Each group of four 
bases are mutually disjoint, and each basis in the one 
group intersects all but one of the other group. We can 
number the states from 1 to 12 so that these bases are 
{1,2,3}, {4,5,6}, {7,8,9}, and {10,1l,12} for the one 
group, and {1,4,7}, {2,5,10}, {3,8,1l}, and {6,9,12} for 
the other group. The transition probability matrix for 
this space contains three arbitrary parameters. 
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Conditions are given under which the metric part of a solution of the source-free Einstein-Maxwell 
equations may be interpreted as the metric part of a solution with sources. Examples are given of space-times 
which admit this dual interpretation and also of space-times admitting one interpretation only. 

1. INTRODUCTION 

The field equations of Einstein-Maxwell theory in the 
presence of sources may, with a suitable choice of units, 
be written in the form l 

R"v - ig"vR == - E ILV - PrfI"uv, 

E "V == FUly' F'" v + tg "vF",BF"'B, 

F"v;a+ Fva;IL + FaIL;v=O, 

F~:=JIL, 

(1. 1) 

(1. 2) 

(1. 3) 

(1. 4) 

where E Uov is the electromagnetic energy tensor, F ILV 
the electromagnetic field tensor, JU the four -current, 
Po the invariant rest-mass density, and u IL is the four­
velocity. The presence of the term PrfI Uouv in Eq. (1. 1) 
ensures that the right hand side of the equation has 
vanishing divergence in agreement with the left hand 
side of the equation. Few attempts to solve this set of 
equations have been made and in some investigations2 ,3 

into the inclusion of a source term in Einstein-Maxwell 
theory the equations are simplified by the assumption 
Po==O, so that Eq. (1.1) takes the form 

(1. 5) 

since E ILV is trace-free. This assumption implies not 
only that the Ricci scalar is zero, but also that E Uov has 
vanishing divergence, as in the source-free case. Since 
E"v;v = FUo vJV, the physical consequence of this assump­
tion is that the Lorentz force vanishes, i. e. , 

(1.6) 

In the special theory of relativity, this condition im­
plies that the electric and magnetic fields are mutually 
perpendicular. 

In this investigation, we also adopt as the field equa­
tions of Einstein-Maxwell theory in the presence of 
sources, Eqs. (1. 2)-(1. 5), which imply condition (1. 6). 
We show that it is possible for some space-times to 
satisfy the source-free Einstein-Maxwell equations, 
i. e., Eqs. (1. 2)-(1. 5) with JUo = 0, and also satisfy the 
Einstein-Maxwell equations (1. 2)-(1. 5) for fields with 
sources under condition (1. 6). In other words, while 
the Ricci tensor uniquely determines the electromagnetic 
energy tensor E Uov ' the latter does not necessarily 
uniquely determine whether the field tensor F ILV satis­
fies Eqs. (1. 4) with J" = ° or Eqs. (1. 4) and (1. 6) with 
JIL *" 0. Examples are given of space-times which satisfy 
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both sets of equations and also of space-times which 
can satisfy one set of equations but not the other. 

2. NOTATION AND EQUATIONS 

Our approach is via the spin-coefficient formalism of 
Newman and Penrose. 4 A tetrad system of null vectors, 
(IIL,nIL,mIL,m Uo ), where I", n" are real and mUo,m Uo are 
conjugate complex vectors, is defined by the relations 

IILnIL =-m"m"=1, 

with all other contractions zero. The spin coefficients 
are defined by 

K==ZUomvlv;,,' a=m"mvlv;", p=mILmvlv;IL' 7=n IL mvl v;IL' 

Q! = t(lnUonVlv;" - m"mvmv;.J, (3=t(m Uo nVl v;IL - mILmVmv;), 

y=i(nILnVlv;IL -nILmVmv;Uo)' €=i(t"nvZv;IL -lUomVmv ;), 

v=nILnVmv;", A= mUonvmv;IL' IJ.==m"nvmv;IL' 1J==l"nvmv;,,' 

Four intrinsic derivatives are defined by 

D¢=¢;,)IL, L::..¢=¢;ILnIL, o¢=¢;ILm", o¢=¢;"m", 

and give the following commutation relations (integrabil­
ity conditions): 

(L::..D - DL::..)¢ = (y+ y)D¢ + (E +"E)L::..¢ - (7+ 1i)6¢ - ("7+ 1J)0¢, 

(oD - DO)¢ == (0- + (3 -7f)D¢ + KL::..¢ - a6¢ - (p + € -e)o¢, 

(M - M)¢= - vD¢ + (7- a - p)L::..¢ + M¢ + (IJ. - y+ y)o¢, 

(06 - 60)¢ = (IJ. - /i.)D¢ + (p - p)L::..¢ + (a - p)6¢ - (Q! - fj)o¢, 

The three Maxwell scalars are defined by 

¢o'" F,,)ILmV, ¢2 '" F"vm"nv, 

¢I'" iF "v(t" nV + m"mv), 

and Eqs. (1. 2) and (1. 5) may be written in the form 

(2.1) 

(2.2) 

(2.3) 

where cP AB are the complex tetrad components of the 
Ricci tensor and A, B take the values 0,1,2. 

The Maxwell Eqs. (1. 3) and (1. 4) in tetrad form are 

D¢I - 6¢o= (1J - 2Cl!)¢o + 2P¢1 - K¢2 + iIo, 

0¢2 - L::..¢I = - v¢o + 2 IJ.¢I + (7 - 2 (3)¢2 + %/2' 

O¢I - L::..¢o= (IJ. - 2y)¢o + 27¢1 - a¢2 + tIl> 

D¢2 - 6¢1 = - A¢O + 21J¢1 + (p - 2d¢2 + tIl> 
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where the 1A are the current scalars defined by 

10=J"l", 11 =J"m" , 11 =J"m" , 12=J"n". (2.5) 

Note that 10,12 are real, whereas 11 is complex. 

Condition (1. 6) leads to the following equations, 

(<Pl + ¢1)12 - <P211 -(fil = 0, 
- --

(<Pl + <Pl)lo - <Poll - <Poll = 0, 

(<Pl - ¢Jil + <P210 - ¢012 = 0, 

(2.6) 

together with the complex conjugate of the third equa­
tion. Equations (2.4) and (2.6) have been given pre­
viously by Tariq5 and Zund. 3 

3. THE NONNULL CASE 

For a nonnull electromagnetic field the tetrad can be 
chosen such that CPO=<P2=0, CPl=CP*O. In this case l", 
n" are the principal null vectors of the electromagnetic 
field. Equations (2.3), (2.4) and (2.6) become 

4>11 = cP(f, (3.1) 

DCP = 2pCP + t10 ' t.cp = - 2 /J.CP - t12 , 
(3.2) 

and 

The invariant J ,JJJ. expressed in tetrad components is 

J JJ.JJJ. = 2(1012 - 11Ir) , (3.4) 

and Eqs. (3.3) imply that 

(0 if cP is real then 10 = 12 = 0, 11 * ° so that 
, J'" is spacelike, 

(ii) if cP is imaginary then 11 = ° and at least one of 
10,12 is nonzero. In this case J'" can be timelike (1012> 0), 
spacelike (1012 < 0), or null. 

(iii) if cP is a complex then no current exists. 
When cP is real, Eqs. (3.2) take the form 

with 

DCP=2pcP, t.CP=-2/J.CP, 

I5CP= (T-1T)CP, 6CP= CT-1T)CP, 

-p=p, 11= 11, 

and the tetrad components 1A are given by 

10=12=0, 11=-2(T+rr)cp, 

so that T+ IT*O for nonzero current. 

When cP is imaginary, Eqs. (3.2) take the form 

DCP=(p+p)CP, t.CP=-(I1+ ii)<p, 

I5CP=2TCP, 6CP=2"Tcp, 

with 

and the tetrad components 1A are given by 

10=-2(p-p)cp, 12=-2(I1-ii)cp, 11 =0. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

In this case, for a nonnull current, p*p and 11* ii, 
whereas, for a null current, only one of p * p and 11 * ii 
must hold. 
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Now suppose we have a solution of the Einstein­
Maxwell equations for a source-free electromagnetic 
field, Le., Eqs. (3.1) and (3.2) with1A=Ointhe latter 
equation. Is it possible that the same space-time is a 
solution of Eqs. (3.0 and (3.2) with 1A *O? The value 
of cPCP and the values of the spin coefficients will be the 
same in each case, so the question becomes: Is it pos­
sible to find two different functions <p, each with the 
same modulus, one satisfying (3.2) with 1A = ° and the 
other satisfying (3.2) with 1A *O? The Eqs. (3.5)-(3.10) 
give a prescription for finding such solutions. If a solu­
tion of the source-free nonnull Einstein-Maxwell equa­
tions is such that both the principal null congruences of 
the electromagnetic field have zero twist, i. e., Eq. 
(3. 6) holds, and also T + IT * 0, then the space -time is 
also a solution of the Eqs. (1. 2)-(1. 6) provided that 
Eqs. (3. 5) satisfy the integrability conditions (2. 1). In 
this case the current JJJ. is spacelike, its tetrad com­
ponents being given by Eq. (3.7). Similarly, if T+ IT= 0 
and at least one of p, 11 are not real, then Eqs. (1. 2)­
(1. 6) are satisfied by the space-time, provided that 
Eq. (3.8) satisfy the integrability conditions. In this 
case the current can be timelike spacelike or null. 

Note that if a solution of the Einstein-Maxwell equa­
tions for nonnull electromagnetic fields admits this dual 
interpretation, then, in its source-free interpretation, 
the Maxwell scalar cP must be strictly complex, i. e. , 
both its real and imaginary parts are nonzero. If this 
were not so, Eq. (3.2) with 1A=0 would impose upon the 
spin coefficients precisely those conditions which would 
render 1A = 0 in the dual interpretation. Hence we have 
the following theorem. 

Theorem 1: A necessary condition for a solution of the 
source-free Einstein-Maxwell equations for nonnull 
electromagnetic fields to admit interpretation as a solu­
tion of Eqs. (1.2)-(1.6) is that, in the source-free 
interpretation, the Maxwell scalar cP be strictly com­
plex whereas, in the source -present interpretation, the 
corresponding scalar cP be either real or pure imaginary. 

In applying the prescription to known solutions of the 
source-free nonnull Einstein-Maxwell equations we 
find that many cannot admit the dual interpretation 
since they have zero twist, i. e., Eq. (3.6) holds, but 
they also have T= H= 0, so that Eq. (3.7) gives zero 
current. Among the solutions in this category are 

(i) the Reissner-Nordstrom solution, 

(ii) the twist-free Petrov type I solution found by 
Tariq and Tupper, 6, 7 namely, 

ds 2 = 2 du dr - u-2"r-2m dy2 _ u-2mr-2" dz2 , 

where m=t(v'3-0, n=-t(v'3+1), 

(iii) the conformally flat Bertrotti-Robinson8 solution, 

(iv) the nonnull Petrov type N solution found by 
McLenaghan and Leroy, 9 

(v) the Petrov type D solution with metric 

ds 2 = r-2 du2 + 2 du dr - r(dy2 + dz2). 

In fact, we have been unable to find any solution satis­
fying Eqs. (3.5)-(3.7), i. e. , one which gives rise to 
a spacelike current in its dual interpretation. However, 
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we now give an example of a source-free solution which 
can be also interpreted as a solution with timelike cur­
rent. This solution, which is of Petrov type I, was 
found by Tariq and Tupper? in a special form and later 
generalized1o ,1l; the metric is 

ds2 = (dt - 2z d¢)2 - r d¢2 

- ~a-2r-2(dr + dz2), (3.11) 

where a is a constant parameter. The principal null 
congruences l"', n'" of the electromagnetic field are not 
aligned with those of the gravitational field. The non­
zero spin coefficients are 

p=a2i, M=i, 0=a2 exp(-2I2iat), 

,\ = exp(2I2iaf), ex = - (3 = azr-1 exp(v'2iat). 

The squared modulus of the Maxwell scalar is 

¢¢ = 2a2
• 

(3.12) 

(3.13) 

Considered as a source-free solution, we find that 

¢ =..f2 a exp[2i(ln2r - b)J, (3.14) 

where b is an arbitrary constant, and the nonzero com­
ponents of the Maxwell tensor are 

F12 = 2r-1 cos2(ln2r - b), 

F24 = 4ayr- 1 cos2(ln2r - b), 

F34 = 2 sin2(ln2r - b). 

(3.15) 

From the expressions (3.12) we see that Eq. (3.9) 
is satisfied and Eq. (3.10) gives a nonzero timelike cur­
rent. Equations (3.8) become 

(3.16) 

and so the integrability conditions are satisfied trivial­
ly. For the source-present solution, Eqs. (3.13) and 
(3.16) give 

¢=± l2ai, (3. 17) 

since ¢ is imaginary. It follows that the only nonzero 
component of F IL " is 

F34 ='F4, (3.18) 

i. e., a constant magnetic field in the r direction. The 
tetrad components 1A are 

lo=±4V2a3
, 11=0, 12 =±4.J2a, 

which leads to 

(3.19) 

Thus the space-time with metric (3.11), which satis­
fies the source-free Einstein-Maxwell equations with 
electromagnetic field given (3.15), may also be inter­
preted as a solution of the Einstein-Maxwell equations 
with sources with electromagnetic field and four-cur­
rent given by Eqs. (3.18) and (3.19), i. e., the expres­
sions (3.15) and (3.18) each give rise to the same 
electromagnetic energy tensor. 

The Kerr-Newman solution12 appears to satisfy the 
necessary conditions for the dual interpretation as a 
solution with time-like current, since, with respect to 
the tetrad usually employed, 12,13 the spin coefficients 
satisfy T + IT = 0, p *- p, M *- ii. However, in this case, 
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only IlL is a principal null vector of the electromagnetic 
field; the Maxwell scalars ¢u ¢2 are both nonzero. We 
can set ¢2 to zero by a tetrad rotation of the form 

lIL-IIL, mIL-mIL+Tl"', 

nIL - n'" + I'm'" + T;'" + TTL"', 
and, as a result, the new spin coefficients T and 1T no 
longer satisfy the necessary condition T + IT = 0. Hence, 
the Kerr-Newman solution does not admit the dual 
interpretation. 

4, THE NULL CASE 

For a null electromagnetic field we may choose lIL as 
the repeated principal null direction of the electromagne­
tic field. In this case, we have ¢o = ¢1 = 0, ¢2'" ¢ *- ° 
so that Eq. (2.3) becomes 

<1'>22= ¢¢, 

and Eqs. (2.4) and (2.6) lead to 

K=lo=O, 11 =20¢, O¢2+ O¢2=0, 

{j¢=(T-2{3)¢+~12' D¢=(p-2E)¢+~i1' 

(4.1) 

(4.2) 

From these equations we see that the four -current can 
be null or spacelike only. Note that the current is null, 
i.e., [1=0, if and only if 0=0, which is the generalized 
Mariot-Robinson theorem due to Zund. 3 As a con­
sequence of this theorem we have the following theorem. 

Theorem 2: If any solution of the source-free 
Einstein-Maxwell equations for null electromagnetic 
fields can also be interpreted as a solution of Eqs. 
(1. 2)-(1. 6), then the four-current arising in the second 
interpretation is necessarily null. 

We now have the following prescription for testing 
whether or not a solution of the source -free Einstein­
Maxwell equations for null electromagnetic fields can 
also be interpreted as a solution of Eqs. (1. 2)-(1. 6) 
with a null four-current. The quantity ¢¢ and the spin 
coefficients are known. Look for a new function ¢, with 
the same modulus as the original ¢, which again satis­
fies the equation D¢ = (p - 2E)¢, but for which the 
expression 6¢ - (T - 2f:;)¢ is a nonzero real function. If 
such a ¢ can be found, then the solution admits the dual 
interpretation. 

Some specific examples of space-times admitting this 
dual interpretation will now be given. First, we con­
sider the Petrov type N plane-wave solutions of the 
Einstein-Maxwell equations for null electromagnetic 
fields. The general metric of these solutions can be 
written in the form14 

ds 2 =2(VV+ W+ W)du 2 +2dlldr-2dzdz, (4.3) 

where V = V(u, z), w = W(u, z) are arbitrary functions. 
With respect to the null tetrad, 

l"'=(O, 1, 0, 0), n"'=(1, -VV-W-W, 0, 0), 

m"'=(O,O,O, -1), m"'=(O,O, -1,0), 

the only spin coefficient is !l= - V,zV - W,z' and we find 

(4.4) 

Since 6¢=Owe can take ¢=V,.exp[ij(u)], wherej(u) is 
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an arbitrary real function of u. We require a new cp, 
satisfying (4.4) and DCP=O, suchthatocp=-CP,!=~12' a 
real function. We have been unable to prove or disprove 
the existence of a suitable cp for the dual interpretation 
in the case of arbitrary V(u,z), but we have found a cp 
with the necessary properties in some special cases. 
In particular, when 

V(u, z) = q(u)z2n, (4.5) 

where q(u) is an arbitrary function and n an arbitrary 
real number, a suitable cp does exist. In this case, 

cp¢ = 4n2q2(u)z2n-l?n-l, 

and the required new expression for cp is 

cp = 2nznz-nv,z' 

i. e. , 

cp = 4n2q(u)znzn-l. 

This gives the following expression for 12, 

12 = - 2CP ,. = - 8n3q(u) 1 Z 12(n-1) 

(4.6) 

(4.7) 

which is real, as required. The four-current has the 
form 

J" = - 8n3q(u) 1 Z 12(n-1)02". 

In both interpretations the nonzero components of the 
electromagnetic field are given by 

F 13 =CP, F 14 =¢. 

Note that the conformally flat solution of the Einstein­
Maxwell equations for null electromagnetic fields is a 
special case of the type N plane-wave solutions dis­
cussed above. The metric has the form14 ,15 

ds 2 = 2q2(U)ZZ du2 + 2 du dr - 2 dz dz, 

which corresponds to the metric (4.3) with V = q(u)z 
and w= 0. Thus, the conformally flat solution is a mem­
ber of the class of solutions characterized by (4.5) 
with n = ~ and so admits the dual interpretation. In this 
case, the original Maxwell scalar, which is a function 
of u only, is replaced by 

cP = q(U)Zl /2 Z-l /2, 

and the resulting four-current is 

J" = - q(u) 1 Z l-l0~. 

As a second example, we consider the Petrov type D 
solution with metric 

With respect to the null tetrad, 

Z"=(O,1,0,0), n"=(1, -m/r,O,O), 

m"=(O,O,O, -1/r), m"=(O,O, -1/r,0), 

the nonzero spin coefficients are 

p= -1/r, /1= - m/r, Y= - m/2r. 

The nonzero Weyl scalar is ifJ2 = m/ rand 

CP¢= m/T, 

(4.8) 

(4.9) 

which shows that m> 0; we put m = k 2 (u). It follows from 
the Bianchi identities that, for the source-free solution, 
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cP must be of the form 

cP = k(u)r-1 exp[ij(u)] , 

where j(u) is an arbitrary function of u. We require a 
new cp satisfying (4.9) and DCP = - (1/ r)cp such that ocp 
= - (1/ r)cp " = ~12' real. These conditions are satisfied 
by 

cp = k(u)r-1?/2z-1/2, 

which gives 12 = - ~kr-21 z I -\ so that the four -current 
is 

J" = - ~kr-21 z 1-102" . 

Finally, we turn our attention to the inverse problem 
to that considered so far, namely, given a solution of 
Eqs. (1. 2)-(1. 6) with J" * 0, can the solution also be 
interpreted as a source-free solution. This amounts to 
finding a function cp satisfying the equation 0 cp - (T - 2 (3) cp 
= ° and having the same modulus as the original cp which 
satisfied the equation ocp - (T - 2{:!)CP =~12' We now give 
an example of a solution with sources which cannot have 
this dual interpretation. 

Consider the solution of the Eqs. (1. 2)-(1. 6) for null 
electromagnetic field with null current found by 
Vaidya. 16 This has metric 

ds2 = [1 - 2m(u)/ r] du2 + 2 du dr 

- r(d (jl + sin2 8 difJ2). (4,10) 

With respect to the null tetrad 

ZI-' = (0, 1, 0, 0), nl-' = [1, -~(1- 2m/r), 0, 0], 

m" = (0, 0, 1/v2r, i/v2rsin8), 

iii"= (0,0, 1/f2r, - i/Y2rsine, 

the nonzero spin coefficients are 

p=-1/r, /1=-(1/2r)(1-2m!r), 

Y= m/2r, 0' = - 13= - (1/2f2r) cot8, 

and the nonzero Weyl scalar is ifJ2= - m/r, so that the 
solution is of Petrov type D. We find that 

(4.11) 

so that m < 0; we write m = - k 2 (u). The Maxwell scalar 
cp must satisfy (4.11) and also 

DCP=-(1/r)CP, 

ocp + (1/ {Y)cotocp = t12 • 

This is satisfied by 

CP=k(u)r-1, 

which gives 

12 = f2k(u)r-1 cote, 

i. e. , 

J/J. = f2k(u)r-1 cot802/J.. 

(4.12) 

Now we look for a new cp satisfying Eqs. (4.11), (4.12) 
and 

ocp+ (1/f2r)cot8cp=0. (4.13) 
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From Eqs. (4.11) and (4.12) we have 

<p = k (u )r-1 exp[ij(u, li, l/J l]. 

Substituting this into Eqs. (4.13) and equating real and 
imaginary parts we find 

af af ae = 0, (JzI! = cote, 

which are incompatible. Hence, no function <p satisfying 
Eqs. (4.11), (4.12) and (4.13) can 'be found, so that the 
metric (4.10) cannot 'be interpreted as a solution of the 
source-free Einstein-Maxwell equations. 

5. KILLING VECTORS 

We now turn to the question of whether or not the 
symmetries of the metric field of a dual-interpretation 
solution are inherited by the electromagnetic field, i. e. , 
does 

in each of the two interpretations? The problem of the 
inheritance of symmetries for the case of nonnull elec­
tromagnetic fields has been discussed at length by 
Michalski and Wainwright. 17 Here we give only the re­
sults for the dual interpretation solutions found in Secs. 
3 and 4. 

The space-time (3.11) admits a four-parameter group 
of motions of Bianchi type 1. The four Killing vectors 
are 

~r=(l,O,O,O), ~~=(O,O,O, 1), 

~~=(2<P, 0,1, 0), ~~=(O, r, z, -<p). 

In the source-free interpretation, the first three Killing 
vectors, ~r (i=l, 2, 3), but not ~::, are symmetries of 
the electromagnetic field, i. e., for F u-v given by Eq. 
(3.15) we have10,17 

L F"v=O, L F"v*O. 
II {4 

However in the source-present interpretation, with F "" 
given by Eq. (3.18), all four Killing vectors are sym­
metries of F"v' In this case, the four-current J", given 
by Eq. (3.19), is parallel to the time-like Killing vector 

~i· 

In the case of the type N plane-wave solutions with 
metric (4.3), there are always at least two Killing vec­
tors, namely 

~i=(O, 1, 0, 0), ~~=(O, 0, z, -z). 

In the source-free case only the first of these is a sym­
metry of the electromagnetic field, whereas in the 
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source-present case both ~r and ~~ satisfy 

L F"v=O. 
/ 

The four-current, which is null, is again parallel to one 
of the Killing vectors, namely ~f. 

The similarity in the behavior of the electromagnetic 
fields with respect to the Killing vectors for the two 
solutions given above does not occur in the case of solu­
tion(4.8). This solution admits three Killing vectors, 
namely, 

~r = (0, 0, 0, 1), 

~~ = (0, 0, 1, 0), 

~~=(O, 0, z, -z). 
In the source-free interpretation ~l" and ~2" are sym­
metries of the electromagnetic field whereas ~3" is not. 
In the source-present interpretation, these properties 
are reversed, i.eo, ~~ is a symmetry of F"v whereas 
~1 u, ~z" are not. Furthermore, the four -current in this 
interpretation is not parallel to any of the Killing 
vectors. 
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An effective-potential approach to stationary scattering 
theory for long-range potentials 
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It is shown that previously derived integral equations for two-body scattering with long-range potentials 
(equations which replace the Lippmann-Schwinger equations) can be reduced to a form which is solvable 
by iterative methods. The method is applicable to potentials V(r) which behave asymptotically as r -a, 

112 < a:o; 1. and in particular to Coulomb-like potentials. 

1. INTRODUCTION 

It has been recently pointed out1
•2 that although the 

standard approach to stationary nonrelativistic theory 
based on Lippmann-Schwinger equations breaks down 
when long-range forces are present, it can be general­
ized to include the long-range case. The idea behind 
the generalization relies on the possibility of introducing 
an operator Z which compensates for the anomalous 
asymptotic behavior of the interacting wavefunction in 
relation to that of the free wavefunction (an anomaly that 
is peculiar to the long-range case). 

Since only asymptotic behavior is of importance in the 
construction of the "asymptotically compensating" opera­
tor Z, there is a whole family of operators which can 
play this role. In the present note we indicate how this 
nonuniqueness can be exploited to advantage to obtain 
integral equations for the scattering wavefunctions which 
can be solved by perturbational methods and yield the 
on-energy-shell T matrix. In order to simplify the dis­
cussion and notation, we limit ourselves to the case of 
two-body interactions with a spherically symmetric 
potential (cf. Theorem 1 for an exact statement of tech­
nical conditions), V(r)-O(r-"'), where 1/2< a<;l. It is 
hoped, however, that since the underlying general 
theory2 stays valid in the multichannel case, the present 
approach is also of relevance in that context. 

In Sec. 4 we show that there are operators Z acting 
in L2(R3) such that (note that we adopt the convention in 
which Q+ corresponds to t - + 00 ! ), 

(1.1) 
t-::I:: co 

for a dense set of vectors 'l1. in the ranges p. of a •. 
They act on the incoming and outgoing spherical waves 
<t>!zm at energy E = k 2 (we choose units of reduced mass 
M so that 2M = 1) via an asymptotically compensating 
term 1>z(r,k), 

(Z<I>~zm)(r;r / r) = <I>:zm(r + 1>z(r, k), r / r) (1. 2) 

which makes the behavior of Z<I>!zm as r - 00 essentially 
the same as in the short range case, i. e. , that of a free 
spherical wave 

<I>kzm(r)= -,/2/1T jz(kr)Y'['(r/r) 

modified by a phase shift 0z (k). 

From (1. 1) we derive! that 

Z<I>!Zm =<t>kZm + (Ho - E ± iO)-l(Ho - E)Z<I>!Zm' 

(1. 3) 

(1.4) 
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where one should note that in contradistinction to pre­
viously consideredl

-
3 asymptotically compensating 

operators Z which modify the free wave <I>kzm' the one in 
(1.2) modifies the behavior of the full wavefunctions 
<t>!zm' This choice was motivated by the desire to recast 
(1.4) in the form of a Lippmann-Schwinger equation 

(Z<I>~z m)(r l= <I>kzm(r) 

+ f
lR

3 G~/r, r' ,E)V z,eff(r' ,k )(Z<I>~zm)(r') dr' 

(1.5) 

in terms of the advanced and retarded free Green func­
tions G~z(r,r' ,E) and an effective potential V

Z
• eff [cf. 

(3. 8)], which would give rise to a convergent perturba­
tion series. This goal is achieved in Sec. 3 by a 
judicious choice of 1>z(r,k) in relation to the long-range 
part of V(r). (Our particular choice of 1>z(r,k) turns out 
to be independent of 1. ) This result is similar in nature 
to that recently obtained by different methods for the 
"solution-type" Lippmann-Schwinger equations in long­
range scattering by Zorbas. 4 However, the Zorbas 
equations are impracticable since they are not soluable 
by iterative methods. 

2. INTEGRAL EOUATIONS FOR THE 
DISTORTED WAVEFUNCTIONS 

The free spherical waves can be written in the form 

() uz(r,k) (/) 
<I> kZm r = --;;:;- 17 r r (2.1) 

where uz(r, k) are solutions of the equation 

( (12 W+1)) 2 
\- (ly2 +--y2- uz(r,k)=k uz(r,k), (2.2) 

which for rk - 00 behave asymptotically in the following 
manner: 

U z (r, k) = I27iT sin(kr -11T/2) + O(l/krL 

Any wavepacket 'l1(r) E L2(R3) can be unambiguously 
represented by an element of L 2 ([ 0,00)) 

(2.3) 

where the w-integration is carried out over the unit 
sphere{r1r=1}. In fact, from the element of L 2 ([O,00)) 
given by 

(2.5) 

Copyright © 1976 American I nstitute of Physics 297 



                                                                                                                                    

one can recover the wavepacket, 

'if(r)=1.i.m. t t f,m(r) 17(r/r). 
1=0 m=-l r 

(2.6) 

If we assume the interaction to be given by a piece-
wise continuous, spherically-symmetric potential 

V(r)=Vs(r)+ VL(r), 

Vs(r)=O(r-2+,) as r-O+, (2,7) 

VL(r)=O(r-"') as r- oo , 

with E > 0 and ~ < 0' <S 1, then 'if±(r) = (~±'if)(r) can be 
represented by 

~ Z /;±(r) 

'if±(r)=l.i.m . .6 6 -1..!!L 17(r/r), (2.8) 
z=o m=-Z r 

where 

ftm(r) = 1. i. m. i ~ ui(r,k)jzm(k) dk, 

<I>;Zm(r) = U~k::k) 17(r / r) = (~.cp kZm)(r). 

The operator Z can be defined in terms of the 
asymptotically compensating term ¢,(r,k) by 

( )() . -0 ~ (Zz/tm)(r) (/) Z'if± r =1.l.m. L.J L.J 1";' r r, 
z=o m=-Z r 

(2.9) 

(2.10) 

(Zzitm)(r)=l. i. m. i~ u~(r+ ¢,(r,k),k)f1m(k)dk. 

Naturally, the functions ¢l(r,k) must be chosen so that 
(1. 1) holds or equivalently that 

lim II (Z~. -1) exp( - iHot)'if II = 0 (2.11) 
t .. *00 

for a suitably chosen dense set Do of functions 'if E L2(R3). 

By combining the fact that 

(2.12) 

with relations (2.6) and (2.9) we see that the existence 
of such a set Do would certainly bg established if we 
show the existence of dense sets D 'm C L 2([ 0, 00) for all 
£ = Q., 1, • 0 , and m = -l, - l + 1, ... ,l such that for any 

fEO'm' 

s-lim r {(Zlui)(r,k) - u,(r,k)} exp(- ik2 t)f(k) dk = 0 
t ... :DO 0 

(2.13) 

in the L2([0,oo» topology. We shall discuss in Sec. 4 the 
feasibility of choices for the functions ¢I (r, k) in 

(2.14) 

for which dense sets Dzm of functions f(k) satisfying 
(2.13) exist. The argument is based on the work of 
Matveev and Skriganov. 3 

From (1. 1) we infer (cL Appendix) that 

(2.15) 

Consequently, by noting that 
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±iE =1- HO-A 
Ho - A± if Ho - A± iE 

(2.16) 

and setting 'if =~: 'if., we arrive at 

(2.17) 

The above equation in Hilbert space, in turn, implies 
(1. 4) for the eigenfunction expansions of Ho and H. In 
terms of uz(r,k) and u~(r,k) the relation (1. 4) is 
equivalent to 

(Z,u:)(r, k) = U z (r, k) 

+ r G~,(r,r';E)(Hir') - E)(Zlu~)(r', k) dr', 
o 

where Hir ) is the differential operator 

H(r)- (_~+l(l+l)) 
,- or2 r . 

The free Green's function is given by 

G~z (r, r' ;k2) = u,(r(,k )[u,(r).k) 'F i(- 1)ZU_'_1 (r).k)], 

where 

r<=min(r,r'), r)=max(r,r'), 

u,(r,k)= JkrJ I +1 / 2(kr), 

and Jv(x) is the Bessel function of order lJ. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

The on-energy-shell T matrix also contains the Z 
operator. 1,2 In fact, by substituting in the formula 

(2.22) 

for the T operator the expressions (2.15)-(2.16) we get 

(2.23) 

Expressing the integration with respect to the spectral 
functions E~ of H in terms of the wavefunctions (2.9) and 
taking the f - 0 + under the integral sign, one obtains 
for 'if', 'if ED 0 

(2.24) 

where 

(2.25) 

The relation (2.24) shows that the T(k,l,m) play the 
role of on-energy-shell T matrix components at energy 
k2 and angular momentum l, m. The method presented 
in the next section provides an iterative procedure for 
the computation of the term 

(2.26) 

appearing in (2.25), and therefore also a method for the 
computation of (2.25). 

3. DERIVATION OF THE EFFECTIVE SHORT RANGE 
POTENTIAL 

The operator Z has been defined by its action on the 
partial-wave eigenfunctions of the Hamiltonian H = - D. 
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+ V(r) [where V(r) = O(r-"') as r- oo , t< 0(.,,;1] in terms 
of the asymptotically compensating term cf>,(r,k). The 
term cf>,(r,k) can be chosen to satisfy two important 
criteria: 

(1) The wave operators n: can be obtained as strong 
limits of exp(iHot)Zexp(-iHt) [Eq. (1.1)] 

(2) The Lippmann-Schwinger equation (2.18) can be 
solved by iteration since a short range (but energy de­
pendent) effective potential V"eff satisfying 

(H;r) _k2)(Zu~)(r,k)= - V',eff(Zu~)(r,k) (3.1) 

can be defined which yields an effective Hilbert-Schmidt 
kernel for the solution of (2.18). 

In this section we justify the second assertion. The 
first is dealt with in Sec. 4. 

To derive V',eff' we simply calculate (2.26) and im­
pose an obvious condition on cf>,(r,k). 

Let g(r) be a C2 function satisfying 

g(r)=O, r"';R, 

g(r)= 1, r~ 2R. 
(3.2) 

The value of R will be chosen appropriately later. We 
define Vs and VL appearing in (2.7) in terms of 

VL (r) =g(r)V(r), 

Vs(r)=[l-g(r)]V(r), 
(3.3) 

where VL is long range and goes asymptotically like 
Yr- a , t < a"'; 1; V s is short range and less singular for 
r - 0 + than r-2

, and V = V L + V s' One has that 

(H;r) _k2)(Zu~)(r,k) 

( 
02 l (l + 1) 2\ ±( (» 

= -o~ +--~--k )Ul r+cf>, r,k ,k. (3.4) 

By using the relation 

(-0:: + l(Z; 1) _k2+V(X»)U~(X,k)=0 (3.5) 

we can eliminate (a2u±/a~)(x,k), with x=r+ cf>z(r,k), 
from (3.4) and thus obtain 

(H~r) - k2)(Zu~)(r, k) = [{2cf>'I(r, k) + [cf>;(r, k)J2} 

(
2 l(Z+1) ~ 

x k - [r+ cf>,(r,k)]2 - V(r+ cf>,(r,k») + l(Z + 1) 

x (~ - [r+ cf>1~r,k)]2) - cf>;'(r,k)[l + cf>;(r,k)]-l a~ 

- V(r+ cf>l(r,k»] (Zu~)(r,k), (3.6) 

where cf>;=acf>,Iar and cf>;'=a2cf>,Iar. 

If one chooses cf>,(r,k) to satisfy the first-order dif­
ferential equation (other choices are possible, but this 
appears to be most convenient for our purposes) 

{2cf>;(r,k) + [cf>;(r,k)]2}[k2 - VL(r+ cf>,(r,k»] 

= VL(r+ cf>,(r,k», (3.7) 

then (3.6) reduces to (3.1) with 
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(3.8) 

where 

q,o(r,k) = V s(r+ cf>(r,k» + l(l + 1) 

x[(r+ cf>(r ,k»-2 - r-2] - {2cf>'(r,k) 

+ [cf>'(r,k»)2}([r+l~(:,1~)]2 + Vs(r+ cf>(r,k») , 

(3.9) 

and 

(3.10) 

Note that the subscript l has been dropped from cf> 
since Eq. (3.7) is independent of l. 

The above calculation is justified provided that we can 
show the existence of a twice continuously differentiable 
solution to the differential equation (307). This follows 6 

from the theory of ordinary differential equations for a 
suitable choice of R. 

We recast (3.7) in the form 

dx = [1 + g(x k)]1/2 
dr ' 

where 

x=cf>(r,k)+r, 

g(x,k)= VL(x)[k2 - VL(X)]-l. 

(3.11) 

(3.12) 

A unique twice continuously differentiable solution to 
(3.11) satisfying x(R) = R is given by 

(3.13) 

provided that VL(x) and (dVL/dx)(x) are continuous and 
k2 - VL(x) > 0 for XE [0,00). This is certainly true if R is 
chosen sufficiently large, V(x) is continuously differen­
tiable, and k 2 

- V(x) > 0 for XE [R,oo). The properties of 
cf>(r,k) may be summarized as follows. 

Theorem 1: Let V(r) E Cl([R, 00» for R sufficiently 
large with limr_oor"'V(r)=Y*O and V'(r)=O(r-"'-l) for 
some t < a.,,; 1. Then for k ~ ko > 0 there exists a unique 
solution cf>(r, k) to the differential equation (3.7) such 
that 

(1) cf>(r,k) is C2 for rE [0,00), 

(2) cf>(r,k) =0 for r~R, 
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(4) an¢ (r k) _ ~ r-"·l-n 
ar'" 2k 2 

=O(k!) • O[p" (rh,.l-2,,-nJ, n=I,2. 

The short range character of Vj • err follows from prop­
erties (3) and (4) since for large rand k'" 0, 

(3.14) 
ql = O(r-"-1). 

Thus under the hypothesis of Theorem 1 the integral 
equation (2.18) becomes 

(Zu~)(r,k)=uj(r,k) -l ~ G~j(r,r' ,E) 

(3.15) 

An integration by parts in the last term {justified if V(r) 
is C2 ([R, 00 ))} yields 

(Zut)(r,k)=uj(r,k) - J~ K'(r,r' ,k)(Zu~)(r' ,k) dr', (3.16) 
a 

where 

K'(r, r', k)= qI2(r', k)G~I(r, r', k2) 

( , k) aG~1 ( , k 2 ) - q1 r, a;:t r, r, , (3.17) 

Q12(r' ,k)=QIO(r' ,k) - a~ Q1(r' ,k). 

Using a standard technique, one can multiply (3.16) by 

h(r) =r(-3 ... )/2 (1 +r( .. ,,)/2)-1(1 +1') (3.18) 

and define 

V~(1', k) = h(1')(Zu~)(r, k) (3.19) 

and vj(1',k)= h(1')ul(1',k) to obtain the integral equation 

v~(1',k) = vl(r,k) - Jo~ K;(1', r' ,k)v~(1" ,k) d1" 

with the kernel 

K~(r, r' ,k) = h(r)K'(r, r' ,k)[h(r,)]-1, 

which is Hilbert-Schmidt. 

(3.20) 

(3.21) 

Having solved (3.17) by standard methods, one can 
then recover u~(r,k) from (3,19). Hence we have the 
following theorem. 

Theorem 2: With the hypothesis of Theorem 1 and 
the additional assumption that V" (r) is continuous for r 
"" R, u~(r,k) is related by (3.19) to the solutions v~(r,k) 
of an integral equation with a Hilbert-Schmidt kernel. 

4. ASYMPTOTIC PROPERTIES OF Z 

In conclusion we will prove the asymptotic condition 
(1. 1). It is computationally more convenient, however, 
to deal with its equivalent form (2.11) and (2.13). 

According to (2.13) one must prove 

s-lim r [u~ (r+ ¢(r, k),/?) - uj(r,k)] 
t ..... :l::OO 0 

xexp( - ik2t)j(k) dk = 0, (4.1) 
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where for convenience we take j(k) belonging to the 
Schwartz 5 space on [0,00) and vanishing in some neigh­
borhood of the origin. 

In (4.1) one has 

u~(r, k) = lfl (k) exp(il1T/2)]-1v'271T >¥ j(r, k) 

>¥l(r,k) = lfl(r,k)fl(k) - fl(r, - k)fj(- k)]!2i 

and ui=u~ where >¥l(r,k) is the solution of 

( a2 l(Z + 1) ~ 2 \ ay +-y-- + V(r)) YI(r,k)=kYj(r,k), 

(4.2) 

(4.3) 

(4.4) 

which is regular at r=O and satisfies >¥1(O,k)=O and 
(ar-I.v/ar)(O, k)= 1, while fl(r, k) is defined as the Jost 
solution of (4.4) satisfying the asymptotic condition 

limfl(r, k) exp[ - is(r,k)] = 1 

with 

s(r,k)= f [k2 - VL (S)]1/2ds, 
a 

andfl(k) is the Jost function 

fl(k)=k-1 ~l(r, -k) a: >¥l(r,k) 

- >¥j(r,k) a:fl(r, -k)] . 

Let us define 

al(r,k) = ')2/1T sin[s(r,k) -l1T/2], 

We will prove (4.1) by showing that 

s-lim F;(r, t) = 0 
t~ ~ 

and 

s-lim ~~(r,t)=O, 

where 

F;(r,t)= r {u;(r+ ¢(r,k),k) - aj(r+ ¢(r,k),k)} 
a 

xexp( - ik2t)j(k) dk, 

and 

~;(r, t)= r [al(r+ ¢(r,k),k) -uj(1',k)] 
a 

x exp( - ik 2 t) j(k) dk. 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

We will only outline the argument which is based on the 
work of Matveev and Skriganov, 4 

From (4.11) one obtains the estimate 

1F;(r,t) 1< const(r/t), r~ t1/ 2
, (4.13) 

which follows from an integration by parts with respect 
to dk exp( - ik 2 t) and the estimates 

I a~ u;(r+ ¢(r,k),k) 1< constr, 

I a~ al(r+ ¢(r,k),k) 1< constr. 

For r> t1 /
2 we split F; into the two terms 
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F;1(r,t)= ..)2/1T r {Jz(r+ cp(r,k),k) 
o 

- exp[i/;(r+ cp(r,k),k)]} 

xexp[ - i(k2 t+ 11T/2)]j(k)dk/2i, (4.15) 

Pr2(r, tk ..)2/1T J'" {exp[ - i/:(r+ cp(r, k), k)] - (fz( - k)/ fz(k)] 
o 

Xfz(r+ cp(r,k), -k)}exp[ -i(k2 t -11T/2)] 

xj(k)dk/2i. (4.16) 

For t sufficiently large, one obtains the estimate 

IPrl(r,t) I < constr""" , (4.17) 

which follows from the estimate (see Ref. 4 with 7J = 1 
and the estimate on cp in Theorem 1) 

Ifz(r + cp(r, k), k) - exp[i1;(r + cp(r, k), k)] I < [A(k)/ I k I ]r-" 
(4.1S) 

with A(k) bounded and r sufficiently large. Finally, 
from (4.16) one obtains the estimate 

IPr(r,t)1 <constr-l. (4.19) 

This is obtained via an integration by parts with respect 
to dk exp[ - iWt + 1;(r+ cp(r,k),k)] which yields 

I Pr2(r, t) I < const L'" I :k [( 1 -~z~~~) fz(r+ cp, - k) 

xexp[i1;(r+ cp,k)])i(k) [2kt+ o! 1;(r+ CP,k)JJ I dk 

(4.20) 

from which (4.19) follows since (%k)1;(r+ CP,k) = O(r) 
for r- 00. 

From (4.13), (4.17), and (4.19) one has 
t 1 /

2 '" 1'" IPr(r,t}j2dr=( r + J / )IPr(r,t)1 2 dr o -'0 t1 2 

< const r 1 / 2 + const to -2a > /2 + const r 1/ 2, 

(4.21) 

which tends to zero for t - 00 and ~ > t. 
An exactly similar argument proves (4.10) except that 

in place of the estimate (4.1S) one uses the fact that for 
kr- 00, 

luz(r,k) - -./2/1T sin(kr -11T/2)1 = O«kr)-l) 

and Eq. (3.11) which implies that 

az(r + cp(r, k) ,k) = ..f2TiT sin(kr - 11T/2). 

APPENDIX 

(4.22) 

(4.23) 

The previously given5
,7 derivations of (2.15) from 

(1. 1) were assuming that Z is a bounded operator. Since 
in general Z can be expected to be an unbounded 
operator l

-
3 those proofs have to be reconsidered. 

Let us recast5 (1. 1) in the form 

(A1) 

pIe, in applying the spectral theorem to (Al), inter­
changing the order of integration in t and in the energy 
variable A, and then performing explicitly the 
integration in t. 

Since Z is unbounded, we can apply the spectral 
theorem only after taking a X E I-i for which exp( - iH ot)x. 
is in the domain of Z* at all t E ]Rl, and bringing Z 
to the left-hand side of the inner product, 

(Z* exp( - iHot)X I exp[ ('I' € - iH)t]>¥,.). (A2) 

Thus, in fact, we work with the Bochner integral 

(A3) 

In order to prove the existence of this integral, as well 
as for the validation of the interchange in the order of 
integration in 

we are going to show that the vector -valued function 

x(t) = Z* exp( - iHot)X 

is strongly continuous in t E Rl and that 

Ilx(t) II "" const, t E RI. 

(A4) 

(A5) 

(A6) 

As a matter of fact, if that is the case, we can repeat 
verbatim the argument in Ref. 5, pp.444-45 [with 
Z* exp(- iHot) replacing exp(- iHot)] and obtain that 

(A7) 

(A7) 

for vectors >¥ * for which ZE~>¥ * is defined at all A E lRl. 
The above relation immediately implies (2.15) provided 
that our assumptions on X are satisfied by a set J which 
is dense in I-i 0 

We prove the earlier mentioned properties of X(t) in 
(A5) for vectors xEDzm. We write 

Xzm(r, t) = [exp( - iHot)X]zm(r) (AS) 

and note that (since Z acts in the ranges of P. * of n*) it 
follows from (2.10) that in the momentum representation 
(ZnJixzm(t) is given by 

(A9) 

To prove the strong continuity in t of (A9) [and there­
fore also of xU)]' we consider first 

Xzm(k;t)= (21T)-1/2 exp[ - i1T(l + 1)/2][fz(k)]-1 

x r [fz(k) exp(ikr) - fz( - k) exp( - ikr)]xzm(r, t) dr. 
o 

(Al0) 

The derivation of (2.15) from (Al) consists, in princi- Since IJz(± k)/ fz(k) I = 1, the above function in k, con-
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sidered as an element of L2([0, 00» is obviously strongly 
continuous and norm -bounded in the parameter tEO JR1. 
Consequently, the problem of establishing (A5) and (A6) 

is reduced to establishing these same two properties for 
the differences 

D~m(k;t) = X~m(k;t) - Xzm(k;t) 

+1 

= (21T)"1/2exp[ -i1T(l + 1)/2](fz(k)]-1 6 (-1) (aal)/2 
a=-I 

xfz(ak) r (fz(r+ ¢z(r,k), ak) - exp(iakr)]dr (All) 
a 

for which an estimate of the form 

(j~ ID~m(k;tWdk)I/2 
a 

+1 00 00 

~const 6 (j dkl J c z(r,ak)X zm(r,t)drI 2)1/2 (A12) 
0'=-1 0 0 

can be derived, where 

c I(r, ok) = fz(r + ¢z(r,k), Ok) - exp(iokr). (A13) 

By combining (4.18) with the estimates in point (3) of 
Theorem 1, we obtain that 

(A14) 

We show now that if Xzm(r,t) is a Schwartz 5 function 
it can be majorized in any neighborhood of tt- 0 by some 
t-independent function that is Lebesgue integrable in r 
EO [0,00). Indeed, we have5 

[exp( - iHotl x](r) = (41Tit)-3/2 

13exp[(i/4t)(r -r,)2]x(r')dr'. 
IR 

Integrating by parts we obtain 

I (1+4~r[eXp(-iHot)x](r)1 

= I (41Tit)-3/2 exp (i~:) t.3 exp(-ir;t) 

x (1 - V2)2 exp (i~:2) x(r') dr' I 
4 

~ r3/2~f IPn(r';t)V2nx(r') I dr' , (A15) 

where Pn , n = 0, ... ,4, are polynomials in r of degree 
n having coefficients of the form cr", c> 0, with lJ as­
suming some integer value between 0 and 4, 
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The above result enables us to apply Lebesgue's 
dominated convergence theorem to the integrals in (All) 
and thus conclude that D~m(k, t) is continuous in t t- 0 for 
each fixed k E [0,00). In its turn, this result in conjunc­
tion with (A14) enables us to use again Lebesgue's 
dominated convergence theorem and infer that D:m(k,t) 
is strongly continuous in t t- O. 

We note that the case t = 0 can be easily treated by 
suitable changes in our estimates. 

The boundedness in norm (A6) for large values of It I 
can be obtained from (AI2) by noting that for I t I ?o I, 
(AI5) yields 

I exp( - iHot)x(r) I ~ constt-3 / 2[1 + (r/2t)2]-1 , 

since the coefficients of the polynomials Pn stay bounded 
as I t I - 00. Thus we get 

I r cz(r, ak)XZm(r, t) drl 
a 

~ O( Ik [-I) r [1 + t(r/t)2j- I d(r/t) 
a 

which establishes (A6). 

We note that an alternative method for deriving (A6) 
can be applied to those vectors X for which exp(iHt)Z* 

xexp(-iHot)X can be shown to converge strongly to 51"X. 
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A general quantum field theory is considered in which the fields are assumed to be operator-valued 
tempered distributions. The system of fields may include any number of boson fields and fermion fields. A 
theorem which relates certain complex Lorentz transformations to the TCP transformation is stated and 
proved. With reference to this theorem, duality conditions are considered, and it is shown that such 
conditions hold under various physically reasonable assumptions about the fields. Extensions of the algebras 
of field operators are discussed with reference to the duality conditions. Local internal symmetries are 
discussed. and it is shown that these commute with the Poincare group and with the TCP transformation. 

I. INTRODUCTION 

In an earlier paper, 1 hereafter referred to as BW I, 
the authors have discussed the duality condition for a 
Hermitian scalar field. It is the purpose of the present 
paper to extend the results in BW I to a general field 
theory, within the framework described in the mono­
graphs by Streater and Wightman2 and by Jost. 3 We 
thus consider a theory in which there appears an arbi­
trary set of local and relatively local spinor and tensor 
fields. Each field has a finite number of components, 
and is assumed to be an operator-valued tempered dis­
tribution. In contrast to the situation in BW I we now 
have to consider fermion fields, and their characteris­
tic anticommutation relations, which necessitates an 
obvious modification in the definitions of the duality 
conditions. 

As we shall see, however, much of the reasoning in 
BW I applies in almost unchanged form to the issues in 
the present study. When this is the case we shall rely 
heavily on BW I, and not repeat arguments already given 
in that paper. The notation and terminology in BW I 
will be followed whenever applicable. We also refer to 
BW I for additional references to related work. 

In Sec. IT we review some aspects of the geometry 
of Minkowski space, and we also review some well­
known facts about the quantum mechanical Poincare 
group and its complex extension. In Sec. ITI we state 
our assumptions about the quantum fields, which are 
more or less standard. In these two sections we also 
explain the notation which we follow in the subsequent 
discussion. 

The locality condition for the quantum fields is ex­
pressed in terms of the familiar (normal) commutation 
and anticommutation relations. For our purposes it 
would be extremely cumbersome to have to consider 
commutation and anticommutation relations simultane­
ously, and we therefore find it advantageous to restate 
the locality conditions in terms of the vanishing of 
certain commutators. The simple device through which 
this can be achieved is explained in Lemma 1 with refer­
ence to the field operators, and more generally, in 
Theorem 2 in Sec. V. 

In Sec. IV we discuss the relationship between com-
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plex Lorentz transformations and the TCP transforma­
tion. The considerations are analogous to the considera­
tions in Secs. III and IV in BW I, except that we now 
deal with spinor and tensor fieldS rather than with a 
single scalar field as in BW I. The main result in this 
section is presented in Theorem 1; this theorem is 
analogous to Theorem 1 in BW I. The form of this the­
orem is hardly surpriSing, in view of the analogous re­
sult in BW I, and some readers might feel that it would 
have been enough just to state the theorem. We felt, 
however, that an outline of the reasoning was in order 
and that some of the cumbersome details should be 
presented explicitly in writing and not left entirely to 
the imagination of the reader. 

Sec. V in BW I was devoted to a discussion of some 
algebraic questions relating to Theorem 1. This dis­
cussion applies as such to the present study, and we do 
not repeat it here. 

In Sec. V of the present paper we discuss the duality 
condition for the wedge regions WR and WL, where WR 

={xlx 3 > Ix4 1}and WL ={xlx 3 <- Ix4 1}. This discussion 
is analogous to the discussion in Sec. VI in BW I. The 
issue is the following. We wish to find two von Neumann 
algebras A (W R) and A (W L) such that A (W R) can be re­
garded as locally associated with W R and A (W L) can be 
regarded as locally associated with WL • Furthermore, 
the association should be consistent with the well-known 
TCP symmetry of the quantum fields. These notions are 
defined precisely in Definition 2 in Sec. V. If there are 
no fermion fields, then one aspect of locality is that 
I1(WR ) is contained in the commutantA(l{TL)' ofA(WL), 
and the condition of duality is that A (WR ) =A(WL)'. In a 
theory in which fermion fields do occur these condi­
tions have to be modified in an obvious way. The condi­
tion of duality is now that A (W R) = (ZA (U'L)Z-l)" where 
Z is the unitary operator defined by Z = (/ + i Uo)/ (1 + i) in 
terms of the unitary operator Uo which represents a 
rotation by angle 21T about any axis. In this paper we 
employ the notation A (W L)q = (ZA (W L)Z-I)" and we call 
II (WL)q the quasicommutant of the algebra A (W L)' The 
modified conditions of locality and duality are thus 
stated in terms of the notion of a quasicommutant. We 
note here that the second iterated quasicommutant is 
equal to the second iterated commutant, and that the 
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quasicommutant is equal to the commutant whenever 
Uo = I, and hence Z = I. The reader who feels temporari­
ly bewildered by the appearance of the superscript q in 
Secs. V and VI might find it helpful to ignore, at first, 
the distinction between a quasicommutant and a com­
mutant, and hence to read the superscript q as the 
familiar von Neumann prime. This corresponds to the 
special case of no fermion fields. We feel that the 
modifications occasioned by the presence of fermion 
fields are really utterly trivial, although perhaps 
slightly distractive at first. 

In a quantum field theory the local von Neumann 
algebras must be appropriately related to the field 
operators. Let P (W R) denote the algebra of (in general 
unbounded) operators constructed from fields averaged 
with test functions with support in W R, and let peW L) 
be analogously defined. A natural relationship between 
A (W R) and peW R) is that the operators in the latter 
algebra shall have closed extensions affiliated to A (W R) 
with the analogous relationship between A (WL ) and ' 
P(WL ). We have not been able to show that von Neumann 
algebras A (W R) and A (W L) with the above properties do 
exist for a general field theory, i. e., without further 
assumptions about the fields which go beyond the usual 
minimal assumptions. Hence we consider some special 
conditions on the fields which guarantee the existence 
of algebras A (W R) and A (W L) with physically satisfac­
tory properties. Our conditions on the fields are not as 
such physically unreasonable, but it would clearly be 
desirable to settle the question of whether they are in 
fact necessary. The main results in Sec. V are present­
ed in Theorems 3 and 4. We note here that these re­
sults, in the special case of a single Hermitian scalar 
field, are considerably stronger than our results in 
BW I. 

In Sec. VI we discuss the construction of local von 
Neumann algebras associated with other regions than 
wedge regions in terms of algebras associated with WR 

and WL , and we show that the extended system of local 
algebras satisfy a condition of duality if the algebras 
A (W R) and A (W L) do. For reasons of simplicity we 
restrict our considerations to very special regions: 
double cones and their causal complements. Our re­
sults concerning the properties of the extended system 
of algebras in general are stated in Theorems 5 and 6. 
Theorem 7 describes the situation under specific 
assumptions about the fields. The discussion in Sec. VI 
is analogous to the discussion in Sec. VII in BW I, but 
the results in the present paper are considerably 
stronger than our earlier results. The paper concludes 
with Theorem 8, concerning local internal symmetries, 
in which we note that such symmetries commute with all 
Poincare transformations and with the TCP 
transformation. 

II. GEOMETRICAL PRELIMINARIES. ABOUT THE 
QUANTUM MECHANICAL POINCARE GROUP 

Minkowski space!l1 is parametrized by the customary 
Cartesian coordinates x = (x 1,X

2
,X

3
,X

4
). The Lorentz 

"metric" is so defined that x • y =X4y4 - x 1yl - x Zy2 - X3y 3. 
'Ihe elements A =A(M,y) of the proper Poincare group 
Lo are parametrized by a 4 x4 Lorentz matrix M, and a 
real 4-vector y, such that the image Ax of a point 
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x E!I1 under any A E £0 is given by Ax =A(M,y)x = Mx +y. 
The image of any subset R of!l1 under A is denoted AR. 

The group of all 4 x4 Lorentz matrices M, i. e., the 
group of all proper homogeneous Lorentz transforma­
tions, is denoted Lo. A rotation in Lo by angle Ii about 
the unit vector e is denoted R(e, Ii). We denote by 
V(e3, t) the velocity transformation (in Lo) in the 3-
direction given by 

Vie"~ I). ~ 1 'O~h(l) 'iL,~· (1) 

~ 0 sinh(t) COSh(~ 
We define a "right wedge" W R, and a "left wedge" 

WL , as the following open subsets of Minkowski space: 

wR ={xix3> ix4 i}, wL ={xix3<-ix4i}. (2) 

These two regions are bounded by two characteristic 
planes whose intersection is the 2-plane {x iX 3 =x4 = O}. 
We note that the one-parameter Abelian group of veloc­
ity transformations V(e3, t), t real, maps W R onto it­
self and W L onto itself. 

.We next. consider an.involutory mapping x - [)x of 
Mmkowskl space onto Itself, defined by 

yx = - R(e3' 1T)X, 

or (3) 

() (x1 x2 x 3 x 4) = (x1 x2 _ x 3 _ x 4) 
(/ , " ~,' , 

where R(e3, 1T) denotes the rotation by angle 1T about the 
3-axis. We see that y maps WR onto WL , and the map­
ping can be described as a reflection in the common 
"edge" {x i x 3 =x4 = O} of the pair of wedges W Rand W L' 

We note that V(e3, t), as given in (1), is all entire 
analytic function of t. It is easily seen that 

y = V(e3, i1T). (4) 

For any subset R of Minkowski space!l1 we define the 
causal complement RC of R by 

w = {x i (x - y) . (x - y) < 0, all y E R}. (5) 

We note that with this definition W'k = HiLand W1 = H'R' 
where the bar denotes the closure. Two open regions 
R1 and Rz such that R~ = R2 and R~ = R1 form a pair of 
causally complementary open regions. Among such 
pairs the pair W Rand W L is distinguished by the simple 
geometric relationships described above. Any pair of 
wedge- regions bounded by two nonparallel characteristic 
planes are distinguished in the same sense, and any such 
pair is in fact Poincare-equivalent to the pa!r (WR , WL ), 

1. e., of the form (A WR , AWL) for some A E Lo. We 
shall here define W as the set of all (open) wedge re­
gions bounded by two intersecting characteristic planes, 
i. e. , 

Although we shall at first be explicitly concerned with 
W R, it is clear that analogous considerations apply to 
any WEU!o 

(6) 

The regions W Rand W L have further distinguishing 
properties, which are of crucial importance for our 
discussion, namely the following. Let t=tr+iti' with t" 
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tl real. If x E: W R, then the complex 4-vector z (t) 
= V(es, t)x is an element of the forward imaginary tube in 
C4, i. e" Im(z (t)) E: V+, for all complex t in the open 
strip 0 < tl < rr, and z (t) is in the closure of the forward 
imaginary tube for all t in the closed strip 0'" tl '" rr. We 
here denote the forward lightcone with the origin as 
apex by V+; the backward lightcone is denoted V.' Simi­
larly, if XE WL , then z(t) is in the forward imaginary 
tube for all complex t in the strip - rr < tl < 0 and in the 
closed forward imaginary tube for all t in the closure of 
the above strip. These assertions are easily established 
through a simple computation. [See formula (45b) in 
BW L ] We note that the above facts were also of crucial 
importance in Jost's proof of the TCP theorem. 4 

For the reader's convenience we shall here review 
some well-known facts about the universal covering 
groups of the Lorentz and Poihcar~ groups, and about 
the complex extensien of the covering group of the 
Lorentz group. 5 

The universal covering group of L o, i. e., the group 
of all unimodular 2 x 2 complex matrices, is denoted? 
A specific two-to-one homomorphism of? onto Lo is 
given by 

g- M(g), Mrs (g) = tTr(gtargas), (7) 

where ai, a2, a3 are the usual Pauli matrices and where 
a 4 = I. The rotations and velocity transformations in f 
are denoted 

u(e, e) = exp{- ti ee· a), vee, t) = exp(tte. a), (8) 

and under the homomorphism (7) we thus have 

R(e, e) = M(u(e, e)), Vee, t) = M{v{e, t». (9) 

The group f can be regarded as the complex exten­
sion of the group SU(2) of all unitary matrices (rota­
tions) u E?, and every irreducible (unitary) represen­
tation u - DS(u) of SU(2) can be analytically extended to 
a representation g - DS(g) of 1, such that the matrix 
elements of DS(g) are homogeneous polynomials of de­
gree 2s in the matrix elements of g. The most general 
finite-dimensional irreducible representation of ? is of 
the form 

(10) 

where gr = (gt)"1. The mapping g - gr is an outer auto­
morphism of 1 which preserves every element in the 
subgroup SU(2). 

In view of the complex structure of ? it follows that 
the complex extension 1 c of 1 is the direct product of 
1 with itself, i. e., the group 1c= t X t of all ordered 
pairs (gj, g2) of elements in t with the law of composi­
tion (gf,g~)(g1' ,g2') = (gjg;' ,g5g2'). The group 1 can be 
identified with a particular "real subgroup" of 1 c 

through the one-one correspondence 

g-(g,g). (11) 

To the set of all finite-dimensional irreducible rep­
resentations g - DS

', s" (g) of? corresponds a particular 
family of finite-dimensional irreducible representations 
of 1 c' which can be regarded as the set of all finite­
dimensional irreducible analytic representations of? c' 

namely the representations 
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(12) 

With reference to the above definitions we define, 
for any complex number t, the complex velocity trans­
formation vc(es, t) in the 3-direction as the element 

v c(e3, t) = (exp(- tt(3), exp{ttas» (13a) 

of the group ?c' and it follows from (12) that 

D~"S"{vc(e3' t) = DS'(exp(- ttas)) CWs"(exp(tta3). (13b) 

The matrix-valued function of t in (13b) is an entire 
analytic function of the complex variable f, and hence 
the unique analytic extension of the matrix-valued func­
tion DS',s"(v(es, t)) of the real variable f. We note in 
particular that 

D~"sH(vc(e3' i7r) = (- 1)2S"DS', SH(u(e3' rr), 

D~,S"(vc(es, - irr) = (_1)2S'Ds',s"(u(e3, rr). 

(14a) 

(14b) 

The formula V{e3, irr) = - R{es, rr) is a special case of 
(14a) (with s' = s" = t), and with Mc denoting the analytic 
extension of the representation g - M(g) to the complex 
group 1c we have M c(vc(e3, t) = V{e3, t) for all complex t. 

- -
The universal covering group of Lo is denoted f. The 

elements A = A(g,X) are the ordered pairs conSisting of 
any g E 1 and any x E/n, with the law of composition 
A(g',X')A(g",X") =A(g'g", x' +M(g')x"). We define an 
explicit homomorphism A - A (A) by A (A(g,X) 
=A(M(g),x). 

The Hilbert space H of phYSical states is assumed to 
be separable. It is assumed to carry a strongly con­
tinuous unitary representation A - UtA) of the quantum 
mechanical Poincar~ group j. We write U(g,x) 
= U(A(g,X», and we also employ the special notation 
T(x) = U(I,x) for the translations. The translations have 
the common spectral resolution 

T{x)=U(I,x)=j exp(ix'P)Il(d4p), (15) 

and it is assumed that the support of the spectral m~a­
sure 11 is contained in the closed forward lightcone V+ 
(in momentum space). This assumption about the sup­
port of 11 will be referred to as the "spectral condition" 
in what follows. 

We assume the existence of a vacuum state, repre­
sented by the unit vector n, uniquely characterized by 
its invariance under all translations. The vacuum state 
then satisfies U(A)n=n for all AEj. It is well known 
that the spectral condition allows the extension of the 
representation of the translation subgroup to a unique 
representation z - T(z) of the ~emigroup of complex 
translations for which Im{z) E V., such that T(z) is a 
bounded and strongly continuous function of z in the 
closed forward imaginary tube, and a strongly analytic 
function of z in the open forward imaginary tube. 

The one-parameter group of velocity transformations 
in the 3-direction, as well as its analytic extension to 
the complex domain, will be of particular interest, and 
we shall therefore employ the shorter notation Vet) 
= U(v(e3, f), 0) for the representatives of these velocity 
transformations. More generally we shall write 

V(T) = exp(- iTK3) = j exp(- iTs)J..I.K(ds) (16) 

for any complex T. Here J..I. K is the spectral measure in 
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the simultaneous spectral resolution of the group of all 
V(t), t real, and K3 is the unique self-adjoint operator, 
with domain Dx , such that V(t) = exp(- ilK3). For a dis­
cussion of the domains of the normal operators V(,) we 
refer to Sec. IV in BW I. We denote (as in BW I) by D+ 

the domain on which V(i7T) is self-adjoint and by D. the 
domain on which V(- i7T) is self-adjoint. 

III. ASSUMPTIONS ABOUT THE QUANTUM FIELDS 
We denote by DCRn

) the set of all complex-valued 
infinitely differentiable functions of compact support on 
n-dimensional Euclidean space Rn , and we denote by 
5 (Rn) the space of test functions on R n in terms of which 
tempered distributions are defined. The space 5(Rn) is 
regarded as endowed with the particular topology ap­
propriate to the definition of tempered distributions. 6 

For an unbounded linear or antilinear operator X 
defined on a domain D we shall employ the unorthodox 
notation (X, D), as in BW I. The adjoint of (X, D) is 
denoted (X, D)* = (X*, D(X*», where D(X*) is the domain 
of the adjoint. This notation will not be employed for 
manifestly bounded operators, for which the domain is 
taken to be the entire Hilbert space H. 

We shall next state the basic assumptions about the 
quantum fields. It is not our aim here to state a set of 
minimal independent assumptions for a field theory, but 
rather to describe the situation which prevails in a 
standard field theory. 

(a) We assume the existence of a set of boson fields 
f3(b) (x), where b is an element in an index set IB , and a 
set of fermion fields 1> (f) (x), where f is an element in 
an index set IF' The index sets are regarded as dis­
joint, and it is assumed that at least one of these sets 
is nonempty; otherwise they are arbitrary. We thus 
admit as possible special cases the cases when either 
I B , or else IF is empty. Each field f3(bl(X) or 1> (fl(x) has 
a finite number of components, denoted f3~)(X), respec­
tively 1>~) (x), where jl is a suitable index distinguishing 
between the components. 

(b) We also consider the set of all components of all 
the fermion fields and all the boson fields. An element 
in this set is denoted rp" (x), where 11 is an element in an 
index set IT such that when 11 runs through IT each com­
ponent of each field is obtained once and once only. Each 
component rp" (x) is an operator-valued tempered distri­
bution in the following sense. To each f(x) E 5 (R4), and 
each 11 E IT, corresponds a closable linear operator 
(rpJfJ, D j ) on a dense domain D j (independent of f and 11) 
such that rp,,[J]D j cD j • The mappingj- (rp,,[J],D j ) is 
linear, and for any ~EDj the vector rp,,[JJ~ is a strong­
ly continuous function of f on S (R4). 

Furthermore, if a = (111,112, ••• ,Iln) is any ordered 
n-tuplet of indices from IT, then there corresponds to 
every f(x j, x2, ... ,xn) E S (R4n) a closable linear operator 
(rp{j;o},D j ) on D j such that rp{f;O}D j cD j • The mapping 
f - (rp{j;o}, D j ) is linear, and for any 1; E D j the vector 
rp{j;oH is a strongly continuous function of f on S (R4n). 
If f is of the particular form f(x 1> X2, ' •• ,x n) 
=fj(x j)fz(x2), "fn(xn), withfkES(R4) for k=l, ... ,n, 
then, on D j , 

rp{j;o}= rp"j[Jl1rp,,2[J2]'" rp"n[Jn]' (17) 
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This is consistent with the common notation for 
rp{f; a} in terms of the symbolic integral at right in 

rp{j; a} = (<0) d4 (x j )d4 (x2) ••. d4(xn) 

Xf(xj,xz,··. ,xn)rp"j(Xj)rp,,2(xZ)'" rp"n(x n). (18) 

(c) Let P(fl) be the algebra, defined on D j , which is 
the linear span of the identity I and all operators 
(rp{j;o},D j ). The dense domain D j is assumed to be 
preCisely equal to P(fl) )$1. 

(d) For any field component rp" (x) there exists a field 
component rp jJ.,(x) such that for any f E 5 (R4) 

(19) 

The field component rp ",(x) is then also denoted rp: (x). 

(e) The domain_Dj is invariant under ?, i. e., U(A)D j 

=D1, for any AE(I'. The action of UrAl by conjugation on 
the elements of PUY/) is specified by the conditions 

(Cl!) T(x')rp" (x)T(x')"l = rp" (x +x') (20a) 

for any field component 41" (x). 

(f3) For each bEl B, 

U(g, O)f3~)(x)U(g, O)·j 

= '0 r~b~,(g·j)f3~b,)(M(g)x), (20b) 
,,' 

where g - rIb) (g) is similar to one of the representa­
tions g_Ds'tS"(g) for which 2(s' +s") is an even integer. 

(y) For eachfEIF' 

U(g, 0)1>~) (x)U(g, 0)"1 

(20c) 

where g - r(1l (g) is similar to one of the representa­
tions g - DS'.s"(g) for which 2(s' + sIt) is an odd integer. 

The sums at right in (20b) and (20c) extend over all 
the components of the field f3(b)(x), respectively the 
field 1> (f) (x). 

(f) All the fields satisfy the normal conditions of 
locality, i. e., they satisfy the conditions (in the sense 
of distributions) 

[f3:b) (x), f3:~')(x')] = 0, 

[f3~b)(X), 1>:f.')(x')] = 0, 

{1>;!) (x), 1>:t.') (x')}= 0 

(21) 

on Dl for all spacelike x - x'. Here the curly bracket 
denotes the anticommutator, i. e., {X, X'} = XX' +X'Xo 

The above formulation of the basic assumptions about 
the fields is more or less standard. The essence of the 
notion of a set of quantum fields is a certain kind of 
representation of a tensor algebra of multicomponent 
test functions by an operator algebra P((n). The precise 
formulation of a general field theory is unfortunately 
beset by considerable notational difficulties. We have 
tried to select a notation which is convenient {or our 
particular purposes. Let us now elaborate further on 
the basic assumptions, and on some well-known im­
mediate consequences. 

(g) Whether the number of fields is finite, countably 
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infinite, or uncountably infinite is immaterial for the 
conclusions which we shall draw. That each field {3(bl(X) 
or c{l(f)(x) has only a finite number of components, 
where the notion of "component, " of course, refers 
specifically to the transformation laws (20b) and (20c), 
is, however, essential. Our purpose with introducing 
the specific "irreducible fields" {3(bl(x) and cf>(f}(x) was 
to be able to state the transformation laws (20b) and 
(20c), as well as the locality conditions (21), with 
maximum clarity. For the subsequent discussion it will, 
however, be more convenient to employ a unified nota­
tion, in terms of the symbols CPjL(x), for all the field 
components, and we shall therefore restate the condi­
tions (20b) and (20c) in the form 

U(g, O)cp" (x)U(g, ot1 = '0 r jLjL,(g-l)cp",(M(g)x) (22) 
Ii' 

The "matrix" reg) can be regarded as the direct sum 
of the finite-dimensional matrices r(b)(g) and r(f}(g) in 
an obvious sense. The sum in (22) is always a finite 
sum, and for each fixed J.L (or each fixed J.L ') there is 
only a finite number of values of J.L' (respectively of J.L) 
for which r "jL' is different from zeroo We shall also 
consider the analytic extension of the representation 
g - reg) of t to a representation (gj,g2) - r(gj,g2) of 
t c' defined as the direct sum of the corresponding 
analytic extensions of the representations r(~l (g) and 
r(f)(g) as described in Sec. II. To the complex velocity 
transformation vc(e~, t) thus corresponds the representa­
tive r(Vc(e3, t)), each matrix element of which is an 
entire analytic function of the complex variable t. With 
reference to this extension we thus define the diagonal 
"matrix" rtf (with eigenvalues + 1 and - 1) by 

(23) 

That rtf has the stated properties follows at once from 
(14a)o 

(h) The domain D j on which the "averaged fields" and 
the operators in PVY!) are defined should be carefully 
noted. It follows readily from our assumptions that for 
any (X, D j ) E PVY!) the domain of the adjoint (X, D j )* con­
tains D j • The restriction of the adjoint to D j shall be 
denoted (Xt, D j ), and called the Hermitian conjugate of 
X; the notion of the Hermitian conjugate of a field opera­
tor thus depends on the specific choice of D 1• It also 
follows from our assumptions that (xt, D j ) E PVY!) for all 
(X, D j ) E PVY!). In particular the Hermitian conjugate 
CPjLUY of the averaged field CPjLUJ is the averaged field 
cP:U*J. The mapping (X, D j ) - (Xt , D j ) is an antilinear 
involution of PVY!) [such that (X j X 2)t =xiXn 

We note that every operator (X, D j ) E PVY!) satisfies 

(24) 

It is a hitherto unsolved problem whether the assump­
tions which we have made imply that the inclusion in 
(24) can be replaced by equality for some nontrivial set 
of operators in Pvy!). 

(i) Let R be any subset of Minkowski space /J1. We 
define Po(R) as the polynomial algebra generated by the 
identity operator I and all operators (cp JLUl, D j ), with 
J.LEIT , f(x) E 5 (R4) and supp(f) cR. We define the al­
gebra peR) as the linear span of I and all operators 
(cp{f; a}, D j ), where (J = (J.L1, J.L2, ••• , iJ.n) is any n-tuplet 
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of indices in IT, and where f(Xj,X2,'" ,xn) E 5 (R4n) with 
supp{f) c (xR)". 

It is easily seen that (X, D j ) - (xt, D j ) is an involution 
of both Po(R) and peR). From the conditions (20a)-(20c) 
it follows that 

U(A) Po (R)U(At
j 

= Po (A (A)R), 

U(A) P(R)U(Ar j = P(A (A)R) (25) 

for any A E t and any R. 

We trivially have Po(R) C peR) C P(;11). According to a 
well-known theorem of Reeh and Schlieder7 the linear 
manifold po(R)n is dense in H for any open nonempty R. 

0) Let the unitary operators Uo and Z be defined by 

Uo=U(-I,O), Z=(I+iUo)/(l+i). (26) 

These operators trivially satisfy 

and 

U~ =1, Z2 = Uo, U(A)UOU(Ar
j 

= Uo, U(A)ZU(At
j 

= Z 
(27a) 

uon = zn = n, UODj =D1, ZD1 =Dj . (27b) 

Furthermore, it follows from the assumptions in (e) 
above that 

Uo{3~&) (x) = i3~b) (x)Uo, Z j3~b) (x)Z-j = i3~b) (x), (28a) 

Uocf>;!) (x) = - c{l<;) (x)Uo, Zcf>;!l (x)Z-j = iUocf> y) (x) (28b) 

for all boson fields j3(b)(X) and all fermion fields cf> (f) (x). 

The fact that the involution Uo commutes with all 
boson fields, but anticommutes with all fermion fields 
permits a unique resolution of any field operator into a 
sum of a "boson operator" and a "fermion operator, " 
and it also permits a restatement of the locality condi­
tions (21) in terms of the vanishing of certain commuta­
tors. We shall state the important facts in the matter in 
the form of a lemma for later reference. 

Lemma 1: (a) Let Uo and Z be defined as in (26). For 
any subset R of/J1, let 

P B(R) ={(X, D j ) I UoXUo =X, (X, D j ) E P(R)}, (29a) 

PF(R)={(X,Dj)luoXuo=-X, (X,Dj)EP(R)}. (29b) 

Then every (X, D j ) E peR) has a unique resolution of 
the form 

(30a) 

where, in fact, 

Xb = 1(X + UoXUo), X, = 1(X - UoXUo). (30b) 

The sets P B(R) and P F(R) are mapped onto themselves 
under the involution (X, D j ) - (Xt, Dj). Furthermore, 

ZX~-i =Xb, zx,z-j =iUoXl (31) 

for all Xb E P B(R) and all X, E P F(R). 

(b) For any (X, D j ) E P(R), let (XZ, D j ) be defined by 

(32) 

If R j and R2 are two open subsets of /J1 such that R j 
C Rq, then it follows from the locality conditions in (f) 
above that 
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[Xb' Yb]=O, [Xb' Yf]=O, [X" Yb]=O, {X" Yf}=O 
(33a) 

onD1 for allXbEPB(R1), XfEPF(R t ), Y b EPB(R2), and 
Yf E P F(R2). The conditions (33a) are equivalent to the 
condition 

[X, Y"1 = ° (33b) 

on Dt for all X E peRt), Y E P(R2). 

We omit the completely trivial proof. We note that the 
lemma is vacuous if Uo = I, which is the case if and only 
if there is no fermion field. 

IV. COMPLEX LORENTZ TRANSFORMATIONS AND 
THE TCP TRANSFORMATION 

In this section we shall present the generalizations 
appropriate for the present situation of the considera­
tions in Secs. III and N in BW 1. The main result is 
presented in Theorem 1, which corresponds to Theorem 
1 in BW t As in BW I we arrive at the main conclusion 
through a sequence of lemmas, arranged in such a way 
that the similarities with the discussion in BW I are 
pretty obvious. 

For any I(Xt.x2,'" ,Xn)E 5 (R4n) we define a Fourier 
transform 1 by 

l(Pt, ••. ,Pn) 

= i(OOI d
4
(Xt)'" d4

(xn)/(Xt, ••• ,Xn) exp({~~ Xr ' Pr) . (34) 

For any positive integer n we denote by Tn the open 
tube region 

Tn={(Zt.Z2,'" ,zn)IIm(zk)E V+, k =1, ... ,n} (35) 

in complex 4n-dimensional space, regarded as a direct 
sum of n replicas of complex Minkowski space and 
parametrized by an n-tuplet (zl' Z2, ••• ,zn) of complex 
4-vectors. The closure of Tn is denoted Tn. 

Lemma 2: Let Z E T t , i. e. , Z is any complex 4-vec­
tor in the closed forward imaginary tube. Then 

(36a) 

(b) If IE 5 (R4n) there exists an I. E 5 (R4n) such that 

J.(p!>.,. ,Pn) =J(Pt,· •• ,Pn) exp/iz, t Pr) (36b) 
\ r=l 

for (p, . .. ,Pn) E Vn, where Vn is the subset of R 4n de­
fined by 

n 

I >; -Vn={(Pt. .. o,Pn) '-JPrEV+, k=l, •.• ,n} (36c) 
r=k 

and for every such I. we have 

T(z)rp{J; o}n = rp{/.; a}n, (36d) 

where a is any ordered n-tuplet (Ill, 1l2, ... ,Iln) of in­
dices from IT' 

Lemma 3: (a) For each n~ 1, let En be the set of all 
functions l(x1,.,. ,xn;zt. .•. ,zn) defined for (Xl, .•. ,Xn) 
E R 4n and (z t. ... ,zn) E Tn, such that! E 5 (R4n) and such 
that the Fourier transform 1 of! relative to the varia­
bles (Xl" , . ,X n) satisfies the condition 

f(P!>." ,Pn;Zt. 0 •• ,Zn) = expfi t t Zk' Pr) (37a) 
\ k=l y=-k 
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for all (Pl, .•. ,Pn) E Vn> with Vn defined as in (36c). The 
set En is nonempty, and to every n-tuplet a 
'" (Ill, 1l2, ••• , Iln) of indices from IT corresponds a 
unique vector-valued function ¢(zl,z2,'" ,zn;a) on Tn, 
defined by 

¢ (z 1> Z2, ••• ,zn; a) = rp{J; a}n, 

where! is any element of En. 

(37b) 

(b) The vector-valued function ¢ (z 1> Z2, .•. ,z n; a) is a 
strongly analytic function of (zt, z2, ••. ,zn) on Tn> and 
for each point in this domain it is an analytic vector for 
the Lie algebra of the group U(j). 

(c) For any element A = A(g,X) of the quantum me­
chanical Poincare group " 

U(A)¢(Z1>Z2, ••. ,zn;a) 

= G ra,a,(g-t)¢(Mz1 +X, Mz 2, Mz 3, ••. ,Mzn; a'l, (37c) 
a' 

where M = M(g), and where the sum is over the finite 
number of n-tuplets a' = (Ill', 1l2', ••• , Iln') of indices 
from IT for which 

ro,.,.(g) = r ,,1, "l,(g)r ,,2, ,,2,(g)'" r "no "n.(g) (37d) 

is not identically zero (as a function of g). 

It may here be noted that 

(37e) 

is a defensible notation (within the framework of dis­
tribution theory) for the vector ¢ (zl, Z2, ••• ,zn; a). 

Lemma 4: (a) Let {Jk I!k EO 5 (R4) , k = 1, " . ,n} be any 
n-tuplet of test functions, and let a = (Ill, 1l2, ... ,jJ.n) 
be any ordered n-tuplet of indices from IT' For 
k = 1, ... ,n, let X k = rp "kUk]' Then the vector 

T(zl)XIT(Z2)X2", T(zn)Xnn (3Sa) 

is well defined (through successive left multiplications) 
for all (zl,Z2,'" ,Zn)E Tn> and it is a strongly continu­
ous function of the variables (zt. Z2, •.• ,zn) on Tn and a 
strongly analytic function of these variables on Tn. 

(b) There exist functions!(xt. ... ,Xn;Zj, •.• ,zn) de­
fined for (x 1> ••• ,x n) E R 4n and (z 1> ••• ,z n) E Tn, such that 
IE 5 (R4n) and such that the Fourier transform 1 of ! 
relative to the variables (Xl' •.. ,xn) satisfies the 
condition 

J(Pj, ••. ,Pn; Zj, . , • ,zn) = exp(i t t Zk' Pr) il Jh(Pk) (3Sb) 
hoi r=k k=l 

for all (Pb'" ,Pn) E Vn, with Vn defined as in (36c), and 
for all (Zj,Z2,.,. ,zn) E Tn. For any such function!, 

(3Sc) 

(c) If/hED(R4) for k=1,2, ... ,n, and (Zl,Z2,'" ,zn) 
E Tn, then 

i( OOl d4(Xl)'" d4(x n)!t(xl)!2(X2)" '!n(xn) 

x ¢ (z 1 +Xl' Z2 +X2 - Xl' Z3 +X3 - X2, •. , ,Zn +Xn - X n_1; 0) 

(38d) 

(d) Let {Rn I n = 1, ... ,00} be any set of open, nonempty 
subsets of Minkowski space. For such a set, and for 
any n ~ 1, let Sn denote the linear span of all vectors of 
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the form X 1X 2 ••• xnn, with X k defined as in (a) above, 
and withfkES(R4), supp{fk)CRk, for k=l, .•. ,no 

Then the linear span of the vacuum vector n and the 
union of all the linear manifolds Sn is dense in the 
Hilbert space H. 

About the proofs: Lemmas 2-4 in the present paper 
correspond to Lemmas 2-6 in Sec. III of BW I, and the 
reasoning there presented applies with very trivial 
modifications, The conclusions in Lemmas 2 and 4; the 
conclusion in part (a) of Lemma 3, and the conclusion 
[in part (b) of Lemma 3] that ¢(zl,Z2,." ,zn;a) is 
analytic as asserted, follow from the spectral condition, 
the action of the translation group by conjugation on the 
fields, and the assumption that the fields are tempered 
distributions on the domain D1, That we now deal with 
an arbitrary number of field components instead of with 
a single field as in BW I is immaterial in the proofs. 
The formula (37c) is the trivial generalization of the 
formula (34) in BW L Since the matrix :fcg-l) in (37c) 
is in effect similar to a finite direct sum of matrices 
Ds'·s"(g-I), and hence an entire analytic function of g, 
it follows that ¢(zl,Z2, .•. ,zn;a) is an analytic vector 
for the Lie algebra of the group U(?, 0), and hence also 
for the Lie algebra of the group u(i), 

We next consider the action of the complex velocity 
transformations Vet) = exp(- itK3) , where t is complex, 
on the vectors ¢ (zl, z2, •.. ,zn; a). We denote by Dy(7T/2) 
the domain on which V(i7T/2) is self-adjoint and by 
Dy(- 7T/2) the domain on which V(- i7T/2) is self-adjoint. 
The domain D y(7T/2) is then a core for all operators 
Vet) with 0 ~ 1m (t) ~ 7T /2, and the domain Dy( - 7T /2) is a 
core for all operators Vet) with 0 ~ Im(t) ~ - 7T/2. The 
next lemma corresponds to Lemmas 8 and 9 in BW I, 
and it is proved, on the basis of Lemma 3, by a very 
trivial modification of the reasoning in BW I. 

Lemma 5: Let (z 10 ••• ,zn) be an n-tuplet of complex 
4-vectors Zk=xk+iYk, wherexk,Yk are real, y~=y~=O, 
y~ > ly21, for k =1, ... ,n. Let a = (Ill, 1l2, ••. ,Iln) be 
any ordered n-tuplet of indices from IT' For any k and 
any complex t we define Zk(t) by 

Zk(t) = V(e3, t)Zk' (39a) 

(a) If x k E W R (L e., x~ > I x~ I), for k = 1, ... ,n, then 
(zl(ir)"",zn(ir»)ETn for all rE[0,7T/2], The vector 
¢(zl"",zn;a) is in the domain D y(7T/2), and 

V(ir)¢(zl,'" ,zn; a) 

= '0 I' a,(ve(es, -ir»¢(zt(ir),.,. ,zn(ir);a') (39b) 
cl at 

for all rE [0, 7T/2] , where t is defined as in (37d). 

(b) IfXkE WL (Le., x~<-lx:I), fork=l, ... ,n, then 
(zl(ir), •.• ,Zn(ir»ETn for all rE[-7T/2,0]. The vector 
¢(z1o ••• ,zn; a) is in the domain Dy(- 7T/2), and the rela­
tion (39b) holds for all rE [- 7T/2, 0]. 

(c) Let (xI, ••• ,xn) be such that x k E WR for k = 1, ... ,n. 
Let v be the real forward timelike 4-vector with com­
ponents v = (0, 0, 0, 1), and let t be a real variable. Then 

s-lim'0 I'a.a'(C.)V(i7T/2)¢(xj +itv,x2 +itv, •.• ,xn +itv; a') 
t ~o. a' 

= s-lim '0 I'a,a,(cJ V(- i7T/2) 
t ~o. a' 
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X ¢(9xI +itv, 9X2 +itv, ••• , 9xn +itv; a l
) 

=¢(ZI,'" ,zn;a), (39c) 

where Z k = (x~, x~, ixt, ix:), for k = 1, ... ,n, and where 
c. and c_ are the elements c. = ve(es, i7T/2) , c_ 
=ve(e3, - i7T/2), of the group ?e' Here 9 is defined as in 
(3). 

The next lemma corresponds to Lemma lOin BW I. 

Lemma 6: Let RI be a bounded, open, nonempty sub­
set of 1!'R, and let Xo E W R be such that (x - xo) E WL for 
all x E R I • For any integer n> 1 we define the set Rn by 

Rn ={x+(n-1)xolxER1}. (40a) 

(a) Then Rn C WR for all n, and if n> k, then (x' - x") 
E WR for all x, ERn, x" E Rk• In particular Rn is space­
like separated from Rk (i. e., Rn eRg) if n *" k. 

(b) Let Uk Ik = 1, ... ,n} be an n-tuplet of test func­
tions such thatfkES(R4) and supp{fk)cRk , for k 
= 1, ' .. ,n, Let fkl denote the test function defined by 
f/(X) = fk(- x). Let a = (Ill, 1l2, ' , . , Iln) be any ordered 
n-tuplet of indices from IT' Let c(s) ED (Rt ). Then 

V(i7T)C(K3)<P lL tUt1<P1L2U2]" • <PlLnUn]n 

= f~.au(u(es, 7T), 0)c(K3)<p"IUt'J<P1L2Un ••• <P ILnU;]n, 
(40b) 

where f" is the diagonal matrix given by 

f" = I'(V e (e3, - i7T)) I' (u (e3, 7T)). (40c) 

This lemma can be proved, on the basis of Lemmas 
4 and 5, by a trivial modification of the reasoning by 
which we proved Lemma 10 in BW I; the modification, 
of course, has to do with the appearance of the 
matrices f in the formulas. To bring out the similari­
ties with the discussion in BW I, we define the test 
function 11 by flex) = fk([) x), and we then have 

U(u(e3, 1T), O)<P"kU/W(u(es, 1T), 0)-1 

= 6 rILl<, ",(u(es, - 7T»<pAf/]. (40d) 
IL' 

With reference to this formula it is easily seen that 
the formula (52) in BW I is a special case of (40b). 

That the matrix I''' in (40c) is diagonal (with diagonal 
elements + 1 or - 1) follows at once from the fact that 
the matrix r" in (23) is diagonal (with diagonal elements 
+ 1 or -1). 

Our conclusions up to this point in this section are 
completely independent of the locality conditions (f) in 
Sec. Ill. We shall now draw some further conclusions, 
in which we take the locality conditions into account. 
Before we state the relevant lemma, we recall that the 
domain of the closed and normal operator Vet), t com­
plex, depends only on Im(t). We write the operator as 
(V(t), Dy(Im(t))) when we wish to exhibit the domain 
exp lic itly . 

Lemma 7: Let {Rn1n = 1,.,., oo} be afixed set of 
bounded, open, nonempty subsets of WR , constructed 
as in Lemma 6. Let e be the linear span of the identity 
operator I and all operators (Q, D j ) of the form 

(41a) 

where Uk 1 k = 1, ... ,n} is any n-tuplet of test functions 
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such that fk E S(R4) and suPP(fk) cRk , for k = 1,. , . ,n, 
and where (J = (1J.1, 1J.2, • , , , IJ.n) is any ordered n-tuplet 
of indices from IT' Then: 

(a) The linear manifold D. =QO is dense in the Hilbert 
space H, and DqC = span{c(K3)Dq I cIs) ED (Rt)} is a core 
for every operator (V(t), Dv(Im(t»). 

(b) (Q*, D t ) E Q if (Q, D j ) E Q. 
(c) There exists a unique antiunitary operator J such 

that if (Q, D t ) E Q and cIs) E D(Ri ), then 

V(i7T)C(K3)QO = c(K3)JQ*O. (41b) 

The operator J is an involution, i. e. , 

Jl. = I, 
and it satisfies the conditions 

JO = 0, JDt = Db ZJXJZ·t E P(fn) 

for all (X,Dt)E P(fn), and 

JZJ = Z·t, JUoJ = Uo, 

JV(t)J = V(t) for all real t, 

JD+ = D., J(V(i7T), D.)J = (V(- i7T), DJ, 

JD. =D+, J(V(- i7T), DJJ = (V(i7T) , D.). 

(d) The antiunitary operator eo defined by 

(41c) 

(41d) 

(41e) 

(4lf) 

(41g) 

J ooZU(u(e3,7T), oleo (41h) 

is a TCP transformation which satisfies the conditions: 

and 

e5 = Uo, eo~ = n, eo U(g,x)er/ = U(g, - x), 

eoDt = Db eo P(fn )eii j 
= P(fn) 

(42a) 

(42b) 

(42c) 

where PI> = + 1 if 'PI" (x) is a component of a boson field 
and PI" = - i if 'PI" (x) is a component of a fermion field. 

Proof: (1) This lemma corresponds to Lemma 11 in 
BW I. The reasoning in its proof is similar to our 
reasoning in BW I, but there are some important dif­
ferences of detail which have to be discussed. We first 
note that the assertions (a) and (b) are triviaL The re­
maining assertions might be proved in the stated order, 
which in particular yields a proof of the TCP theorem. 
In order to shorten the discussion, we shall, however, 
base our proof of the assertion (c) on the well-known 
fact that under our general assumptions about the fields 
a TCP transformation eo which satisfies the conditions 
(42a)- (42c) does exist. 8 The relations (42a)- (42c) will 
thus be assumed, and we define the antiunitary opera­
tor J by (41h), where Z is given by (26). It is then 
trivial to show that J satisfies the relations (41c)-(41g), 

(2) The formula (41b) holds trivially if Q is a multiple 
of I. Suppose now that Q is of the form (41a). We write 
X k = 'PI"kUk) and Yk = 'P I"kU:J for k = 1, .. , ,n, and we then 
have 

JQ*O=Jx;, .. • ~Xlo 

=p~r~.aZU(u(e3,7T), O)Yn'" Y2Y jO, (43a) 

where /)" OOP .. 1P .. 2··· P .. n, in view of (41h) and (42c). For 
any two operators Y,. and Ys in the set {Y1, Y2 , ••• ~ Yn} 
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the supports of the corresponding test functions f; and 
f; are spacelike separated, and hence Yr anticommutes 
with Y,s if both operators are averaged fermion fields, 
whereas Yr commutes with Y. in all other cases, It is 
easily shown that under these circumstances 

p~ZYn'" Y2Y jOooYj Y2 ••• YnO 

and hence 

(43b) 

(43c) 

From this it follows, in view of (40b) in Lemma 6, 
that the operator Q satisfies (41b). From this it trivial­
ly follows that (41b) holds for all QEQ. 

We are now prepared to state the main theorem of 
this section, It will be convenient for the subsequent 
discussion to introduce the following notation. For any 
subset R of j}j we define the algebra P (R)' by 

P(R)" = {(ZXZ·j ,Dt ) I (X, D t ) E P(R)}, (44) 

where Z is given by (26), 

Theorem 1: (a) The algebras P(W R) and P(WL)" are 
*-algebras with the antilinear involution (X, D 1) 

- (X*, D t ), They commute on D1, L e. , 

[X, Y)</J = 0 (45a) 

for allljJE Dl and for all XE P(WR), YE P(WL)', 

(b) The vacuum vector 0 is cyclic and separating for 
both P(WR) and P(WL)', 

(c) With V(t) = U(v(e3, t), 0) (a velocity transformation 
in the 3-direction), 

V(t) P(W R) V(t)·1 = P(W R), 
(45b) 

for all real t, and with J defined as in Lemma 7, 

(45c) 

(d) With the domains D+ and D. such that the operators 
(V(i7T),D.) and (V(-i7T),D.) are self-adjoint, 

P(WR)OcD+, V(i7T)X~=JX*O, 

for any XE P(WR ), and 

P(WL)ZOcD., V(-i7T)YO=JY*O 

for any Y E P(WL)"' 

(e) The condition 

C ~O =X*O, all X E P(W R) 

(45d) 

(45e) 

(46a) 

defines an antilinear operator (C R, P(W R)O), and the 
condition 

C'fYO= Y*O, all YE P(WL)Z (4Sb) 

defines an antilinear operator (C'i" P(WL)ZO). 

These two operators satisfy the relations 

(C R, P(WR)O)** = (C~, P(WdO)* = (JV(i7T), D+), (46c) 

(Ct, P(WSO)** = (C R, P(WR)O)* = (JV(- i7T), DJ. (46d) 

This theorem corresponds to Theorem 1 in BW 1. The 
proof is identical with our proof in BW I, provided that 
we consistently substitute the operator C'i for the opera­
tor CL, and the algebra P(WL)" for the algebra P(WL ). 
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In the particular case that there is no fermion field 
among the quantum fields we have Uo = I and Z = I, and 
hence P (WL)z =P (WL ), in which case the present theo­
rem is identical with Theorem 1 in BW I. 

The algebra P(WR), respectively the algebra P(WL), 
can be regarded as consisting of field operators locally 
associated with the wedge region loY R, respectively the 
region WL • We note that the role of these algebras is 
not quite as symmetric in the present theorem as in 
BW I, in the sense that the assertions are about the 
pair (P(WR ), P(WL)'") rather than about the pair 
(P(WR),P(WL». It is, however, easily seen that there 
is a completely equivalent formulation in terms of the 
pair (P(WL), P(WR)'"), and we note, for instance, that 

P(WL)OCD., V(-i7T)YO=JLY*O, (47a) 

for any YE P(WL ), and 

P(WR)"OCD+, V(i7T)XO=JLX*O, 

for any X E P(WR )", where 

JL = ZJZ·1 = UoJ =JUoo 

Furthermore, 

JL P(WL)JL =P(WR)z. 

(47b) 

(47c) 

(47d) 

We conclude this section with the remark that all the 
considerations in Sec. V in BW I also apply to the pres­
ent situation, provided that P(WL) is replaced by P(WL)" 
and that Po(WL) is replaced by Po (WL)" =ZPo(WL)Z·l 
everywhere in the discussion. In order to have a more 
suggestive notation it is then convenient to change the 
notation in BW I according to the scheme: U(WL ) 

-U(WL)", AL -Af. etc. 

V. THE DUALITY CONDITION FOR THE WEDGE 
REGIONS W RAND WL 

The discussion in this section corresponds to the dis· 
cussion in Sec. VI in BW 1. We are thus concerned with 
the question of how the field operators in P(WR ) might 
generate a von Neumann algebra of bounded operators 
which can be regarded as being locally associated with 
the region W R' We must, of course, here define the 
term "locally associated with" precisely and in a man­
ner appropriate for a field theory in which fermion 
fields might occur. To set the stage for the discussion, 
we begin with some algebraic considerationso 

Definition 1: If A is a von Neumann algebra such that 
UoAUr/=A, and ifA"=ZAZ·1 with Z defined as in (26), 
then the quasicommutant Aq of A is defined as the von 
Neumann algebraA q = (A")'. 

In a theory in which fermion operators, i. e., opera­
tors X which satisfy UoXUo·1=-X, occur, the notion of 
quasicommutant9 is the proper notion in terms of which 
one may formulate the conditions of locality and of 
duality. As an algebraic notion the notion of a quasi­
commutant is less general than the notion of a commu­
tant in the sense that the former notion refers to a 
specific unitary involution Uoo 

We formulate the pertinent facts about the notion of a 
quasicommutant as follows. 

Theorem 2: LetA be a von Neumann algebra such that 
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UOAUO•
1=A, and letAa=(ZAZ·1), be its quasicommutant. 

Let 

and 

A B={xi UoXUo·1 =X, XEA}, 

AF={xl UoXUo·1=-x, XEA}, 

(A°)B ={Y I UoYUO•
1 = Y, Y EAa}, 

(Aq)F={YI UoYUO•
1 =- Y, YEAo}. 

Then: 

(48a) 

(48b) 

(a) UoAaUo•
1=A a, A"=Z(A')Z·l, (Aa)"=A (49) 

(b) Every operator X EA has the unique 
representation 

X =Xb +Xf' with Xb EA B, X, EA F, 

where, in fact, 

Xl> = ~(X + UoXUo·1), X f = ~(X - UoXUo·1). 

(50a) 

(50b) 

Every operator Y EAa has the unique representation 

Y = Yb + YI , with Yb E (Aq)B, Y, E (AO)F' 

where, in fact, 

Yb=~(Y+ UoYUO•
1), Yf =1(Y- UoYUo•

1). 

(c) The elements XbEAB' XfEAF, 
Y, E (Aa)F satisfy the conditions 

[XII' Y b] = 0, 

[XII' Yf ] = 0, 

[X" Yb ] = 0, 

{X" Yf } =XfYf + y,xl = O. 

(50c) 

(50d) 

(51a) 

(51b) 

(51c) 

(51 d) 

The set (Aqh is a von Neumann algebra, precisely 
equal to the set of all bounded operators Y b which satisfy 
the condition Uo YbUi/ = Y 1>, and the conditions (51a) and 
(51c) for all Xl> EA B, X f EA F. The set A B is a von Neu­
mann algebra, precisely equal to the set of all bounded 
operators X1> which satisfy the condition UoX1>U''r/ =X1>, 
and the conditions (5Ia) and (51b) for all YbE (Aah, 
Yf E (A 0) F' The set (A 0) F is precisely equal to the set 
of all bounded operators Y f which satisfy the condition 
UOYf Uol = - Yf , and the conditions (5Ib) and (5Id) for all 
Xl> EA B, X f EA F' The setA F is precisely equal to the 
set of all bounded operators X f which satisfy the condi­
tion UoXlU01 = - X" and the conditions (5Ic) and (5Id) for 
all YbE (AO)B, YfE (Aq)FO 

(d) The vector 0 is cyclic (respectively separating) 
for A if and only if it is separating (respectively cyclic) 
for Aa• 

We omit the very trivial proofs of these assertions. 
We stated the above facts in the form of a formal theo­
rem in view of their importance for our discussion. 
The situation might be illustrated as follOWS. Suppose 
that two von Neumann algebras Ii 1 and A 2 are "locally 
associated with" two regions R 1, respectively R 2, which 
are causally independent. The "local" nature of the as­
sociation can then be expressed through the relation 
Al cA~, which, in view of the theorem, is equivalent to 
the customary conditions in terms of commutators and 
anticommutators, 1. e., the fermion operators inA! 
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anticommute with the fermion operators inA2 and com­
mute with the boson operators inA2' whereas the boson 
operators inA1 commute with all operators inA2. Now 
A1 cA~ is equivalent to the condition that [X, Y] = 0 for 
allXEA1 and all YEA2=ZA2Z·1, which means that the 
locality conditions are expressible in terms of the 
vanishing of certain commutators, irrespective of 
whether fermion operators occur or do not occur in the 
theory. This has the important practical consequence, 
from our point of view, that we do not have to create a 
new algebraic theory in order to deal with the case of 
fermion operators; as in BW I it suffices to consider the 
relationships between von Neumann algebras and their 
commutants. 10 Let us also note here that according to 
the fermion-superselection principle only a boson 
operator can be a physical observable. This means, 
with reference to our illustration above, that the ob­
servables inA2 andA2 are precisely the same, and 
thus that the observables associated with the region R1 
commute with the observables associated with R2• 

Definition 2: (a) A set K(WR) of bounded operators 
such that X* EK(WR) for all X EK(WR) shall be said to 
be covariantly associated with WR if and only if 

(52a) 

for all elements A in the semigroup a(WR ) consisting of 
all AE? such that A(A)WRC WR. In particular, 

V(t)K(WR)V(t,-1 =K(WR), all real t, (52b) 

and, more generally, 

U(A)K(WR)U(A,-1 =K(WR), all AEj(WR), (52c) 
- -

where? (W R) is the group of all elements A E t such 
that A (A) W R = W R, i. e., all Poincare transformations 
which map W R onto W R. 

(b) A setK(WL) of bounded operators such that y* 
E I( (WL ) for all Y E I( (WL ) shall be said to be covariantly 
associated with WL if and only if 

I«WL) = U(u(el> 1T), O)K(WR)U(u(e1, 1T), Ort, (53) 

where K(WR ) is a set covariantly associated with WR• 

(c) LetK(WR) be a set of bounded operators, co­
covariantly associated with W R as above. The asso­
ciation shall be said to be reP-symmetric if and only if 

(54a) 

or, equivalently, 

JK(WR).r1 =K(WL)S, (54b) 

where K(WL ) is given by (53). 

(d) A set K (W R) of bounded operators which contains 
X* if it contains X shall be said to be locally associated 
with WR if and only if K(WR) is covariantly associated 
with WR and 

where K(WL ) is given by (53) and where the von Neu­
mann algebra K(WL)O is defined as (K(WL)B)'. 

(55) 

(e) A von Neumann algebra A (W R), locally associated 
with W R, shall be said to satisfy the condition of duality 
if and only if 
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whereA(WL) is defined in terms of A (WR) in analogy 
with (53). 

(56) 

We present these formal definitions for later refer­
ence as we will repeatedly encounter sets which satisfy 
one, or several, of these defining relations. The 
geometrical significance of these definitions is obvious 
and need not be discussed here. Concerning the physical 
interpretation, we note that the conditions in (d) are 
minimum conditions which a set of "local observables 
for WR" would have to satisfy. In a quantum field theory 
these conditions are not, however, by themselves 
enough; the bounded local operators should also satisfy 
some condition of locality relative to the local field 
operators. 

Lemma 8: Let] be a set of closable operators, such 
that Uo] Uri1 = ]. We define the set]O as the set of all 
bounded operators X such that 

XZ(y, D(Y)* c (Y, D(Y))*Xz, 

XZ(y, D(Y)** c (Y, D(Y))** ZZ 

for all (Y,D(Y))E]. Or, equivalently, the set]O is 
precisely equal to the set of all bounded operators X 
such that for all (Y,D(Y))E], 

XZ(y, D(Y)) c (Y, D(Y))**Xz , 

(XZ)* (Y, D(Y)) c (Y, D(Y)** (XZ) * . 

(57) 

(58) 

(a) The set]O is a von Neumann algebra, and it satis­
fies the relation Uo(J°)U"r/ =]0. 

(b) Let the set ]0. of bounded operators be defined by 

(59) 

Then ]00 is a von Neumann algebra precisely equal to 
the von Neumann algebra generated by the operators V 
and the spectral projections of the operators K for all 
pairs of operators {V, K}, where V is the unique partial 
isometry, and K is the unique nonnegative definite self­
adjoint operator, defined through the polar 
decomposition 

(Y, D(Y)** = V(K, D(Y**)) (60) 

of the closure of any (Y, D(Y)) E]. 

This lemma is a paraphrase of well-known facts 
about the commutant in the sense of von Neumannll of a 
set of closed operators. An equivalent definition for 
]0 is thus 

Y = (Z]**Z·1), (61a) 

with the prime notation of von Neumann, and the set 
]00 is then given by 

yo = (J**)" (61b) 

where ]** denotes the set of all closures of the opera­
tors in]. That the assertion in (b) above about the 
algebras ]00 [regarded as given by (61b)] holds is well 
known12 (and easily proved). That]O (and hence ]00) is 
invariant under conjugation by Uo follows trivially from 
the corresponding property of ]. 

We shall call]O the quasicommutant of the set of 
adjoints and closures of the possibly unbounded opera-
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tors in J; this is consistent with our earlier terminology 
in the case that J is actually a von Neumann algebra. 
We shall say that the von Neumann algebra J qq 

is 
generated by the set J. 

We shall next consider some special sets of bounded 
operators defined in terms of field operators in P(R), 
where R is any subset of /11. In this section we are 
primarily interested in the wedge regions W Rand W L, 

but for later reference it will be convenient to consider 
other regions R as well. We note here that it would be 
reasonable to restrict the regions R such that they 
satisfy the condition RCC = R, but we shall not do so 
since we do not here wish to investigate the geometri­
cal implications of this restriction. 

Definition 3: Let R be any subset of Minkowski space, 
and let R C be its causal complement [as defined in (5)]. 

(a) The set L (R) is defined as the set of all finite 
linear combinations of operators of the form (cp,Jf],D1), 

where ,UElTand wherefES(R4), with supp(f)cK 

(b) The set q(R) is defined as the von Neumann alge­
bra generated by L (R), i. e. , 

q(R) =L (R)qq, (62) 

where the superscript "qq" denotes the mapping] - ]qq 
defined in Lemma 8. 

(c) The von Neumann algebra C (R) is defined as the 
quasicommutant of L (RC

), i. e. , 

(63) 

where the superscript "q" denotes the mapping J - J q 

defined in Lemma 8, 

(d) The weak quasicommutant C w(R) of P(W) is de­
fined as the set of all bounded operators X such that 

(Y*cp IX/)!) = (X*cp I Y/)!) (64) 

for all cp, /)! E Dl and all (Y, D 1) E P(RC)Z = Z P(RC)Z-I. 

We introduce the new term "weak quasicommutant" 
with some reluctance, but it does seem fairly ap­
propriate to describe the nature of the sets C w(R). The 
adjective "weak" is here intended to convey an impres­
sion of the "weak" nature of the "commutation relations" 
(64), as contrasted with the more restrictive conditions 
(57), It should be noted, however, that the operators in 
C w(R) commute in the weak sense of (64) with all the 
operators in P(RC)Z, whereas the operators in C(R) 
commute in the strong sense of (57) only with the opera­
tors in the subset L (RC)Z of P(Rcy, 

We shall next consider some fairly elementary prop­
erties of the sets defined above. 

Lemma 9: Let R be any subset of Minkowski space, 
and let the sets L (R), C(R), Cw(R), andq (R) be defined 
as in Definition 3. Then: 

(a) Each one of these four sets satisfies the condi­
tion (65a) of covariance, the condition (64b) of TCP 
symmetry, and the condition (65c) of isotony, i. e., if 
Q(R) is anyone of the sets L(R), C(R), Cw(R), orq(R), 
then 

(65a) 
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8 oQ(R)8(j1 =Q(- R), (65b) 

where -R denotes the set -R={-xlxER}, and 

Q(R):::l Q(R j ), whenever R ~ R f (65c) 

(b) The set C w(R) is a weakly closed linear manifold, 
closed under the *-operation, i. e., it contains x* if it 
contains X, 

A bounded operator X is in C w(R) if and only if 

X(Y*, D 1) c (Y, D 1)* X (66) 

for all (Y, D 1) E P(RC)z. 

(c) A bounded operator X is in C w (R) if and only if the 
condition (64) holds for all cp, </! E Dl and all (Y, D 1) 

E L (RC)Z, or, equivalently, if and only if the condition 
(66) holds for all (Y, D 1) E L (RC)z. 

(d) 

(67a) 

for allXECw(R) and allX1,X2 EC(R). In particular, 

(67b) 

(e) If R C has a nonempty interior, then n is separat­
ing for C w(R), i. e" if X EC w(R) and xn = 0, then X = O. 

If R has a non empty interior, then q (R)n is dense in 
the Hilbert space H, 

(f) If (for a particular subset R) the "linear field 
operators" in the set L (RC) satisfy the condition that Dl 
is a core for the adjoints of the operators in the set, 
i. e., (yt, D1)* = (Y, D 1)** for all (Y, D 1) E L (RC), then 
C(R) =C w(R). 

Proof: (1) The assertions (a) and (b) are trivial. We 
note here that the condition (66) [which is a trivial 
restatement of the condition (64)] is equivalent to the 
condition that 

X(Y*, D 1)** c (Y, D 1)* X 

for all (Y, D1) E P(W)z. 

(68) 

(2) To prove the assertion (c), we assume that X is a 
bounded operator which satisfies the condition (64) for 
all cp, </!ED1 and all (Y,D1) EL (RC)z. It follows at once 
that the condition (64) then also holds for all (Y, D1) 

EPo(RC)z. For suchanX, let cp,/)!ED1, and let (Y,D 1) 

E P(RC)z. Since we have ZD1 =D1, and since the quantum 
fields are operator-valued tempered distributions, it 
follows from the fact that {0 D (R4)" is dense in 5 (R4") 
that there exists a sequence {(Yk , D1) I (Yk , D1) E Po (Rcy, 
k = 1, ... , oo} of operators such that 

s-limYk </! = Y</!, s-limYtcp = Y*cp. (69) 
k .. QQ k"oo 

It readily follows that the relation (64) holds for the 
above operator (Y,D1), and henceXECw(R) as 
asserted. 

(3) We consider the assertion (d). Let X EC(R), XW 
EC w(R), and (Y, D 1) E L (RC)Z, We then have, in view of 
(57) and (68), 

XXw(Y*, D 1)** cX(Y, D 1)*Xw c (Y, D1)*XXw, (70) 

which means that XXw E C w (R). From this (67a) follows 
readily, and, since lEC w(R), the relation (67b) follows. 
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(4) If X EC w(R), then xn = 0 implies that 

(y j nlxy2 n> =(y!y1nlxn> =0 (71) 

for all Yj, Y 2 E P(RC)". By the Reeh-Schlieder theorem 
the set p(Rc),'n is dense if RC has a nonempty interior, 
which implies that in this case X = 0 if (71) holds. This 
proves the first assertion in (e), and in view of (67b) it 
follows that n is a separating vector for the von Neu­
mann algebra C(R), and hence a cyclic vector for its 
quasicommutant g (RC) whenever the interior of RC is 
nonempty. It readily follows, since g(R) satisfies the 
condition of isotony (65c), that Cj(R)n is dense whenever 
R has a nonempty interior. 

(5) We consider the assertion (f). If (Y*,DI )* 
=(Y,Dj )**forall(Y,D1)EL(RC), andifXECw(R), then 
the relation (68) implies that X EC(R). In view of (67b) 
this implies that C w(R) =C(R), as asserted, This com­
pletes the proof. 

We note that it does not follow from the definition of 
C w(R) as a weak quasicommutant of an algebra peW) of 
unbounded operators [or equivalently as the "weak 
commutant" of the operator algebra P(W)Z] that C w(R) 
is a von Neumann algebra; the set need not be closed 
under multiplication. What the actual situation is in 
quantum field theory we do not know. In the case of free 
fields the premises in part (f) of the lemma are trivial­
ly satisfied, and (w(R) is then identical with the von 
Neumann algebra C (R). In this connection we refer to 
the work of Powers on algebras of unbounded operators, 
their "weak commutants, " and related subjects, 13 

Lemma 10: Let R be any subset of Minkowski space, 
and let the notation be as in Definition 3 and Lemma 9. 
Let A Q (R) be defined as the set of all bounded operators 
X such that XXw and X~ are both in C w(R) for all XW 
EC w(R). Then: 

(a) The setAo(R) is a von Neumann algebra, and 

(72) 

(b) The mapping R -A 0 (R) satisfies the condition of 
covariance (65a) and the condition of TCP symmetry 
(65b) in Lemma 9. In particular UoAo(R)U'(/ =Ao(R). 

(c) All operators (Y, D t ) E P(RC) have closable exten­
sions defined by 

(Y, D
l
) - (a(Y), Da) = (yt*, De) = (yt*, Da), (73 a) 

where Da is the domain defined by 

(73b) 

These extensions satisfy the conditions 

(Y*, D j )* :J (a(Y)*, D.)* :J (a(Y), Da):J (Y, Dj). (73c) 

(d) Let Pa(RC) be the set of all operators (a(Y),D.) 
with (Y, DI ) E P(W). Then, with the notation in Lemma 
8, 

Ao(R) = Pa(RC
)., 

Pa(RO)·· = Pa(Re)" ~Ao(R)· c q (Re) 
(74a) 

and the closures and adjoints of the operators (a(Y), D.) 
in P.(RC

) are thus affiliated to the von Neumann algebra 
Ao(R)". 
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The weak quasicommutant of Po (RC
) relative to the 

domain D., 1, e., the set of all bounded operators X 
such that 

(X*¢ I a (Y)"I/!) =( (a(Y)Z)*¢ IXI/!) (74b) 

for all ¢,I/!ED., all (a(Y),Da)EP.(W), is precisely 
equal to the set C w(R), 

(e) The mapping (Y, D() - (a(Y), Da) of the algebra 
P(RC) onto Pa(RC) is a representation, and it is a 
*-representation of the *-algebra P(RC) in the sense that 

(75a) 

The representation is continuous in the sense that 

s-lima(Yk)~ = a (75b) 
.-~ 

for all I/! E D. whenever 

s-limYk ¢ = 0 
k-'" 

for all ¢ EDt. 

(75c) 

Proof: (l)Ao(R) is trivially a *-algebra since (w(R) 
is closed under the *-operation. From the fact that 
Cw(R) is weakly closed, it follows thatAo(R) is also 
weakly closed, and hence a von Neumann algebra. The 
relation (72) is trivial in view of (67b). The assertions 
(b) are obvious. 

(2) It follows from (66) that if XECw(R) and ¢EDj, 
then X¢ E D(Y*), for any (Y, D l ) E P(RC)z. In view of (72) 
this implies that Da , as defined in (73b), is contained in 
the domain of the adjoint of any operator (Y, D j ) in 
P(RC)" or in P(RC), since ZDa =Da. It follows that the 
extensions (a(Y), Da) are well defined by (73a). Further­
more, (73a) also defines an extension of every opera­
tor (Y", D t ) E P(RC)Z, and we have 

(a(ZYZ·1), D.) = Z(a(Y), Da)Z·1 (76a) 

for all (Y, D t ) E P(RC). 

(3) Let X(,X2 EAo(R),¢ED Il and (Y,D() EP(RC(. 
Then X0"2 EAo(R), and sinceAo(R) c(w(R), we have 

a(Y)X(XZ¢ = y t *X(X2¢ =X1X 2Y¢ 

(76b) 

which implies that Xl commutes with (a(Y), D.)** in the 
strong sense of (57), and we have thus proved that 
A 0 (R) c Pa (RC

)". It, furthermore, readily follows that the 
relations (73c) hold for aU (Y, Dl ) E P(RC)", and hence 
for all (Y, D t ) E P(RC). The relation (75a) is then trivial. 

(4) We next consider the weak quasicommutant 
(we(R) of ParRa) relative to the domain D •• It is easily 
seen from the condition (74b) that a bounded operator 
X is in (wa(R) if and only if XjXXZ EC w(R) for all X t ,X2 

EAo(R). This implies that C w,,(R) =C w(R), as asserted. 
We obviously haveXXw,X~E(wa(R) for allXwECwa(R), 
X E Pa(RC

)", and in view of the results in step (3) above 
the first relation (74a) follows, The remaining relations 
(74a) then follow trivially, in view of (72). 

(5) The remaining assertions in part (e) of the lemma 
are trivial, and we omit the detailed proofs. 

We must here state that we know much less about the 
relationships between the sets C(R), (w(R), andAo(R) 
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than we would like to know. We note here that C(R) was 
defined as the quasicommutant of the subset L (RC) of 
P(RC

), which means that the closures and adjoints of the 
operators in L (RC) are affiliated to the von Neumann 
algebra q(W) =C(R)·, but we see no obvious reason why 
this would imply that the closures and adjoints of the 
operators in P(RC) are also affiliated to this same von 
Neumann algebra. The lemma now shows that there ex­
ists a "natural" extension (a(Y), Da) of all the operators 
in P(RC) such that the closures and adjoints of the ex­
tended operator s are affiliated to q (R C

), or to the pos­
sibly smaller von Neumann algebraAo(R)·. It is here 
important to note that this extension depends on the set 
R C

, although this is not shown explicitly in our notation. 
A field operator which can be associated with different 
regions might thus have different extensions constructed 
as in the lemma. 

In view of our present lack of understanding of the 
general structure of a quantum field theory the possible 
physical interpretation of the weak quasicommutant 
C w(R) of P(RC) is far from clear. With reference to the 
discussion by Licht of strict localization14 we note here 
the following. Let V be a partial isometry in C w(R)Z 
such that V* V = I, and let If! = Vn. Then If! is in the do­
main of (Y, D 1)* for any (Y, D 1) E P(W) and we have, for 
any such (Y, D 1), 

(77a) 

and, more generally, 

(Yt*1f!1 Yi*lf!> =(y1nl y2n> (77b) 

for any two (Yj, D1), (Y2, D1) E P(RC
). We here assume 

that both Rand RC have nonempty interiors. It is then 
not hard to show that if a vector If! satisfies the condi­
tions (77b), then If! is of the above form. 

The expression at left in (77a) might be loosely re­
garded as the "expectation value of the field operator Y 
in the state If!," and the "local character" of the state 
then manifests itself in the fact that the expectation val­
ue in the state equals the vacuum expectation value, for 
all operators (Y, D 1) E P(RC). Note, however, that the 
operator yh at left in (77a) cannot in general be re­
placed by y** or by Y, as If! might not be in the domains 
of these operators. We furthermore note that the condi­
tion (77a) also holds for all the bounded operators in the 
von Neumann algebra C w(R)·, but not necessarily for 
the operators in q (RC

). In our opinion (77a) is a neces­
sary condition for a local state (localized in the com­
plement of R C

) but by no means a sufficient condition. 

We shall next consider the properties of the sets 
C(R), Ao(R), Cw(R), andq(R) for the special case that 
R E W. The lemma which follows corresponds in part 
to our Theorem 3 in BW I, with some added refinements 
which we overlooked before. 

Lemma 11: Let C(R), Cw(R), Ao(R), and q(R) be de­
fined as in Definition 3 and Lemma 10. Then: 

(a) C(WR) =C(WR), Cw(WR) =C w(WR), 

q(WR) =q(WR), AO(WR) =Ao(WR) (78a) 

with analogous identities for the corresponding objects 
associated with WL , and 
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C(WR) cAO(WR) ce, (WR) cq(WR) =C(WL )·. (78b) 

(b) The von Neumann algebra C (W R) is locally asso­
ciated with WR and the association is TCP symmetric, 
in the sense of Definition 2. 

(c) The set C w(W R) and the von Neumann algebra 
q(WR) are covariantly associated with WR, and the 
association is TCP symmetric, in the sense of 
Definition 2. 

(d) For every X EC w(W R) [and hence for every X in 
C(WR) or AO(WR)] we have 

XnED., V(i17)Xn=Jx*n. 

(e) The von Neumann algebraAo(WR) satisfies the 
conditions: 

A 0 (WL )= erA o(W R)e(jl 

(79) 

= U(u(el' 17), OlA O(WR)U(u(el, 17), or1 (80a) 
and 

U(A)A o(WR)U(Arl =Ao(WR) (80b) 

for all A E? such that A (A) W R = W R, i. e., for all Poin­
care transformations which map WR onto WR• 

(f) [X, JXwJ]n = 0 (81) 

for all X EAo(WR), Xw E Cw(WR), 

Proof: (1) We consider the identities (78a). Let x 
E WR• Then we have C(WR) ::::JC(WR):J T(x)C(WR)T(Xt1, 

in view of the fact that C (R) satisfies the condition of 
isotony. Since C(R) is weakly closed, and since T(x) 
is a strongly continuous function of x, it follows at 
once that the first identity in (78a) holds. The next two 
identities are proved by exactly the same reasoning. 
The fourth identity follows from the second, and from 
the definition of A o(R) in terms of C w(R). 

(2) The inclusion relations between the first three 
sets at left in (78b) correspond to (72) in Lemma 10. 
The assertions (e) also follow from Lemma 10. [Note 
that we do not assert that (80b) holds for all Poincare 
transformations A which map W R into W R' ] The asser­
tion (c) is trivial. 

(3) The relation C w(WR) cC(WL )· is not trivial; it is 
equivalent to the condition that all operators in C w(WR ) 

commute with all operators in C(WL)Z. To prove this 
relation, we first consider the assertion (d) of the 
lemma. The relations (79) follows readily from the 
definition of Cw(WR), and Lemma 13 in BW L (In this 
argument we depend, of course, ultimately on Theorem 
1 of the present paper in place of Theorem 1 in BW I. ) 

(4) LetXEAo(WR) and letXwECw(WR). Since, by (c) 
above, C w(W R) is invariant under conjugation by V(t), it 
follows thatXV(t)X~V(ttlECw(WR) for all real t. In 
view of (d) above it then follows from Lemma 14 in BW I 
that the relation (81) holds. 

(5) Let X EC(WR), and let XW EC w(WR), We write 
Y = ZJXwJZ-1

, and we then have Y E C w (WL ). Let x E W R, 
and let X(x) =T(x)XT(xrl. ThenX(x)EC(WR), and (81) 
holds with X replaced by X(x). We consider the special 
cases when each one of the operators X and Y is 
either a boson operator (i. e., a bounded operator which 
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commutes with Uo), or else a fermion operator (i. e. , 
a bounded operator which anticommutes' with Uo). The 
relation (81) then implies that 

(X(x)Y + syx(x»n = 0, (82) 

where s = + 1 if both X and Yare fermion operators, and 
s = - 1 if at least one of the operators X and Y is a 
boson operator. 

We note that the operator Q(x) =X(x)Y +sYX(x) is in­
cluded in the setCw(R), whereR=WLUA(I,x)WR; this 
fOllows from Lemma 9 since X(x) EC(A(I,x)WR) cC(R) 
and YECw(WL)cCw(R). Since the interior of RC is 
nonempty, it follows from Lemma 9 that Q (x) = O. Since 
Q(x) is a strongly continuous function of x, we conclude 
that (XY + sYX) = Q(O) = O. This in turn implies that 
[X, JXwJ] = O. From the fact that this relation holds in 
the special cases considered it readily fOllows that it 
holds for all XEC(WR), XwECw(WR). This means that 
C w(WR)CC(WL)·=g(WR), as asserted in (78b). This 
completes the proof of the lemma. 

The relations (78a) should be carefully noted. The 
algebraic objects appearing in these relations are thus 
the same for the closed wedge W R as for the open wedge 
WR , which fact leads to a considerable simplification of 
the subsequent discussion. We employ a notation in the 
following according to which the objects are labeled by 
the open wedges WR and WL • 

The facts stated in part (b) of the lemma correspond, 
in a sense, to a well-known result of Borchers concern­
ing the local nature of quantum fields which are local 
relative to an irreducible set of local fields. 15 

Theorem 3: Let the notation be as in Definition 3 and 
Lemmas 10 and 11. 

(A) If the quantum fields are such that Ao(W R)n is 
dense in the Hilbert spaceH, thenAo(WR) is locally 
associated with WR, and the association is TCP sym­
metric, in the sense of Definition 2. Furthermore, 
A 0 (W R) satisfies the condition of duality, and 

C(WR) cAo(WR) =Cw(WR) =Ao(WL)·cg(WR). (83) 

(B) If the quantum fields are such that there exists a 
von Neumann algebra A (W R) cC w (W R) such that A (W R)n 
is dense, and such that A (WR) is either locally asso­
ciated with W R, or else covariantly and TCP sym­
metrically associated with WR, in the sense of Defini­
tion 2, then: 

(a) The algebra A (WR) is locally, and TCP symmetri­
cally, associated with W Ro Furthermore, A (W R) satis­
fies the condition of duality, and 

(84a) 

where 

A (WL) = U(u(eio 7T), O)A (WR)U(u(eio 7T), O)-j (84b) 

as in Definition 2. The relationAo(WR)=A(WR) holds if 
and only if Ao(WR)n is dense. 

(b) The algebra A (WR) is afactor, with n as a cyclic 
and separating vector. For any X EA (W R), 

xnED+, V(i7T)Xn=JX*n, (85a) 

and 
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(c) There exists an extension of the operators in 
P(WR ) defined by 

(X, D j ) - (e R(X), D jR) = (Xh, D jR), 

where 

DjR=span{Ycf> I YEA(WL ), cf> ED j } 

such that the extension satisfies the conditions 

(86a) 

(86b) 

(Xt , D j )* :J (eR(X)*, D IR)* :J (eR(X) , DjR):J (X, Dj). (86c) 

The mapping (X, D j ) - (e R(X), D IR ) of P(WR) onto the 
set Pe(WR) of the extended operators is a continuous 
*-representation in the sense described in Lemma 10. 

The closures and adjoints of all operators (e R(X), D jR) 
E Pe(WR) are affiliated to the von Neumann algebra 
A(WR ). 

(d) The weak quasicommutant C w.(WL ) of P.(WR) 
relative to the domain DjR' i. e., the set of all bounded 
operators Y such that for all (X, D j ) E P(WR ), 

Y"(e R(X)*, D jR) c (e R(X), D jR)* Y" 

is precisely equal to the quasicommutant A (WL ) of 
P.(WR ). 

(87) 

Proof: (1) LetA (WR) be a von Neumann algebra such 
that A (WR) cC w(WR) and V(t)A (WR)V(tt

j 
=A (WR) for all 

real t. The algebra Ao(WR), in particular, satisfies 
these conditions, in view of Lemma 11. If now A (W R)n 
is dense, then it follows from Theorem 2 in BW I that 
(85a) and (85b) hold. It furthermore follows from 
Lemma 15 in BW I that A (WR ) is a factor. We have thus 
proved the assertions (Bb). 

(2) We consider the relation (81) in Lemma 11, with 
Xw =XjX 2, where Xj and X 2 are elements of a von 
Neumann algebra A (W R) which satisfies the premises in 
step (1) above, and where XEAo(WR). By repeated ap­
plication of (81) it readily follows that [X, JXjJ]JX2n = 0, 
and, if A (wR)n is dense, it follows that [X, JXjJ] = 0 for 
all X EAo(WR), Xj EA (WR). In view of (85b) this im­
plies thatAO(WR)cA(WR), as asserted in (84a). 

(3) We consider again the relation (81), with X =X3X 4, 

where X 3,X4 EAo(WR) and Xw ECw(WR). By repeated ap­
plication of (81) we easily show that 

(88) 

In the particular case thatAo(WR)n is dense the rela­
tion (88) implies that C w(WR) c (JAo(WR)J)' =Ao(WR), 
where the equality between the last two members fol­
lows from step (1) above. In view of (78b) in Lemma 11 
it then follows that the relations (83) hold. We have thus 
shown that the premises in (A) imply the relations (83). 
Since Cw(WR) is covariantly associated with WR, we then 
conclude that A 0 (W R) is locally associated with W R' We 
have thus proved the assertions (A). 

(4) We consider a von Neumann algebra A (W R) which 
satisfies the premises in part (B). If A (W R) is locally 
associated with WR, then A (WL) cA (WR)· = (A (WR)'Y 
= (JA(WR)J)" in view of (85b), and this means that the 
association of A (WR) with WR is TCP symmetric. Con­
versely, if A (WR) is TCP symmetrically associated with 
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WR, then (85b) implies at once thatA(WR)=A(WL)Q, and 
in particular the association is local. It readily follows 
from the results in steps (2) and (3) above thatAo(WR ) 

=A(WR) if and only ifAo(WR)O is dense. We have thus 
proved the assertions (Ba). 

(5) The assertions (Be) are proved in the same man­
ner as the corresponding assertions about the exten­
sion (Y, D1) - (a(Y), Da) in Lemma 10, and we need not 
repeat the arguments. 

(6) We finally consider the assertion (d). It readily 
follows from (87) that a bounded operator Y w is in 
(we(WL) if and only if Y1YwY 2 E( w(WL) for all Yi> Y 2 
EA (WL ). We can restate this as follows. The operator 
Xw is in (J( we (WL)J)" if and only if X 1XwX2 E( w(WR) for 
all X 1,X2 EA(WR ). 

An operator Xw which satisfies the above condition is 
thus included in (w(WR ). By the same reasoning as in 
the proof of (81) in Lemma 11 we show that [X,JXwJ]O 
= 0 for all X EA (WR), Xw E (J( we (WL)J)". By the same 
reasoning as in step (3) in the present proof we con­
clude that [X, JXwJ) =0, which means that (we(WL)" 
cA(WR)'=A(WL)". Since the setA (WL) is trivially in­
cluded in (we(WL ) it follows that the two sets' are equal, 
as asserted. 

This completes the proof of the theorem. We 
postpone the discussion of this result until after the 
next theorem. 

Theorem 4: Let the notation be as in Theorem 3 (i. e. , 
as in Definition 3 and Lemma 10), 

(a) The following six conditions are equivalent: 

(1) q(WR) cq(WL)q, 

(2) C(WR) =(WL)q, 

(3) q(WR)C(W(WR), 

(4) n is a cyclic vector for (WR ). 

(5) n is a separating vector for q(WR ). 

(6) q(WR)ncD., and V(i1T)Xn=JX*o 

for all X Eq(WR ). 

(b) If these conditions are satisfied, then 

AD(WR) =(WR) =( w(WR) =q(WR). 

(89a) 

(89b) 

(89c) 

(89d) 

(90) 

The von Neumann algebra AD (WR ) satisfies the 
premises of part (A) of Theorem 3, and all the conclu­
sions of that theorem apply. In particular AD(WR) is a 
factor with n as a cyclic and separating vector. It is 
locally and TCP symmetrically associated with W R, and 
it satisfies the condition of duality. 

Proof: (1) We first note that since q(WR)n is dense 
by part (e) of Lemma 9, the relations (90) imply that 
Ao(WR ) satisfies the premises of part (A) of Theorem 
3, and it then follows trivially from that theorem that 
the six conditions in part (a) of the present theorem are 
satisfied, 

(2) Since q (WL)Q =(WR), the condition (89a), in view 
of (78b) in Lemma 11, at once implies the condition (90). 
Similarly (89b) implies (90). The condition (89c) im-
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plies, in view of (78b), that (w(WR) =q(WR), and hence 
(w(WR ) is a von Neumann algebra, which, by the 
definition ofAo(WR) must be equal toAo(WR ). Since this 
von Neumann algebra now has 0 as a cyclic vector, it 
readily follows from Theorem 3 that all the conditions 
(90) hold. 

(3) The conditions (4) and (5) in part (a) of the the­
orem are obviously equivalent. If condition (4) holds, 
thenA(WR) =(WR) satisfies the premises of part (B) of 
Theorem 3, and it follows trivially that the conditions 
(90) are satisfied. 

(4) If condition (6) is satisfied, it follows from The­
orem 2 in BW I that JCj (WR)J =q (WR)', which implies 
(89b), and hence (90), This completes the proof. 

As the symbolism in Theorems 3 and 4, and in the 
preceding lemmas, might appear bewildering, we 
shall now discuss the situation in plain English, Part 
(b) of Theorem 4 describes what we regard as highly 
desirable properties of a quantum field theory, and 
these properties are thus implied by either one of the 
six equivalent conditions in part (a). We consider the 
first of these, namely the relation (89a), The von Neu­
mann algebra q(WR ) is "generated" by the quantum 
fields (cp,,[/], D1) with the support of / in the right wedge 
WR, and q(WL) is defined analogously. The condition 
(89a) is Simply the condition that these algebras are 
local, i, e" one is contained in the quasicommutant of 
the other. These algebras are always sufficiently 
"large" in the sense that each one of them has the 
vacuum vector as a cyclic vector, and according to 
(78) in Lemma 11 it is always the case that the quasi­
commutant of either one is contained in the other. We 
do not know, however, whether (89a) holds generally; 
in a particular field theory it could be the case that 
these algebras are "too large" in the sense that they 
fail to be locally associated with the wedges, The the­
orem now shows that the condition that the algebra 
q (W R) not be too large in the above sense is precisely 
the condition that n is a separating vector for q(WR ), 

i. e., the condition that q(WR ) does not contain any non­
zero operators which annihilate the vacuum vector. 

The algebra (WE) is defined as a "strong" quasi­
commutant of the field operators (cp,,(f],D1), with 
supp{f) c WL , i. e. , (WR ) is precisely equal to the set 
of all bounded operators which commute with the clo­
sures of the operators (cp,.[/], D1)", supp{f) c WL , in 
the strong sense of von Neumann. The algebra (WR ) is 
then trivially equal to the quasicommutant of q(WL ). 

According to Lemma 11 the algebra (WE) is always 
locally associated with WR' and the association is 
furthermore TCP symmetric, These circumstances 
correspond to a well-known result of Borchers which we 
referred to earlier. 15 The algebra (WR ) is a reason­
able choice for "the algebra of all bounded operators 
locally associated with WR" unless it so happens that 
this algebra is "too small" in the sense that it fails to 
satisfy the duality condition. By the theorem the algebra 
is too small in the above sense if and only if it does not 
have the vacuum vector as a cyclic vector, i. e., if and 
only if (WR)n is a proper subspace of the Hilbert 
space H. 
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We have already discussed (following Lemma 10) the 
possible physical interpretation of the set C w(WR ), de­
fined (in Definition 3) as the "weak quasicommutant" of 
all the operators in P(WL ). Now it is interesting to note 
that, by Lemma 11, the wedge region WR has the spe­
cial property that Cw(WR ) is included in g(WR ). This 
result, which we derived on the basis of Theorem 1, is 
not a triviality in our opinion. We also know that an 
analogous inclusion relation does not hold for arbitrary 
open regions R. It is, furthermore, interesting to note 
that, by Theorem 4, the seemingly weak condition 
g (WR ) eC w(WR ), i. e., the condition that the operators 
in g(WR ) commute at least in the weak sense of (64) with 
the operators (cp,,(f], DjY' for which supp(j) e WL , in 
fact, implies that C(WR) =Cw(WR) =g(WR), i. e., that 
Cw(WR ) is a von Neumann algebra, identical with g(WR), 
and that g (W R) is locally associated with W R and satis­
fies the condition of duality. This result is also 
ultimately based on Theorem 1, and it does not seem to 
follow from some more trivial considerations. 

We do not know at this time whether Cw(WR ) is always 
a von Neumann algebra, i. e., closed under multiplica­
tion, without further conditions on the quantum fields. 
The set C w(WR ) is trivially equal to the von Neumann 
algebra C (W R) if (xt, Dj)* = (X, Dj)** for all (X, Dj) 
E L (WLl. One might thus say that the relation C w(WR ) 

*C(WR ) (if there are quantum field theories for which 
this is the case) in some sense reflects the inadequacy 
of the domain D j for the definition of the field opera­
tors. Let us here note that with our present understand­
ing of the situation the equality C w(WR) =C(WR) does not 
by itself seem to imply the duality condition. In particu­
lar we have not shown that it might not happen that 
C w (W R) consists of multiples of the identity only. 

The sixth condition in part (a) of Theorem 4 is of a 
"technical" nature, without any immediate physical 
interpretation. We stated this condition because its form 
suggests a possible direct connection with Theorem 1. 
We note, for instance, that, in the very special case 
that the vacuum vector is an analytic vector for the 
field operators (cp,,(f], D j ) (as is the case for a free 
field), then the sixth condition follows trivially from 
the facts in Theorem 1. We are not, however, here 
conjecturing that the sixth condition follows in general 
from Theorem 1 alone. 

Even if the premises of Theorem 4 are not satisfied, 
it is conceivable, according to Theorem 3, that the 
quantum fields nevertheless have extensions which are 
affiliated to von Neumann algebras which satisfy a 
duality condition, at least for the wedge regions in W. 
It is easily seen that if (X, D j ) - (e R(X), D jR) is an ex­
tension of a set of field operators which satisfies the 
condition (86c), then the weak quasicommutant (relative 
to DjR) of the set of extended operators is necessarily 
contained in the weak quasicommutant of the original 
set. The premises in part (B) of Theorem 3 thus seem 
to us to express minimal conditions which a "local" 
algebra "generated" by the fields must satisfy. 

In Sec. VI of BW I we considered four particular con­
ditions on the quantum field, called Conditions I-N, 
which were shown to imply the duality condition for the 
wedge regions. We shall not state the generalizations 
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of these conditions here, but we assert that our earlier 
Conditions I, II, and IV trivially imply the premises of 
Theorem 4, and that our Condition m implies the 
premises of part (B) of Theorem 3. 

VI. THE DUALITY CONDITION FOR VON NEUMANN 
ALGEBRAS ASSOCIATED WITH DOUBLE CONES AND 
THEIR CAUSAL COMPLEMENTS 

In this section we shall generalize the discussion in 
Sec. VII of BW I. We shall thus consider the construc­
tion of von Neumann algebras locally associated with a 
particular family of regions, namely double cones and 
their causal complements, in terms of a von Neumann 
algebra A (W R) locally associated with W R' The scheme 
is the same as in BW I. 

Definition 4: Let the von Neumann algebra A (WR ) be 
locally associated with W R, in the sense of Definition 2. 

(a) For any WE ({/, i. e. , for any wedge region W 
bounded by two nonparallel characteristic planes, we 
define a von Neumann algebra A (W) by 

A(A(A.)WR)=U(A.)A(WR)U(A.t!, anYA.Et. (91) 

(b) For any two points Xj and x2 in Minkowski space 
such that x2 E V.(Xj) [where V.(Xj) is the forward light 
cone with Xl as apex], we define the double cone 
C=C(Xj,X2) by 

C(Xj,X2) = v+(xj)n V.(X2), (92) 

where V.(X2) is the backward light cone with X2 as apex. 
The double cones so defined are thus open and nonempty. 
We denote by Dc the set of all double cones. 

For any double cone C we define a von Neumann 
algebra B (C) by 

B(C)=n{A(W)lwE({/, W::JC}. (93) 

(c) For any C EDc we define the von Neumann algebra 
A (C C

) by 

A(CC)={A(W)jWE{Jj, weCc}". (94) 

(d) A set of von Neumann algebras, defined as above, 
shall be called a local AB-system. 

It is easily seen that the definition in part (a) above is 
consistent, i. e., that the algebras defined by the 
right- hand side of (91) for two different A', A", are 
equal whenever A(A')WR =A(A")WR • We r~mark here 
that, as in BW I, we p~efer to regard B (C) as associat­
ed with the closed set C, and hence the above notation. 

We shall next state a theorem corresponding to The­
orem 5 and part of Theorem 6 in BW I. 

Theorem 5: Given a local AB-system, defined as in 
Definition 4 in terms of a von Neumann algebra A (W R) 
locally associated with WR , then: 

(a) The algebras in the AB-system satisfy the condi­
tions of covariance and isotony, i. e., if OCR) denotes 
A (R) or B (R), with the appropriate restriCtion on R, 
then the conditions (65a) and (65c) hold. Furthermore, 

B (Cj ) cA (W) eA (C~) (95) 

for all WE({/, Ct. C2 ED c' such that C j e Wcq. 

(b) The algebras B(C) are local, in the sense that 
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for any Cb C2 E[)c, such that C1 C C~. Furthermore, 

for any C E[)c. 

(c) The mapping W-A (W) is contimwus from the 
outside in the sense that 

(96a) 

(96b) 

(97a) 

and it is continuous from the inside in the sense that 

(97b) 

The mapping C - B (C) is continuous from the outside 
in the sense that 

(97c) 

The mapping CC -A (CC) is continuous from the inside 
in the sense that 

(97d) 

(d) If the algebra A (WR ) satisfies, in addition, the 
condition of TCP symmetry, as stated in Definition 2, 
then the AB-system is TCP symmetric in the sense 
that 

8 0A (W)801 =A (- W), 8 0B (C)80
1 =B (- C), 

8 0A (CC)8 01 =A (- CC) 

for all WE U/, C E[)c, and where - R ={x 1- x E R} for 
any subset R of Minkowski space. 

(98) 

(e) If the algebra A (WR ) satisfies, in addition, the 
condition of duality, as stated in Definition 2, then the 
algebras B (C) satisfy a condition of duality in the sense 
that 

(99) 

for any C E[)c. 

The assertions (a)- (d) in the theorem correspond to 
Theorem 5 in BW I, and the assertion (e) to the asser­
tion (a) in Theorem 6 in BW I. The above assertions are 
proved by a very trivial modification of the reasoning 
whereby we proved the corresponding assertions in 
BW I, and we do not feel that it is necessary to repeat 
the arguments here. The modifications, of course, have 
to do with the circumstance that the locality conditions 
in the present theorem refer to the notion of a quasi­
commutant, rather than to the notion of a commutant as 
in BW I. 

The above theorem is of interest because it shows 
how a "wedge algebra" A (W R) with physically desirable 
properties gives rise to a system of algebras (associat­
ed with other regions) with physically desirable prop­
erties, such as covariance, isotony, TCP symmetry, 
and duality. In our study of a general quantum field the­
ory the crux of the matter is thus to establish the ex­
istence of an algebra A (WR ) which is locally associated 
with W R and which satisfies the conditions of TCP 
symmetry and duality. 

Now it sh~uld be noted that nothing said so far guaran­
tees that B(C), for some particular C E[)e, contains 
other elements than multiples of the identity. In a 
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physically satisfactory "local" theory it must clearly be 
the case that at least some of the algebras B (C) are non­
trivial. In a quantum field theory one might in fact 
demand that all the algebras B (C) are nontrivial, 
and furthermore one might demand that the 
algebras B (C) associated with ~l C C cg, for some Co, 
should generate the algebra A (Gg). We shall show that 
this is in fact the case if the quantum fields satisfy the 
conditions in part (a) of Theorem 4. We do not have a 
corresponding result for fields which merely satisfy the 
premises of Theorem 3. The situation in the latter case 
is complicated by the fact that the extensions of the field 
operators described in Theorem 3 depend on the region 
with which the operators are aSSOCiated, and to clarify 
the situation it would be necessary to investigate the 
relationship between the domains of the extensions for 
different regions. This we have not done, and we shall 
therefore restrict our considerations to the case 
when the premises of Theorem 4 are satisfied. We note, 
however, that we do obtain a satisfactory local theory 
if the fields satisfy the premises of Theorem 3, and 
some additional condition which guarantees that B (C)n 
is dense. We refer here to the assertions (b) and (d) in 
Theorem 6 in BW I, which can readily be generalized to 
the present situation. It is of interest to state the gen­
eralization of the first one of these assertions as 
follows. 

Theorem 6: Let the von Neumann algebra A (WR ) 

satisfy the premises of Theorem 5, and let a local AB­
system be defined in terms of A (WR ) as in Definition 4. 
Let A (W R) satisfy the condition of duality, as well as 
the additional condition that 

xn ED., V(i1T)Xn =Jx*n 

for all X EA (WR ). 

(100) 

If there exists a double cone Co such that B (Co)n is 
dense in the Hilbert space H, then 

A(CI) ={B(C) I C E[)c, C C CrY (lOla) 

for every C1 E[)c, and 

A(W)={B(ACo)IAELo, ACoCW}", (lOlb) 

A(Cf)={B(ACo)IAELo, ACocCr}" (lOlc) 

for every C1 E[)c, WE UI. If, furthermore, Co C WR , 

then 
A (W R) = {V(t)B (Co) v(t)-1

1 t E R1}" • (1 Old) 

These assertions are proved by the same reasoning 
as in our proof of the corresponding assertions in The­
orem 6 in BW I, and we shall not repeat the arguments. 
We note here that the premises of the theorem at once 
imply that n is a cyclic and separating vector for 
A(WR ), as well as for B(Co)' We fUrthermore note that 
the condition (100) is not required for the conclusion in 
part (e) of Theorem 5. It is, however, essential for the 
present theorem, and in particular for the conclusion 
(lOld). We refer here to our discussion in Sec. V of 
BW I of the connection between our considerations and 
the Tomita-Takesaki theory of modular Hilbert alge­
bras. 16 The relation (lOld) can thus be understood with 
reference to the fact that because of (100) the group 
{V(t) 1 tE R1} is preCisely the modular automorphism 
group for A (WR ). 
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In preparation for Theorem 7 we prove a lemma 
about the nature of the weak quasicomm,utant C w(R) in 
the special case that R is the closure of a double cone 
inDc· 

Lemma 12: Let C EDc. Then 

Cw(C) =n {C wCW) I WEW, W::JC}. (102) 

Proof: (1) Let C f denote the set defined by the right 
side of (102). It is at once obvious that Cw(C) cCu and 
we thus have to prove that if XEC" then XECw(C). 

(2) ~et J.1. E IT, and let f(x) E D(R4) such that supp (f) 
= Ro c CC

• The support Ro of the Jest function f is thus a 
compact subset of the open set CC. For any x we denote 
by b(x; p) the open ball of radius p> a centered at x 
[where Minkowski space is regarded as a Euclidean 
space with Cartesian coordinates x = (xt,x~,X3,X4)]. Now, 
for each x E Ro we can select a p(x) > 0 such tEat 
b(x;2p(x»cWfor some WEW such that Wccc. The set 
{b(x;p(x»lxERo} of open balls covers Ro, and, since 
Ro is compact, this open covering contains a finite sub­
covering. There thus exists a finite set {x k I x k E Ro, 
k=I, ... ,n}ofpoints, and a set {WkiWkEW, k=l, ... ,n} 
of wedges, such that 

(103a) 

b(xk; 2p(xk» c Wk c CC, k = 1, ... ,n. (103b) 

In view of (103a) there then exists a set {gk(X) igk 
ED (R 4

), k = 1, ... , n} of functions such that SUPP(gk) 
c b(xk; 2p(xk» for k = 1,. " ,n, and 

n 

~ gk(X) = 1, all x E Ro. 
k=t 

(103c) 

Let (Y, Dj) = (cpJf1, Dj ) and (Yk , D1) = (cp " [jgk1, Dd for 
k = I, ... ,n. We then have 

n 

(Y, D t ) = 0 (Yk , D t ), (103d) 
k=j 

where (Yk,Dt)EL(Wk ). If nowXEC, thenXECw(w~) 
and hence X commutes in the weak sense (64) with 
(Yk , D j ), for k = 1,. , . ,n. If follows, in view of (I03d), 
that 

(103e) 

for all cp, ~E Dt • 

(3) For any X EC the relation (103e) thus holds for 
all (Y, Dt ) = (cpJf]' Dt ) E L (CC) such that supp(f) is com­
pact. The set D (R4) is dense in 5 (R4) in the topology of 
the space of tempered test functions, and, since the 
quantum fields are operator-valued tempered distribu­
tions, it readily follows that (103e) holds for all (Y, Dtl 
=(cp,,(f), Dj)EL(CC) such th~tfE5(R4), supp(f)cCC

, 

1. e., for all elements of L (CC). It then follows, in view 
of Lemma 9, part (c), that X EC w(C), This, in effect, 
completes the proof of the lemma. 

We are now prepared to present the main result of 
this section. 

Theorem 7: Let the quantum fields be such that the 
conditions in part (a) of Theorem 4 are satisfied, 1. e. , 
the von Neumann algebra A (WR) =Ao(WR) satisfies the 
relations 
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(104) 

and hence the algebra is locally and TCP-symmetrical­
ly associated with W R. Furthermore, A (W R) satisfies 
the condition of duality, and the conditions (100). Let a 
local AB-system be constructed from A (WR ), as in 
Definition 4. Then: 

(a) The algebra A (W R) satisfies all the general and 
special premises of Theorems 5 and 6, and all the con­
clusions of these theorems apply. In particular B(Co)n 
is dense f~r any Co EDc. Furthermore, for any Co EDc 
such that Co c W R, 

A (W R) = {V(t) C; (Co) v(trtl t E R t }", 

A(Cf) ={C;(ACo) IA cLo, ACo c cr}". 
(b) For any CEDe, 

C(C) cCw(C) =B(C), C;(C) CB(C), 

C w(COPC(CCPA (CC), C;(CCPA (CC). 

(c) With the notation of Lemma 10, A o(C) =C w(C) 

(105a) 

(105b) 

(106a) 

(106b) 

= 8 (C) for all CEO c' For any such C the operators in 
p(CC) have extensions constructed as in part (c) of 
Lemma 10, and these extensions have the properties 
described in the lemma. In particular the closures and 
adjoints of the extended operators are affiliated to the 
von Neumann algebra A (CC). 

(d) With the notation of Lemma 10, C w(CC) :::JAo(CC) 
-=:>C(CC) for all CEDe. For any such C the Dperators in 
P(C) have extensions cDnstructed as in part (c) of 
Lemma 10, and these extensions have the properties 
described in the lemma. In particular the closures and 
adjoints of the extended operators are a~iliated to the 
von Neumann algebra Ao(Cc)" CC;(C) cB(C). 

Proof: (1) The algebra A (WR ) trivially satisfies the 
general premises of Theorem 5. From the construction 
of the AB-system, and from (104), it fDllows, in view Df 
Lemma 12, thatCw(C)=B(C). 

Since the mapping R -C; (R) satisfies the condition of 
is otony , the inclusion relation at right in (106a) follows 
from (104). The remaining relations (I06a) and (106b) 
are then trivial. 

(2) Since, by Lemma~, c;(C)n is dense for any 
C EDc it follows that B(C)n is dense, as asse-2'ted in 
part (a) of the theorem. Let now Co ED c and Co c W R' 

Let A R denote the von Neumann algebra defined by the 
right member in (105a). The vector Q is then a cyclic 
vector fDr A R, and in view of the construction we have 
V(t)ARV(t)-l=ARfor all real t. Furthermore, it is 
trivially the case that A (W R) ::JAR' It then follows from 
Theorem 2 in BW I that A (W R) = A R, as asserted in 
(105a). The relation (105b) follows trivially from the 
relation (105a). 

(3) The assertions (c) and (d) of the theorem are tri­
vial in view of Lemma 10. 

As we see from this theorem, a very satisfactory 
"local" theory results if the quantum fields satisfy the 
premises of Theorem 4, 1. e., anyone of the six con­
ditions in part (a) of that theorem. There thus exists a 
local AB-system which satisfies the condition of TCP 
symmetry and the condition of duality B (C)q =A (Ce ). 
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Furthermore, for any CEDe, the von Neumann algebra 
B(C) has 0 as a cyclic and separating vector. The rela­
tions (101a)- (101d) hold, which means that the set of 
local operators associated with the bounded regions C 
is sufficiently large in the sense that these operators 
generate all the algebras of the AB-system, as de­
scribed by the relations (101a)-(101d). Now it is in­
teresting to note that the algebra B (C) is in fact equal 
to the weak quasicommutant C w(C) of the set of all field 
operators of the form (rp,,[J], D 1), where fE 5 (R4), 

supp(f) c Ce• We thus have a conceptually simple pre­
scription for "finding" the algebras B (C) provided that 
it has first been established that the quantum fields do 
satisfy the premises of Theorem 4. 

We note here that this is the case under what we 
called Condition I in BW I, because this condition says 
that C(WR)O is dense. It follows that all the conclusions 
in Theorem 7 hold under our earlier Condition I. We 
overlooked this fact in our previous paper. 

We infer from the wor~ of Landau17 that q (C) is in 
general smaller than B(C). The study of Landau is 
concerned with generalized free fields, in which case 
we have the further simplification that C w (R) =C (R) for 
any ~ubset R of /f1. We then have A (C2 =q (C~) and B (C) 
=C(C), but it can well happen that q (C) *- B (C). 

We conclude by stating a theorem about local internal 
symmetries. 

Theorem 8: LetA (WR ) be a von Neumann algebra 
locally and TCP-symmetrically associated with WR • It 
is assumed that A (W R) satisfies the condition of duality, 
and that furthermore 

XOcD., V(i1T)XO=JX*O (107) 

for all XEA(WR ). Let a local AB-system be constructed 
in terms of A (W R) as in Definition 4. 

Let G be a unitary operator such that 

GO=O, GA (W)G-1 =A(w), all WEUi. (108a) 

Then: 

(a) The operator G commutes with the TCP transfor­
mation, and with all Poincare transformations, i. e. , 

eoc;e~l=G, U(A)GU(At1=G, all AE? (108b) 

(b) For all double cones C, 

GB (C)G-1 =B (C), GA (ce)G- 1 =A (Ce). (108c) 

(c) The set of all unitary operators G which satisfy the 
conditions (108a) forms a group, the group of all local 
internal symmetries. 

This theorem is proved by the same reasoning as in 
our proof of the corresponding Theorem 7 in BW I, and 
it is not necessary to repeat the arguments here. We 
note here that the conclusions of the theorem do not 
follow (as far as we know) merely from the assumptions 
that A (WR ) satisfies the condition of duality and is 
locally and TCP-symmetrically associated with WR • 

Our proof in BW I depends on the specific conditions 
(107), which presumably characterize local von Neu-
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mann algebras in a quantum field theory. Without the 
conditions (107) it can be shown18 that G commutes with 
all translations, but it appears that further assump­
tions are necessary for the conclusion that G also com­
mutes with homogeneous Lorentz transformations. 19 

We finally note that the "group of all local internal 
symmetries," as defined above, will in general in­
clude supers election symmetries with no observable 
physical effects. 
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Gauge-covariant differentiation and Green's functions for the 
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A gauge-independent definition of differentiation is given for non-Abelian gauge fields in terms of parallel 
translation. This is achieved by a suitable definition of time-ordered operator products. Equal time 
commutation relations are used to derive the differential equations for the related Green's functions. The 
Green's functions are discussed for general linear gauges. In comparison with electrodynamics the Green's 
functions have the well-known ghost-loop terms. 

1. INTRODUCTION 

The purpose of this paper is to extend a formalism 
developed by Meetz1 for scalar electrodynamics to non­
Abelian gauge theories. In this formalism the concept 
of covariant differentiation (or parallel displacement) 
is transferred to suitably defined time-ordered products. 
The field equations obeyed by time-ordered products 
and Green's functions then naturally arise. Because this 
concept is not restricted to the Abelian gauge group one 
should be able to treat non-Abelian gauge groups with 
their complications in the same way. We will show that 
this in fact is the case. 

Throughout the paper we shall consider a gauge theory 
with local group SU(2). This is without loss of gen­
erality as the results are easily translated to the case 
of any compact simple local gauge group. Now in the 
usual formalism one defines the gauge-covariant 
derivative of a field cp'" by 

(V'" cp)'" (x): = V'~8(X) cp8(X): = [ 0"'8°" - igT A':.8(x)] cp8(x) 

=[0",80" - ig(Ta)"'8A~(x)] cp8(X). (1.1) 

Here A~ is the gauge field potential (with the index a 
taking the values 1,2,3), T a are the generators of the 
Lie algebra of SU(2) in the representation corresponding 
to the transformation properties of the field cp"', and 
g is the coupling constant. In the adjoint representation, 
which for simplicity we always consider, we have 
(Ta)be = iE abe. V'" cp is covariant under the gauge trans­
formation 

cpa (x) - exp[igT6(x)]abcpb(X) , 

TA" (x) - exp[igT6(x)] TA,,(x) exp[ - igT6(x)] 

- (1/ig) exp[igT6(x)] 0" exp[- igT6(x)], 

(1.2a) 

(1. 2b) 

where tla{x) are arbitrary functions. The relation be­
tween the gauge field potentials and the field strengths 
is given by 

(V'" V'v - V'vV' ,,)ab cpb(X) = - gEabe F ,,~(X) cpe{x) , (1. 3a) 

where 

(1. 3b) 

A further covariant derivation V' p and application of 
the Jacobi identity gives the analog of the homogeneous 
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Maxwell equations 

F ,,~ transforms under gauge transformations as an 
isovector 

(1. 5) 

All the complications of the non-Abelian gauge field 
stem from the fact that, because the adjoint representa­
tion is not trivial, field strengths are gauge dependent. 
Hence the covariant derivatives do not reduce to or­
dinary ones. 

We can also consider this formalism from a more 
differential geometric point of view. We regard (1. 1) as 
a covariant derivative in the sense of differential geom­
etry with linear connectiongEabeA~(x). Parallel transla­
tion of a vector cpa(x) along a path ~(s) is then defined by 
the differential equation 

The solution of (1. 6) for parallel translation along a 
finite path is given by 

(1. 7) 

where T means ordering along the path. 

Now one should consider two vectors cpa (x) , cpb(y) as 
physically equivalent if they can be transferred into each 
other by parallel translation. In the presence of a gauge 
field this concept of physical equivalence does depend on 
the path chosen because under a deformation of the path, 
with the endpoints fixed, we get 

(1. 8) 

where X:b{~{s'))=Texp(ig J; d~"TA,,)eb. The dependence 
on the path prevents, in our view, this notion of phy­
sical equivalence to be of relevance. But locally we are 
able to define the gauge-covariant derivative unam-
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biguously by parallel translation, 

lim.! [X;lab(x) q}(x(s» - ¢a(X)] 
8-0 S 

=: dd~'"l (V',"¢)a(x)=dd~'" I (6aba,"-gEacbA~(x»¢b(X). 
S x S x 

(1. 9) 

From our point of view only the local implications of 
parallelism should be ingredients of a physical theory, 
in particular with respect to the quantized theory. This 
is in contrast to the view presented by Mandelstam in 
Refs. 2 and 3. He introduced field variables that are 
gauge independent, but depend on a path leading from 
the space-time point x to infinity. For an isovector field 
¢a(x) the path dependent field q,a(x, P) is constructed by 
parallel translation of ¢a along the path P from x to in­
finity , 

(1. 10) 

Here T+ means antipath-ordering. 

We prefer a formalism that makes use of the concept 
of parallelism only locally. In Sec. 2 we shall derive 
the equal time commutation relations for gauge field 
variables and a scalar isovector field. The procedure 
will be closely analogous to that given in Ref. 1. We 
also restrict ourselves to linear gauges. Our program 
then requires the definition of parallel translation or 
gauge-covariant differentiation of time-ordered products 
or Green's functions respectively. These concepts will 
be introduced in Sec. 3 and the resulting field equations 
will be determined. In Sec. 4 we shall summarize these 
equations in the condensed notation invented by Man­
delstam3 and write them in integrated form. The equa­
tions differ from those naively expected by an additional 
term, which in perturbation theory produces the well­
known "ghost" loops in Feynman diagrams, found by 
Feynman,4 De Witt, 5 Faddeev and Popov, 6 Mandelstam, 3 

and others. 

2. COMMUTATION RELATIONS 

Our starting point is the Lagrangian of a non-Abelian 
gauge field with structure group SU(2), coupled to a 
scalar isovector field 

L(x) = - tF~v(x)F:v + HV'~b¢b(X) V'~c ¢C(x) - m 2¢a(x) ¢a(x)]. 

(2.1) 

The additional isovector field will not add appreciably 
to the complexity of our system, but will help us to infer 
the commutation relations in accordance with the classi­
cal Poisson-brackets that can be derived from (2.1), 
e. g. , by the method of Peierls. 7 From the Lagrangian 
(2. 1) we derive the classical equations of motion 

V'~b(x)F v:(x) +gV'tC(x)¢C(X)Eabd¢d(X) 

(2.2a) 

(2.2b) 

We shall assume that these equations, suitably sym­
metrized, are still valid in the quantized theory. Here 
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we want to remark on our treatment of noncommuting 
operators in operator products. We always regard such 
products as symmetrized and indicate this by a dot, 
A • B: = E(AB + BA), and appropriate brackets if more 
than two factors are involved. Some of our calculations 
require a reordering of symmetrized products. This 
can be achieved by the formula A • (B • C) = (A • B) 0 C 
- t[[A, C], B]. In our calculations the double commutator 
always vanishes. 

Now we proceed with the identification of the equal 
time commutation relations. The commutators that can 
be written down from the outset are those between the 
scalar variables and their conjugate momenta. Non­
vanishing are 

(2.3) 

In contrast to the Abelian case the commutators between 
field strength operators are gauge dependent and we 
have to derive them. To do so we follow closely the 
procedure given in Ref. 1 that relies on the method of 
Peierls and consistency considerations. 

First we determine the commutation relations be­
tween the field strength operators and the scalar vari­
ables. Ai, hence F/j, and ¢a commute, because these 
variables are independent. [This is not generally true. 
Rather it is this assumption that confines us to "cou­
lomblike" gauges in the following. These gauges are de­
fined by imposing a gauge condition on the spatial com­
ponents Ai of the potentials and treating A~ as dependent 
variable. ] 

The commutation relations between F oj and ¢b can be 
derived by considering the zero-component of Eq. 
(2.2a), which is an equation of constraint, 

V'a~(x) oFot(x) = - jg(x) = g(V'gC(x) ¢C(X»eabd¢d(x). (2.4) 

Relation (2.3) implies 

[- jg(x, xO), ¢b(y, XO)] = - ig6(x - y) Eabc¢C(y, xo), (2. 5a) 

[- jg(x, xO), (V' O¢)b(y, xO)] = - ig6(x - y)EabC(V'O¢)"(y, xo). 

(2.5b) 

In view of (2.4) and our assumption that Ai and the 
scalar variables commute, we conclude from (2. 5a) 

[F oi(x,xO), ¢b(y, xo)] = _ g hbC(x, y) ¢C(y, xo), (2.6a) 

where f'i fulfills the equation 

V'a!(x) 0 r1bC (x, y) = iEabc 6(x- y). (2.7a) 

Because of the hermiticity of F oj and ¢b it follows from 
(2.6a) that 

(2.8a) 

Now we consider the commutator between F Ol and ¢b¢b. 
The Eqs. (2.6a) and (2. 8a) imply 

[F oi(x, xo), ¢b(y, xo) ¢b(y, XO)] 

= _ g ¢b(y, xo) [ribC(x, y) _ riCb(x, y)t] ¢C(y, xo). 

On the other hand we can calculate this commutator 
by the method of Peierls. We find that the gauge in­
variant quantities Foi· F j~ and ¢b¢b commute. But F j~ 

Heinz Frey 323 



                                                                                                                                    

and rpbrf} commute as well and therefore the same holds 
for Fot and rpbrpb. To satisfy this condition we demand 

(2.8b) 

In the same way the method of Peierls shows that Frfi 
and (VOrp)brpb, (VOrp)b(VOrp)b respectively, commute. This, 
together with (2. 6a), (2.8b), and the hermiticity of 
(Vo rp)b gives 

[F ot(x, xO), (Vo rp )b(y ,xo)] =g(V orp )C(y ,xo) r~Cb (x, y) 

(206b) 

From now on we shall assume that rt bC is a function 
only of the spatial components At of the potential. Be­
cause rt bC then commutes with rpb and (VOrp)b the rela­
tions (2.8a) and (2. 8b) show that it has to be antisym­
metric in the indices band c. Therefore we can write 

ribC(x, y) = irid(x, y)EdbC. (2.9) 

From (2.8b) we see that rib has to be Hermitian. It 
obeys a differential equation that can be derived from 
(2.7a), 

(2.7b) 

In terms of r'r the commutation relations (2. 6a) and 
(2.6b) now read 

[Foi(x, xO), rpb(y, XO)] = - ig rnx, y) Ecbd rpd(y, xo), 

(20 lOa) 

(2. lOb) 

This is in close analogy to the Abelian case. The im­
portant difference is that now, according to Eq. (2.7), 
r i generally is a q-number function. An exception to 
this is the axial gauge, as will be seen below. 

Next we derive the commutation relations between 
F oi and the spatial covariant derivatives (V jrp)b. To 
achieve this we first compute the commutator of 
FoiOFj~ and (VOrp)b(Vjrp)b by the method of Peierls. As 
Fj~ commutes with (VOrp)b(Vjrp)b we can, as in our pre­
vious calculation "divide" by it and we get 

[F oi(x, xo), (V orp )b(y, xO)(V jrp )b(y, xo)] 

=- ig 0ijo(x- y)EabC(VOrp)b(y,XO) rpC(y,xo). 

Together with (2. lOb) this implies 

[Foi(x,xO), (Vjrp)b(y,XO)] 

= - igoij o(x - y)EabC rpC(y, XO) 

(2.11) 

Here Vj is defined by Vjb(y,xO)=[OCba}+gEcdbA~(y,xO)], 
where the derivative acts on the function to its left. Be­
cause of Fj~=ajA~- a,.Aj-gEabcA~A~, (2.13) leads to 

[F oHx, xo), F }~(y, xo)] = i[ 0i} V~b(X, XO) 

- 0ikVjb(X,XO)] o(x- y) (2.14) 

- ig rac(x, y) Ecbd F j~(Y, xo). 

Equations (2.13) and (2.14) are consistent with (2.4). 

Finally we have to determine the commutator between 
F o~ and F o~. To this end we calculate 

[Fo~(x,xO), Vb~(Y'XO) 0 Foj(y,xo)] 

=- [Foi(x,xo), j~(y,xO)]=igrnX,Y)Ecb.Jg(y,XO). (2.15) 

On the other hand, because of (2.13), we can evaluate 
the left hand side as 

[Foi(x,xo), Vb~(Y'XO) 0 Foj(y,xO)] 

=Vb~(Y'XO) o[Fo~(x,xo), Foj(y,xo)]+ig{- O(X-y)E bac 

xFof(x, xo) + [rl"{x, y) Vjd(y, xo)] 0 Edbe Foj(y, xo)}. 

(2.16) 

Using (2. 7b) and a reordering of the symmetrization, 
we can transform the last term, 

ig{ - o(y - x) EbaJ oi(x, xo) + [rl"{x, y) Vjd(y, xo)] 0 EdbeF oj(y, xo)} 

= igV b~(Y ,XO) 0 [- rjd(y, x) 0 Edae F oHx, xo) 

+ rid(x, y) oEdceFoj(y,xO)] +igrnx, Y)ECb.Jg(y,Xo). 

(2.17) 

Together with (2.15) we have 

V b~(Y' xO) 0 [F o~(x, xo), F oi(y, xo)] 

=Vb~(Y'XO) 0 [- igrid(x,y) oEdceFoj(y,xo) 

+ ig rjd(y, x) 0 Eda.FO~(X, XO)]. (2.18) 

Hence the commutator reads 

[Foi(x, XO), F o~(y, XO)] = - igrnx, y) 0 ECbdFo~(Y, xo) 

+igr~C(y,x) o EcadFot(X,xo). (2.19) 

This is what can be derived without more definite as­
sumptions on the gauge defining operator r i. To go on 
we shall require in the following that Ai obeys a linear 
gauge condition, 

(2.20) 

_ ig qC(x, y)Ecbd(V jrp)d(y, xo). (2.12) Here E a is a c-number function and Yib is a c-number 
matrix that is assumed to satisfy 

If we express V j explicitly in terms of the potential 

v~crpC(y, xO) = [ObC O j _ gEbdcA ~(y, Xo)] rpC(y, xO), 

and expand the left hand side of (2.12) with the help of 
(2. lOa) we find 

(2.13) 

324 J. Math. Phys., Vol. 17, No.3, March 1976 

(2.21) 

Substituting (2.20) in (2.13) we find that this gauge con-
dition requires 

rib(x, y) = J dT(Z) ynx, z) (V1Yltl (z, y)Cb, (2.22) 

To solve for the dependent variables Ag we start from 
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the equation 

Fo't(x) = GoA't(x) - GiAg(X) -gEabcAf(x) oA~(x) 

= GoA't(x) - V'tb(x) 0 A~(x), (2.23) 

which solves the field equation (1.4). If we integrate this 
equation with Yi' we get 

J b ° . dT(Z)Foi(z,x ) Yb~(Z,X) 

= GoBa(x,xO) + J dT(Z)A~(z,xo) 0 [vtC(z,XO)Yc~(z,x)J. 

(2.24) 

Under the assumption that the commutator of Ag with A~ 
is a function of A~ we can remove the symmetrization 
of the product, which gives an additional commutator 
that is a function of A~, and integrate with (VIYI)"!' Upon 
symmetrization of the resulting expression the additional 
term vanishes and we finally arrive at 

Ag(x, xo) = J d T(Z) {Fot(z, xo) 0 r b!(Z, x) 

- [aoBb(z, xo)] (VIYl)"! (z, x)ba}. (2.25) 

This is in agreement with our assumptions on the com­
mutator of Ag and At. 

Lastly we calculate with the help of Eqs. (2.10), 
(2.13), (2.22), (2.7), and (2.25) the commutators of 
Ag with the other field variables: 

[Ai(x,xO), A~(y,xO)] 

= - i[rib(x, y) - vic (x, xo) J dT(Z) r~C(z, x) r~b(z, y)], 

[Foi(x,xO), A~(y,xO)] 

= iGor'tb(x, y) + igEacJ' 01(x, XO) 

o [ J dT(Z) r~C(z, x) r~b(z, y) J- igr':"(x, y) 

• ECb~g(y, XO) + ig Ag(x, xo) 0 Ecad rtb(x, y), 

To derive (2. 26b), one has to use the formula 

[F oi(x, xo), r~C(y, z)] 

= igr~d(y, X)EdaerrC(x, z) 

+ig r dT(Z') 

x [r'td(x, z')\7~e(z,) r~f (y, Z')Efegr g~(Z', z)] 

= ig r~d (y, X)Edaer~C(x, z) 

+ ig J dT(Z')[r~d(y, z') V~e(z') 

X rjf (x, Z ')Efegr g~(z', z)] 

+ igr~d(y, z)r'te(x, z)Eedc, 

(2. 26a) 

(2. 26b) 

(2. 26c) 

(2. 26d) 

that follows from (2.22). In addition (2.23) and (2.25) 
are needed to cast (2. 26b) into the special form given 
above. 

The commutators we have derived are a generaliza­
tion of those obtained for the coulomb gauge by Schwin­
ger.8 Our formulas cover all linear "coulomb like" 
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gauge conditions. For the coulomb gauge we have to 
choose 

(2.27) 

Alternatively, we can choose a path gauge, as mentioned 
in Ref. 1, with 

Ya~(x, y) = - Oabl: d ~i o(x - Y - ~), (2.28) 

where ~(s) denotes a fixed spatial path from zero to in­
finity. For ~(s) = ns, n an arbitrary unit vector, we re­
cover the axial gauge used by Arnowitt, Fickler,9 and 
Schwinger. !O In the case B a = 0 this gauge has the prop­
erty that the component of the three-vector Ai in the 
direction of n vanishes. From this it follows that the 
corresponding Ya~(x, y), 

° Y~b(x'Y)A=- Oabnlloodso(x-y-ns), (2.29) 

fulfillsA~(x)Yb!(x'Y)A=O without integration. This 
implies 

ra~(X'Y)A=Ya~(X'Y)A' (2.30) 

as we see from the explicit expression (2.22). We shall 
remark on the implications of (2.30) in Sec. 4. 

3. TIME-ORDERED PRODUCTS AND FIELD 
EQUATIONS 

In this section we shall find a definition of time­
ordered products of field operators, denoted by T, so 
that these products with a suitable definition of covariant 
differentiation (or parallel translation) obey Eqs. (1. 3)­
(1.4) and yield covariant field equations. T products 
will differ from ordinary time- ordered products, de­
noted by T and defined explicitly by 

T(A(x), B(y» = 8(xO- y o)A(x)B(y) + 8(Y°-xo)B(y)A(x), 

(3.1) 

by additional terms similar to those found in Ref. 1. 

T is equal to T, if only scalar variables are involved. 
For field strength operators the generalization from 
electrodynamics is straightforward, i. e. , 

ieF ,,~(x), Fp~(y» =T(F ,,~(x), Fp~(y» 

+ iOab(g~g~ - g~e)(g,,°g~ - gjg~)Oij o(x - y). 

(3.2) 

This is to be generalized to products of several field 
strength operators as follows, 

T(F ,,~(x) 000 F p~(y) 0 00) = iii ,,~(x) 000 F p~(y) '00) 

+ i Oab(g-~ gt - g~ ge)(g~g~ - g~g~) 

xOijo(x-y)T(o.o)+ooo, (3.3) 

where the symbol F,,~ m~ans that the denoted operator 
is not to be included in T ordering. 

N ext we consider the inclusion of one potential op­
erator A~ in T ordering. For this we calculate with the 
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help of (2.13) 

We now see that with the definition 

T(F,,~(z), A~(z'»=T(F,,~(z), A~(z'» 

- i(g~ g~ - g~g~) g~ rib(z, z')6(z 0 _ z ,0), 

(3.4) 

the connection (1. 3b) between field strengths and po­
tentials is also true for T products, 

a;T(F,,~(z), A~(z'»- a~T(F"e(z), A~(z'» 

-gEbCdT(F",~(z), A~(z'), A~(z'»=T(F",e(z), Fp~(z'». 

The extension of (3.4) to products with more than one 
field strength operator is obvious and is given by the 
recurrence relation 

T(A~(y), F",e(z),oo)=T(A~(y), F"e(z) 000) 

- i(g~g~-g~g~)g~ TCf.jb(Z, y) 

x 6(z 0 _ yO), ••• ) + •.•. 

Now we are_able to define the gauge-covariant 
derivative of T products, 

(3.6) 

V~b(X) T(q}(x) 000 , F p~(z) <00) = a ",T(rpa(x) 000 , F p~(z) 000) 

-gEacbT(A~(x), rpb(X)ooo, 

XFp~(z)ooo). (3.7) 

We have written the gauge-covariant derivative of a 
scalar variable. In this case the derivation results in 

V~b(X) T(rpb(X) ""' , F p~(z) 000) = T([ 6aba" - gEac;~ (x)] 

rpb(X) , 000, Fp~(z). 00) =T('.g~b(X)rpb(X), 000, Fp~(z) 0 <0) 

(3.8) 

because the extra terms for the potential are cancelled 
by the commutators that are produced by the time dif­
ferentiation. This is analogous to electrodynamics. 1 

Repeating the .salculation of Ref. 1 gives the field equa­
tion (1. 3) for T products, 

[V~c(x) V~b(X) - VeC(x) V~b(X)] T(rpb(X) 000 , Fp~(z) 000) 

(3.9) 

That (3. 9) is true also for gauge covariant derivations 
of fields strength variables is seen by a straightforward 
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but a little more tedious algebraic calculation. We also 
can verify (the details of the calculations are omitted in 
the following) that Eq. (1. 4) holds for T products with­
out extra terms, 

V[~(z) T(F a~~(z), F ",~(z '» 
(3.10) 

Here [pUA] means cyclic permutation of indices. We 
have assumed (1. 4) to hold also in the quantized theory. 
Equation (3.10) is true for an arbitrary T product. 

The field equation (2.2) is more difficult for i' -pro­
ducts. For the T-product of two field strength operators 
we find 

V:b(z)i'(F"e(z), Fp~(z'» 

(3.11)' 

If we anticipate that in future formulas r i will always 
appear in the combination 

r~b(X, y): = g~rjb(X, y) 6(xo _ yO), 

which is a particular solution of 

V~b(X) reC(x, y) = 6ac 6(x - y), 

we can write (3.11)' in the more compact form 

V~b(Z) T(F "e(z), F p~(z '» = T(V~b(Z) F "e(z), F p~(z '» 

(3.12) 

(3.13) 

+ i[ g vp V~d (z ) - g va V~d (z )] 6 (z - z ') 

-igr~C(z,z') 

o Eede F p~(zf ) 

+ g T(tr[Tar v(z ,z )J, F p.~(z '». 
The generalization of this to an arbitrary T -product is 
given by 

Vab(z) T(rpe(x) ... , F "e(z) 00. Fp~(z ') 000) 

= T(rpe(x) '00 , V:b(z) F ",e(z) 000 F p~(z ') 000 ) 

+ i[gvp V~d(Z) - gva V~d(Z) ]6(z - z ') T(rpe(x) 000 , 000 ) 

- ig T(rpe(x) 000, ree(z, z') , ECdfF p~(z ') 000) + 000 

- igT( 000, r~e(z ,x) Eeefrpf(x) 000 Fp~(z') 000) + 000 

+ g T(cpe(x) 000, tr[Tarv(z ,z)] 000 F p~(z ') '00), 

(3.11) 

as can be seen by an easy but lengthy calculation. We 
observe that in addition to the first, the second, and 
the fourth term, which appear in the corresponding 
equations in electrodynamics, there are two additional 
terms. The third term shows that the field F p.~ itself 
carries isospin. The last term will later be seen to give 
rise to the additional terms in the perturbation series 
found by Feynman,4 De Witt, 5 and Faddeev and Popov. 6 

In our formalism the trace term arises from the fact, 
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that F,,~ obeys a field equation with covariant derivatives. 
To include the potential term of this derivative in 'I 
ordering, we have to add for the pairing A~(z), F "e(z) 
just this trace term. It is not cancelled by a contribution 
from the commutators that are produced in the course 
of differentiation. 

N ext we want to consider equations forT products that 
contain more than one o-component of the potential. To 
obtain the extra term that has to be added for two po­
tential operators, we regard the equation 

il" T(A~(x), A~(y» - ilvT(A~(x), A~(y)) 

- gEabe T(A:(x), A~(x), A~(y» 

= T(F ,,~(x), A~(y» + (g~g~ - g~g~) 

x g~[Aj(x), Ag(y) ]o(xo _ yO). (3.14) 

This can only be calculated if we make special assump­
tions on the gauge (which is not necessary up to this 
pOint). If we restrict ourselves to linear gauges as dis­
cussed in Sec. 2, we can use (2. 26a) to evaluate the 
commutator. Because of (3.4) we have to define 

T(A~(x), A~(y»=T(A~(x), A~(y» 

+ ig~g~ J dT(Z) r;a(z, x) r;d(z, y) o(XO _ yo). 

- ig T( '" , r~e(z, x)Eebd ¢d(X) '" A~' (z ') '" ) + '" 

+ T(¢b(X) 000, V a~(z)1~ ,,~(z) '" A~' (z/) , ,,). (3.19) 

In proving this, one must be careful to keep track of all 
additional terms that arise from differentiation. The 
term r~a' (z, z ') a; is first obtained inside a T product 
and the derivative has to be taken out of the T product. 
This gives additional equal time-commutators that can 
be calculated by means of (2. 26b) and add up with the 
other terms to perfectly defined T products. Doing so, 
one has to take into account that the extra terms (3.15) 
of T products are operators. When differentiating on 
the left-hand side of (3.19) we get commutators of Fo~ 
with the extra terms required by T ordering. These 
prove to be necessary to cancel with other terms from 
the equal time commutators. 

If we use field equation (2. 2a), the last term can al­
ternatively be written in the form 

T(¢b(X) ''', V~e(z) F ,,~(z) '" A~' (z ') '" ) 

=g 'I(¢b(x) "', [V~d(Z) ¢d(z)] Eeae¢e(z) '" A~' (z ') '" ). 

(3.20) 

This may by expressed as the covariant derivative of a 
(3.15) T-ordered product in view of Eq. (3.7), 

This is in agreement with the relation 

ill' T(A~(x), A~Cv»- ilvT(A:(x), A~(y»- gEabe 

XT(A~(x), A~(x), A~(y» 

=T(F,,~(x), A~Cv». (3.16) 

We again indicate the generalization to T products of 
several potential operators: 

T (A~ (x) eo, A~(y) "') = T(.A~(x) '" A~(y) ,,,) 

+ ig~g~ T( J dT(Z) r;a(z, x) r;d(z, y) 

x o(xo - yo), ,,) + "'. (3.17) 

Now we can calculate the analog of the field equation 
(3.11) for T products of potential operators. If there is 
only one potential, we get 

V~b(Z) T(F "t(z), A~' (z '» = T(~~b(Z) F "t(z), A~' (Z/» 

+i[oaa.gvpo(z -Z/) + r~e(z ,Z/) 

x (Oea' a-;+gE eda• A~(Z/»] 

+g T(tr[Tar v(z ,z)], A~' (z '», 
(3.18) 

where rv is defined by (3.12). Again the additional trace 
term appears. The generalization of this formula to an 
arbitrary 'I product is given by 

V~e(z) T(¢b(X) '" , F ,,~(z) '" A~' (z ') ••• ) 
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=i(oaa.gvpo(z -z/)T(¢b(X) "', .,,)+v~·e(z/) 

XT(¢b(X) ." , r~e(z ,z ') ".» +." 

+ g T(¢b(X) "', tr[Tar v(z ,z)] ••• A~' (z ') , .. ) 
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T(¢b(X) "', j~(z)'" A~' (Z/) ",) 

= gV~d(Z) T(¢b(X) "', [¢d(Z) Eeae¢e(w)] 0" 

X A~' (z ') '" ) I z=w' (3.21) 

(3.19) and (3.21) are covariant field equations for T­
ordered products of potentials. 

Finally we derive the field equations obeyed by the 
scalar field. We have to calculate 

(3.22) 

Here the only problem is the evaluation of the time 
derivative. With the help of the commutation relations 
(2.26c) and (2.3) we obtain 

vge(x) ~gd(X) T(¢d(X)'" ¢b' (x') "', A:(z).,,) 

= vgc(x) T(vgd(x) ¢d(X) '" ¢b' (x'). ", A~(z) ",) 

= T(V b~(X) vgd(x) ¢d(X) '" ¢b' (x') • ", A~ (z) .,,) 

- i Ow o(x - x') 'I( ''', A~ (z) ' •• ) + '" . (3.23) 

The commutator (2. 23c) and its analog with ¢b replaced 
by ('VO¢)b are needed to cancel the additional terms from 
including the potential terms of the covariant derivatives 
in T ordering. The last term is due to (2.3). We then 
have the field equation 

V~c(x) V~d(X) T(¢d(X) '" ¢b' (x'), ", A:(z) ".) 

=_m2T(¢b(x)", ¢b'(X /)"', A;(z)',,) 

- i Ow o(x - x') T( '" , A~(z) ,,,) + '" , 
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where we made use of Eq. (2.2b). 

We want to remark that the scalar field is, of course, 
not essential for our treatment. If we drop aU terms 
that refer to scalar variables, we get the equations for 
a pure Yang-MillS field including all the complications 
we are interested in. 

4. GREEN'S FUNCTIONS 

The (disconnected and unrenormalized) Green's func­
tions are defined as the vacuum expectation values of 
T -ordered products 

e b 000.; ::: (x 0" , z 0") = (0 I T(cpb(X) 0" , A~ (z) "",) 10). 

(4.1) 

Differential equations for these Green's functions follow 
from the field equations (3.9), (3.10), (3.19), and (3.24). 
It is convenient to use the condensed notation introduced 
by Mandelstam. 3 We shall describe it briefly. 

Consider the set of functions 

These functions can be regarded as bilinear forms over 
V* x V, where V is a suitable vector space and V* its 
dual. More explicitly we write 

Fb····~·.::(X "', z ••• )=: (eb •••• ;::: (x ''', z ... ) IF}, 

(4.2) 

where ( I ) is the canonical bilinear form over V* x V, F 
is an element of V, and e

booo
.;::: (x '"', z '"") is a basis 

element of V*. In this scheme the set of Green's func­
tions (4.1) is determined by a specific vector e E V. e 
has to obey vector equations which we shall now consider. 

We define operators 1}(x), A;(z) by their action on 
the basis vectors of V* as follows: 

(4.3a) 

(4.3b) 

The tilde distinguishes these operators from quantum 
mechanical operators. Their action on vectors FE V is 
defined by transpostion, i. e. , 

(e b •••• ;::: (x "', z ... ) -;PI>' (x') IF) 

=: (e b 
.... ~::: (x "', z ... ) I tV (x')F). (4.4) 

Another set of operators 1)b(X) , Z~ (z) is needed to pro­
duce the source terms of the field equations. It is de­
fined by the following commutation rules: 

[1)b(X)"V(x')]=i0w o(x-x'), [1)b(X) , A~(z)]=O, (4.5a) 

[Z~ (z), Xe' (z')] = - i{ 0aa' g "V o(z - z') 

+ r~C(z ,z')[ oca:a~ + gEcda' A~(z ')]}, 
(4.5b) 
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( 4. 5c) 

Here for linear gauges f~b(X ,y) is defined by the equation 

f~b(X,Z)=g~ f dr(w)YiC(x,w) 

x[(1a Z-igTAZ)Yz]-1 (W,Z)CbO(XO-zo), (4.6) 

as may be seen from (2.22) and (3.12). In addition to 
(4.5) we have to require 

eo1)b(x)=O, eoZ~(z)=O, (4.7) 

where eo is a basis element of the one-dimensional sub­
space of V*, 

(eo I F)E <1:. 

We also postulate for the Green's vector e, 

(eo Ie) = 1. (4.8) 

We now formulate the field equations. First we de­
fine the gauge-covariant derivation of basis elements 

;::;bc ( ) c ... a'" ( ) a b ••• a'" ( ) v~xe 'v ..• x ••• 'Z···:==axlJ,e '11 .... Xo··,z··· 

-gEbd ec•• •• a••• (x'" z· •• )Ad(x) c v... , jL' (4.9) 

Because of (4. 3a) this is equivalent to 

(4.10) 

The field equation (3.9) is then represented by 

["\7~C(x) V~d(X) - vtC(x) V~d(X)] (j)d(X) = - gEbcd F ,,~(X)cpd(X), 
(4.11) 

where (3.5) or (3.16) imply 

J! ,,~(x) = a "Aa(x) - avA;(x) - gEacdA~ (x)A~(x). (4.12) 

This shows that (3.10) is represented by an operator 
identity on V*, i. e. , 

(4.13) 

The relations for the Green's functions, implied by 
(3.19) and (3024) are more complicated. They give rise 
to the following equations for the Green's vector: 

[V~c(x) V~d(X) ¢d(X) +m2¢b(x) _1)b(x)]e =0, (4. 14a) 

{V~c(z) F ,,~(z) - g tr[Tai\(z, z)]- j~(z) - Ze(z)} e = O. 

(4. 14b) 

V" and F "v have been defined above and, in agreement 
with (3.20), J~(z) is given by 

J~(z) =g[V~d(Z) ¢d(z)]Ecae -;pe(z). (4.15) 

The field equations for the Green's functions are re­
covered, if we multiply (4014) by the basis elements 

(4.16) 

[here the multiplication is defined by the bilinear form 
( I )], and shift the operators 1)b, Z~ to the left by means 
of (4.5) until (4.7) can be applied. 
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We now consider (4. 14b) in more detail. First we 
write it in the form 

{OA~(z)- a"avA:(z)-.n(z) 

(4.17) 

where we have separated the linear term from v~ci~ , 
i. e. , 

V~c(z)F ,,~(z)=OA~(z) - a"a.,A~(z) - k~(z), (4.18) 

and have defined 

J~(z) = k~(z) + J~(z). (4.19) 

From (4.17) we deduce the identity 

{avJv"{z) + g av tr[Tar v(z ,z)] + avz~(z )}G = O. (4.20) 

We also can derive the following identities: 

{V~c(z)J:(z) + gV~c(z) tr[TCr" (z ,z)] + V~c(z)z~ (z )}G =0, 

(4. 21a) 

[V~c(z) J~ (z) - g7)C(z )€cad¢d(z)] G = 0, 

{V~c(z) z~ (z) + gV~c(z) tr[TCf" (z ,z)] 

+ g 7)c(z )€cad¢d(z)}= O. 

(4. 21b) 

(4.21c) 

Equation (4. 21a) follows from (4. 14b) and (4.12), Eq. 
(4. 21b) from (4.14a). To prove the operator identity 
(4. 21c) we have to show that the left hand side commutes 
with A~ and ¢b and that it "annihilates" eo. This follows 
from (4. 5), (4. 7), and the equations 

gV~c(z) tr[TCr" (z ,z)] =g tr(Ta) Ii(z - z) 

+ig€adc ~~e(w) r~e(z ,w) Iw=. 

= ig€adc V~e(w) f~e(z, w) I w=e> (4.22) 

V~c(z )z~ (z) =z~ (z)[ licaa" + g€Cd.A~ (z)] 

- ig€adc V~e(w )r~e(z ,w) I w=.' (4.23) 

In (4.22) and (4.23) we have to regard tr(Ta) Ii(z - z) 
= 0 ' Ii(z - z) as zero. 

To write (4.17) in a form that can easily be integrated 
we introduce another operator t~ (z) that is defined by 
the relations 

[t~(z), A~·(z')]=-iliaa.g"v Ii(z -Z/), 

[t~ (z), ¢b(X)]=O, eot~(z)=O. 

We can express z~ in terms of t~ as follows, 

z~(z) = t~(z) - J d 4 W[V~d(W) t~(w) 

+ g7)d(W )€dce¢e(W) ]r~C(z, w). 

(4.24) 

(4.25) 

It is easily checked that this expression fulfills the 
commutation relations (4.5). The operator equation 
(4. 21c) follows from (4.24) and (4.22), and (4.7) is 
secured by the ordering of the operators in (4.25). 

Next we define 

(4.26) 

Hence 
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a"yt,b(X ,y) = liabli(x - y), 

r~b(x ,y) = J d4wy~C(X, w)(V~y~rl(w ,y)Cb. 

From (4.27) we conclude 

r~c(z, w) = J d4wly~d(Z, w') a~r~C(wl, w), 

(4. 27a) 

(4.27b) 

(4.28) 

where we stress that y" is a c-number function. We now 
substitute (4.25) into Eq. (4.17). (4.20) and the repre­
sentation (4.28) then can be used to find the following 
form of the field equation: 

[0 A~ (x) - ava "A~(x)]G 

= J d4w liab~(Ii(Z - w) + a~~ y~b(Z, w)) 

x{J~(w) + g tr[Tbr~(w, w)] + t~(w)}G. (4.29) 

Integration of (4.29) with Feynman boundary conditions 
yields 

A:(z)G = J d4w J d4w' DF(z - w) 

x (liac~Ii(W-WI)+ a~~ y~C(W'WI))X{Ji(wl) 
+gtr[TCr~(w', WI)] + WWI)}G + a"Ca(z)G, 

(4.30) 

where 

ODF(z -w)=Ii(z -w). (4.31) 

The undetermined gradient term can be fixed by the 
gauge condition (2.20). The latter can be written by 
means of (4.26) as 

J d4wA~(w )yia(w, z) = Ba(z). (4.32) 

To simplify, we set Ba(z) = 0 and obtain 

A~(z)G=J d4ZID~bJz,Z'IY) {~(Z/) 

+ gtr[TbrV(z I ,z I)] + t:(z I)}G, (4.33) 

where D~bv(z ,z I I y) is the gauge field propagator in the 
gauge defined by y~b and is given explicitly by 

D~bv(Z ,z'ly) = f d4w f d4w' (liacg~Ii(Z - w) 

XDF(w-w ' ) 

X (licbgov6(WI-z/)+ a:'v y~b(WI'ZI)). 
(4.34) 

The integration of the scalar field equations is simple. 
If we write (4. 14a) as 

[(0 + m 2)¢b(x) - iIb(x) - 7)b(X)] G = 0, (4.35) 

where jjb(X) denotes the terms of (4. 14a) that contain 
the A~ operators, we get the integrated form 

;pb(X)G = J d4x' t:.F(x - xl)[Hb(X /) + 1)b(X' ) ]G. (4.36) 
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Here, of course, t:.F is the solution under Feynman 
boundary conditions of the equation 

(0 + m 2)t:.F(x - x') = o(x - x'). (4.37) 

From the integrated equations (4.33), (4.36) we can re­
cover the Feynman rules for our system. These rules 
coincide with the "naive" Feynman rules except for the 
contribution of the trace term in (4.33). To obtain a 
more explicit version of the latter contribution we ex­
pand the inverse operator in the representation (4. 27b) 
into a power series, 

(V~hrl(x,y)ab= (I - igTCA~YJ-l (x,y)ab 

= [OabO(X-Y)+,to f d4wl 00' f d4wngEac~~(X) 
Xy~e(X,Wl)x ••• xgEfghAi(Wn)y~b(Wn'Y)] . 

(4.38) 

The corresponding expansion of the trace term reads 

{{ tr[Taf\. (z, z) 1 

= - i [,to f d4wl ... f d4wngEbac y~d(Z, Wl)gEde~;(Wl) 
(4.39) 

It is seen that the correct Feynman rules require the in­
clusion of additional terms, which can be visualized as 
closed loops built from asymmetrical "propagators" 
y~a(z ,z') and vertices {{Eabc' Here the index a is con­
tracted with the second, the index c with the first isospin 
index of a Yv "propagator" while b is contracted with the 
isospin index of a propagator i D~t(x, z). The Lorentz in­
dex of the latter is contracted with the Lorentz index of 
the propagator YV' In addition these loops get an overall 
factor of - 1. 

These terms have been found by Feynman,4 De Witt, 5 

Faddeev and Popov, 6 Mandelstam, 3 and others. They 
are usually referred to as loops of "ghost particles. " 

The axial gauge defined in Sec. 2 is particularly in­
teresting. We see from Eqs. (2.29), (2.30) that in this 
case 

tr[Tar j.I. (z, z )Al = tr[Tay j.I.(z, z )A] 

. fO ° =-tr(Ta)g~ni _~ ds o(z-z-ns) o(zo-z) 

(4.40) 
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Hence the ghost particles disappear in this gauge. 

Finally we consider the generalization of our formulas 
to four-dimensional linear gauges. As our results are 
perfectly covariant nothing forbids us to leave our 
starting point: the Coulomb-like gauges with yj.l. defined 
by (4.26). If we admit a,Ebitrary solutions of Eq. (4. 27a) 
to construct the kernel r j.I. according to (4. 27b), we ob­
tain general four-dimensional linear gauges. Examples 
are the Lorentz invariant solution 

(4.41) 

of (4. 27a), which corresponds to the Landau gauge, and 
the four-dimensional generalization 

(4.42) 

of the spatial path gauge considered in Sec. 2. 

We end with the remark that our approach is com­
pletely analogous to electrodynamics. 1 The covariant 
definition of time ordering automatically gives the cor­
rect Eqs. (4.14) for the Green's functions. Due to the 
kernel r j.I. these equations are gauge dependent. Mandel­
stam3 eliminated this reference to a particular gauge by 
the introduction of path dependent variables. We prefer 
to formulate the theory in terms of the local concept of 
covariant differentiation. In this framework it is not 
possible to remove the gauge dependence of the equations. 
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A list of orthogonal coordinate systems which permit R -separation of the wave equation 0/" - a2o/ = 0 is 
presented. All such coordinate systems whose coordinate curves are cyclides or their degenerate forms are 
given. In each case the coordinates and separation equations are computed. The two basis operators 
associated with each coordinate system are also presented as symmetric second order operators in the 
enveloping algebra of the conformal group 0(3.2). 

INTRODUCTION 

In this article we complement the contents of our 
previous article l (hereafter referred to as 1) by giving 
a detailed treatment of the orthogonal coordinate sys­
tems for which the two-dimensional wave equation 

(*) 

admits an R-separable solution. 2 We recall that an R­
separable solution of (*) can be written in the form 
exp[Q(J.1., p, v)]A(J.1.)B(p)C(v). Here J.1., p, v are curvilinear 
coordinates and Q is a function such that either 

iJ2Q 0 ' , 
iJAGA' * , A*A, A,A =J.1.,p,v, 

for at least two distinct pairs A, A' or Q = O. The latter 
case is the familiar one of separation of variables. In 
searching for R-separable solutions of (*) we restrict 
our attention in this article to orthogonal curvilinear 
coordinate systems. These are systems of coordinates 
J.1., p, v such that the differential form 

ds 2 = dt 2 _ dx2 _ dy2 

can be written 

(0.1) 

(0.2) 

with F, G, and H real functions of J.1., p, v. In a subse­
quent article we shall give a systematic treatment of 
the nonorthogonal systems for which (*) admits a 
separation of variables. 

The methods necessary for systematically finding all 
such orthogonal R-separable coordinate systems have 
been developed in some detail in the book by B6cher. 3 

These methods can be readily adapted to the problem 
of interest in this article. There are however a num­
ber of new developments occurring in the case of (*). 
These developments stem from the fact that (*) is in­
herently more complicated than Laplace's equation 

which B6cher treated in detail. The contents of the 
article are arranged as follows. 

(0.3) 

In Sec. I we give the basic ideas necessary to con-
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struct the coordinates which allow an R-separation of 
(*). This involves a treatment of pentaspherical space, 
relevant properties of cyclides, and the method of 
finding the pentaspherical coordinates (and hence the 
coordinates t, x, y) in terms of the various curvilinear 
coordinates. Enough detail is presented in this section 
so as to make the article reasonably self-contained. 
In Sec. II the connection between the wave equation (*) 
and pentaspherical coordinates is discussed. 

Section III contains the classification of orthogonal 
R-separable coordinates of (*). In addition the separa­
tion equations are given and identified as much as 
possible. We also give the two symmetric second order 
operators whose eigenvalues are the separation con­
stants. These operators are expressed in terms of the 
symmetry group of (*) discussed in detail in 1. 

The best-known coordinate systems which permit 
separation of variables in the wave, Laplace, and 
Helmholtz equations have the property that the coordi­
nate surfaces are orthogonal families of confocal 
quadrics 

X2 y2 Z2 
--+--+--=1, a.const (0.4) 
A - a l A - a2 A - a3 ' 

or their limits. 4 Thus the coordinate surfaces are 
ellipsoids, hyperboloids, spheres, planes, etc. The 
Helmholtz equation separates only in coordinate sys­
tems of this type, but the wave and Laplace equations 
admit more general separable systems. This fact is 
related to the greater symmetry of the latter differen­
tial equations. Indeed, the wave equation admits an 
inversion symmetry which transforms the coordinates 
x, y, t to xix ·x, ylx ·x, tlx· x, where x .x= /2 _ x 2 _ y2. 
Under inversion and space-time translations the 
orthogonal coordinate surfaces (0 0 4) are transformed 
into orthogonal surfaces, each of the form 

0([2 _ x 2 _ y2)2 + ax2 + by2 + ct2 

+ dx+ ey+ft+ h=O. (0.5) 

The fourth-order surfaces (0.5) are cyclides3 ,5.6 and 
the coordinate surfaces are orthogonal families of con­
focal cyclides. The set of all cyclides is invariant 
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under the conformal symmetry group of the wave equa­
tion. Moreover, one can show by explicit construction 
that certain confocal families of cyclides define 
orthogonal coordinate systems which permit separa­
tion of variables in the wave equation. No separable 
systems other than these are known. Two families of 
confocal cyclides define equivalent coordinate systems 
if one can be obtained from the other by a transforma­
tion belonging to the conformal symmetry group 
SO(3, 2) of the wave equation. Certain special families 
of cyclides can be mapped to the form (0.5) with G' = 0 
by a conformal symmetry, and these families lead to 
the special coordinate surfaces (0.4) and their limits. 

To determine all distinct cyclidic separable co­
ordinate systems, we clearly need to classify the dis­
tinct equivalence classes of cyclides under the action of 
the conformal group, 

However, as shown explicitly in I, the action of this 
group on x, y, t (Minkowski) space is rather complicated. 
To simplify the computation of equivalence classes, one 
sets up a correspondence between three-dimensional 
Minkowski space and five-dimensional pentaspherical 
space as defined in Sec. I. In pentaspherical space the 
general cyclide takes the simple form (1. 9) and the 
action of the conformal group SO(3, 2) reduces to 
matrix multiplication. Thus the classification of cy­
clides into SO(3, 2) symmetry classes can be carried 
out in a straightforward manner, and the results 
mapped back to Minkowski space to yield R-separable 
coordinate systems for the wave equation. 

I. PENTASPHERICAL COORDINATES AND 
ORTHOGONAL FAMILIES OF CONFOCAL CYCLIDES 

In this section we will outline the use of pentaspheri­
cal coordinates in classifying orthogonal families of 
confocal cyclides. Such orthogonal families, each pro­
vide an R-separable coordinate system for (*). The re­
sults presented here summarize those aspects of the 
work of Bacher that are relevant for this article. 
Further details can be found in B6cher's book and also 
the book by Coolidge. 5 

Any set of objects that can be put into one to one 
correspondence with sets of five homogeneous coordi­
nates Xl : x 2 : X3 : x4 : Xs not all simultaneously zero but 
connected by the relation 

(1. 1) 

are called points in pentaspherical space. It is clear 
that in general the quantities Xi are complex numbers. 
For our purposes the subset of pentaspherical coordi­
nates of interest for the wave equation (*) can be ob­
tained from the coordinates t, x, y as follows. Instead of 
considering the usual Cartesian coordinates t, x, Y in 
three-dimensional Minkowski space, consider the 
Cartesian coordinates defined by 

Z = I, X = ix, Y = i J'. (1. 2) 

The correspondence between a point (I, x, y) in Min­
kowski space and a point in five-dimensional space is 
then achieved as follows. The stereographic projection 
of the Cartesian coordinates with respect to the four-
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dimensional unit sphere embeds the point (Z,X, Y) in a 
four-dimensional space. The homogeneous or projec­
tive coordinates of the corresponding four-vector are 

Yl = r 2 - p2 _ q2 + S2, Y2 = r2 _ p2 _ q2 _ S2, 

Y3=2ips, Y4=2iqs, Ys=2rs, 

where the coordinates t, x, yare given by 

t=r/s, x=p/s, v=q/s. 

(1. 3) 

(1. 4) 

If we adopt entirely real coordinates by writing Zi=Yi' 
i= 1,2,5, and Zi= - iYi' i=3,4, we see that these co­
ordinates satisfy 

zi-z~+z~+z~-z~=O (Zi all real). (1.5) 

The subset of pentaspherical space of interest then con­
sists of those points whose pentaspherical coordinates 
are 

x 3=2ips, x 4 =2iqs, Xs = 2rs. 
(1. 6) 

In this work we are concerned only with these points in 
pentaspherical space which correspond to the real co­
ordinates Z i satisfying (1. 5) (i. e., having the same 
signature as this equation). An alternative equation to 
(1. 6) can be obtained via the substitutions p - - iP, 
q - - iq, r - - ir. From the form of (1. 1) it can be seen 
that to transform one set of pentaspherical coordinates 
Xi into another set x; via a linear transformation 

(1. 7) 

which preserves 

n = xi + x~ + x~ + x~ + x~ 

is only possible if V = (Vi;) is an orthogonal matrix: 

V1fT=1 [VT=(Vji), ViiEC]. (1.8) 

In particular for the case of interest here the orthogonal 
transformations V corresponding to points in penta­
spherical space of the form (1. 6) are isomorphic to 
elements of the group 0(3,2). This is the symmetry 
group of (*). 

A cyclide is defined to be the locus of points Xi in 
pentaspherical space lying on the quadric surface 

5 

cP = L aiix/xi = 0 
i, j=l 

(1. 9) 

with aii = aii and det(a ii );< O. The problem of classifying 
types of cyclides under the group of orthogonal trans­
formations Vas in (1. 7) and (1. 8) is then the problem 
of classifying the intersections of two quadric forms in 
five-dimensional projective space, where one form is 
required to be equivalent to n, (1. 5). This is performed 
by the method of elementary divisors applied to the two 
quadratic forms. 6 If we take the quadratic forms to be 
cP as in (1.9) and n=L;L=lbijxixi , each class of 
quadratic forms CP, n is then specified by the corre­
sponding invariant factors. The invariant factors form 
a complete set of invariants for each class of pairs 
n, CPo This means that if n', cp' have the same in­
variant factors as n, CP, the two systems are related 
by a linear substitution 
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The invariant factors of a given pair of quadratic 
forms are obtained as follows. Suppose D = det I AaiJ - biJ I 
contains the factor (A - u)la. A second index 'l is de­
fined to be the highest power of (A - u) which divides all 
the first minors of D. Proceeding in this manner we 
obtain the terminating set of indices el = la - 'l' e2 

=' 'l - 12 , •• " er =' 1r_l' The powers (A - U)Bl, 

(A - u)B2, .•• , (A - u)Br are called the invariant factors 
to the base A - U of the determinant D of the family of 
forms. All possible invariant factors of D then deter­
mine a complete set of invariants. The standard nota­
tion for the inequivalent classes of pairs n, <I> of 
quadratic forms is to display the indices el for each of 
the roots of D = 0 within a square bracket. Those in­
dices belonging to the same base or root of D=,O are 
enclosed in conventional brackets. As an example con­
sider the invariant factors (A_a)2, (A-b), (A-C), 
(A - d) the corresponding notation is [2111]. If the in­
variant factors are (A_a)2, (A-a), (A-C), (A-d), 
then there is more than one invariant factor to the base 
a. Such a cyclide is then called a degenerate form of 
the corresponding cyclide in which there is only one 
invariant factor to each different base. For this second 
example we have a degenerate case of the cyclide 
[2111] and write this as [(21)11]. If the set of invariant 
factors are (A - a)2, (A - b), (A - b), (A - C), then the 
notation would be [2(11)1] and so on. The list of pairs of 
quadratic forms in five variables which are inequivalent 
are (this does not include the singular cases, which we 
do not need here, see, for instance, Bromwich6

): 

1. [111111 n == xi + x~ + x~ + x; + x;, 

<I> = AlXi + A2X~ + A3X~ + A4X~ + ASX;; 
(1. 10) 

2. [21111 n== 2X1X2 + x~ + x~ + x;, 

<I> = 2 AlXlX2 + xi + A3X~ + A4X~ + ASX;; 
(1.11) 

3. [311 ] n=2xlxS + x~ + x; + x;, 

<I> == Al (2xlxS + X~) + 2X l X2 + A4X~ + ASX;; 
(1. 12) 

4. [221] n == 2X l X2 + 2XSX4 + x;, 

<I> == 2AIXIX2 + xi + 2A3X3X4 + x~ + ASX;; 
(1. 13) 

5. [41 ] n == 2XIX4 + 2X2XS + x;, 

<I> = 2Al(XlX4 + x2XS) + 2X1X3 + x~ + A5X~; (1. 14) 

6. [32] n = 2XIXS + 2X4XS + x~, 

<I> = A1(2x1xS + x~) + 2X l X2 + 2A4X4X S + x~; 
(1. 15) 

7. [5] 

The pairs of forms for a degenerate cyclide can be ob­
tained from these formulas, e. g., the quadratic forms 
n, <I> corresponding to the configuration [(11)111] are 
obtained from (1.10) by putting Al = A2 , and so on. Each 
type of cyclide is then associated with one of the seven 
types listed or one of the corresponding degenerate 
forms. The corresponding equations defining the cyclide 
are n == 0 and <I> = O. The types of cyclides of particular 
interest here are those belonging to a confocal family. 
The most general such family is associated with the 
configuration [11111] and is given by the pair of 
equations, 
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n==xi + x~ + x~ + x! + x;=O, 

<I>=2L+.2L+ 2L+ 2L+ ~=O 
(1. 17) 

A - el A - e2 A - ea A - e4 A - e5 ' 

where A is the parameter specifying the family. For 
the subset of pentaspherical space of interest to us 
Eqs. (1. 17) may correspond to a number of different 
real nondegenerate coordinate curves in t, x, y space. 
These possibilities are, 

(i) The coordinates Xi are in fact the pentaspherical 
coordinates and are given by (1. 6) [or the substitution 
P--ip, q--iq, r--irappliedto(1.6)]. To give a 
real curve all the e j must then be real. B6cher in­
troduces a diagramatic notation for such a confocal 
family of cyclides as follows. In the complex A plane 
(1. 17) is represented by 

~ 
imaginary tIes le4 les r2 leI. . 

axis real axIS 

(ii) Two of the quantities e i are mutually complex 
conjugate, say e3 , e4 • The corresponding choice of 
variables for Xi is 

Xl = i(r2 - p2 _ q2 + S2), x2 = r _ p2 _ q2 _ S2, 

xa=v'2(r+ip)s, x4=v'2(r-ip)s, x5=2iqs. 
(1. 18) 

Another associated choice is obtained by taking p - - iP, 
q - - iq, r - - ir in these formulas. The notation for 
such a family of cycUdes is [li111] and the correspond­
ing diagrammatic representation is 

(iii) Two pairs of the quantities e i are mutually com­
plex conjugate, say el , e2 and es' e4 • The correspond­
ing choice of variables for X i is 

Xl = .f[ (r - p2 _ q2 + iS2), x2 = vCl (r2 _ p2 _ q2 _ iS2) 
(1. 19) 

xa=v'2(r+ip)s, x4=v'2(r-ip)s, x4=2iqs. 

Another associated choice is obtained by taking p - - iP, 
q - - iq, r - - ir. The notation for such a family of 
cyclides is [fifilJ with the corresponding diagram­
matic representation 

e5 
\ es : e 1 , 
I I 

!e4 
I 
: e2 

The equations for a family of cyclides correspond­
ing to the configuration [( 11) 111] are readily obtained 
from Eqs. (1. 17) by putting el = e2 • The corresponding 
diagrammatic representation of this configuration is 

The equations of the remaining configurations 2-7 are 
obtained as limiting cases of the general configuration 
(1. 17). This leads to equations which are more con­
venient than those found in Eqs, (1.11)-(1.16). The 
method is illustrated here for the [2111] configuration 
and is explained in detail in B6cher's book. As an illu­
stration of the procedure we subject (1. 17) to the 
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transformation Xi -,ra; Xi (a j real) and take 

(1. 20) 

where t is a first order quantity. Then by choosing a
j 

such that 

al +a2 =0, a2
t =1, a3 =a4 =a5=1, 

Eqs. (1. 17) become 

0= 2XIX2 + x~ + x~ + x;= 0, 

(1. 21) 

2 2 2 2 2 (1. 22) 
i(>- Xl + X I X 2 + ~+ ~+ ~-O 

- (i\ - eJz i\ - e
l 

i\ - e
3 

i\ - e
4 

i\ - es - • 

These are then the equations of cyclides of type [2111]. 
The coordinates Xi in (1. 22) have two interpretations: 

(i) The e i are all real. The corresponding diagram­
matic representation is 

Here the two close parallel lines at e l signify the in­
variant factor index 2 in the [2111] configuration. The 
choice of variables Xi in this case is 

xI=-2s2, xz=r2 _p2_ q2, 

x 3 =2ips, x 4 =2iqs, x5=2rs. 

(1. 23) 

The variables Xi are in this case a complex linear com­
bination of the pentaspherical coordinates given in 
(1. 6). An associated set of variables is given by the 
transformation p ~ - iP, q ~ - iq, r- - ir. 

(ii) Two of the quantities e i> say e3 , e 4 , are mutually 
compleA conjugate. This corresponds to the configura­
tion [2111 J and has the diagrammatic representation 

The choice of variables Xi is given by 

x
1
=-2s2 , x2=r2_p2_q2, (1. 24) 

X3= J2(r+ ip)s, x4 =v2(r- ip)s, X5= 2iqs. 

An associated set of variables is given by the trans­
formation p - - iP, q- - iq, r~ - ir. 

As we have mentioned, the expressions for all con­
focal families of cyclides can be derived from the gen­
eral system (1. 17) by methods similar to those illu­
strated here to pass to the configuration [2111]. We 
now list the equations for these families of curves and 
their associated diagrams. In the case of the configura­
tion [2211 we give the coordinates Xi in terms of the 
homogeneous coordinates p, q, rand s. 

r. ,.... r. 
1. [11111], (11111J, and [11111] 

(i) [11111] leI 
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(ii) [filll] le5 le4 le 3 
!e1 
I 

lez 

\es r3 
;e

l 
I 

I 
I 
I 

le4 Je2 

",,.... 
(iii) [11111] 

,..., 
2. [2111) and [2111]: 

(i) [2111] les le4 le3 

1\ e1 

(ii) [2Ul] le5 
;e3 II e1 I 
I 
I 
I 

!e
4 

3. [311J and [3il) 

0= 2XIX 3 + x~ + x~ + x;= 0, (1. 27) 

(i) [311] 

(i) [221] 

The corresponding expressions for the coordinates Xi 

in this case are 

Xl = - 2s 2, x 2 = y2 _ p2 _ q2, 

x 3 =v2(r-p)s, x 4 =V2(r+p)s, x5=2iqs. (1,29) 

The associated set of coordinates being given as usual 
byp--ip, q--iq, r--ir, From Eqs. (1.10)-(1.16) 
it is seen that n is always one of the types found in sys­
tems corresponding to the configurations [11111], 
[2111], or [221 J. The correspondence between the Xi'S 

in this list with p, q, r, and s has now been determined 
in all cases. 
5. r41] 

n = 2x1x4 + 2X2X 3 + x~ = 0, 

Xf 2X1X2 2X1X3 + x~ 2X1X4 + 2X2X3 
i(> = ( )4 + ( )3 + ( )2 + i\ i\ - el i\ - e1 i\ - e1 - e1 

(1. 30) 

(i) [41] 
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(1. 31) 

xi + 2Xl X2 + 2XlXS + x~ + x: 
q,= (A- el )3 (A- el )2 A- el (A- e4)2 

+ 2x4xS = 0: 
A- e4 

(i) [32] 

7. [5] 

(1. 32) 

xi 2Xl X2 x~ + 2xl xS + 2x2xS + 2Xl X4 
(A_el )S+(A_el )4+ (A-el)3 (A- el)2 

+ 2XlXS + 2x~4 + x~ = 0: 
A- el 

(i) [5] 

In the expression for q, in this last case the final term 
is identically zero as it is proportional to O. 

As was mentioned earlier, the coordinate curves for 
the cases in which brackets are inserted inside the 
square brackets can be obtained from this list by the 
appropriate substitution, e. go, [(32)] corresponds to 
curves (1. 31) with el = e4 • 

Any two confocal families of the same type and con­
figuration are equivalent under the action of linear trans­
formations of the XI which preserve the form 0 if their 
parameters e;, A' and ei , A are related by the equations 

_ ae; + i3 _ aA' + i3 
ei-ye;+o' A-yA'+O' a,i3,y,oER, (1. 33) 

with ao - i3y"* 00 This equivalence is with respect to 
transformations which are isomorphic to the orthogonal 
transformations V which in our case are elements of 
0(3,2). 

We now turn our attention to the problem of relating 
the coordinates Xi in Eqs. (1. 25)-(1. 28), (1. 30)-(1. 32) 
to the parameters which specify an orthogonal family 
of such surfaces. These latter quantities are the curvi­
linear coordinates whose coordinate curves are mutual­
ly orthogonal at the common point of intersection. The 
problem of the ranges of variation of the parameters 
and the number of inequivalent types of parametrization 
for the real subset (1. 6) are the subject of Sec. III. 
Here we just give the form of the coordinates Xi cor­
responding to each of the cases 1-7 outlined above when 
the coordinate curves are all of this type. The corre­
sponding curvilinear coordinates are denoted by A 
= J.l, p, v. For a coordinate system generated by cyclides 
of the type [11111] the coordinate curves are given by 
the equations 

fkxr + x~ + xi +x: + x~= 0, 
(1. 34) 
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with A = J-L, P or v. The corresponding expression for 
the coordinates XI is: 

1. [11111] 

axf=cf>(el)//(ej), i=I, ... , 5, 

where 

and 

- l/a= elxi + e2x~ + esxi + e4xi + esx~ 

/(A) = (A - el)(A - e2)(A - es)(A - e4)(A - es), 

cf>(A) = (J-L - A)(V - A)(p - A). 

(1.35) 

The coordinates in Minkowski space can be found from 
these expressions via the relations 

(1. 36) 

if the x i are given as in (1. 6). We will see in Sec. III 
that this need not always be the case, and we may be 
required to permute the expressions on the right-hand 
side of equations (1. 6) so as to correspond to the cor­
rect signatUre as in (1. 5). We now give the expressions 
for the coordinates Xi for the remaining six types of 
families of cyc1ides. These can be deduced by the same 
methods as used to deduce the form of the cyclides 
[2111] from the general case [11111]. We again refer to 
Bacher's book for details. (Bacher has given the for­
mulas required to pass the configurations [2111] and 
[311]. The authors have extended this to include all re­
maining cases. Only the results are presented here.) 

2. [2111] 

2 (J-L - el)(v - el)(p - el ) 
axl = (es - el )(e4 - el)(eS - el )' 

2 0 [(J-L - el)(v - el)(p - el ) ] 
axl x2=- ( )( )( )' oel es - el e4 - el es - el 

2 _ (J-L - es)(v - es)(p - es) 
axS -( )2( )( )' el - es e4 - es es - es 

L (J-L-e4)(v-e4)(p-e4) 
ax4 - )2( ( (el - e4 es - e4) es - e4) , 

ax~ (J.l- es)(v - es)(p - es) 
(el - es)2(es - eS)(e4 - es) , 

where 

- l/a= 2el x l x2 + xi + esx; + e4x: + esx~, 

(J-L - el)(v - el)(p - el ) 
(e4 - el)(eS - el ) 

(J.l - e4)(v - e4)(p - e4) 
(el - e4)3( es - e4) 
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where 

where 

5, [41] 

where 

(J.l- el)(I1- el)(p - el) 
(el - es) 

- l/a== 2el (X~3 + X1X4 ) + 2xl x3 + x~ + esx~, 

6, [32] 

where 

- 1/ a== el (2X1X3 + x~) + 2xl xZ + 2e4x 4x S + xi. 

7, [5] 

axf == (J.l- el)(l1- el)(p - ell, 
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(1. 39) 

(1. 40) 

(1. 41) 

1 aZ (1. 42) 
a(2xl x3 + x~) ==Z-aer[(J.l- el)(v - el)(p - el )], 

2a(xZx3 + X1X4) == - 1, 

where a is given by the last equation in this case. 

These are the basic formulas for the pentaspherical 
coordinates expressed in terms of the curvilinear co­
ordinates J.l, p, and II for all nondegenerate cyclides. 
The expressions for the coordinates in the case of a 
degenerate configuration are directly derivable from 
these formulas, The explicit methods for doing this will 
be discussed in Sec, III, where we evaluate all the pos­
sible inequivalent systems 1-7 and the associated de­
generate forms. Finally in this section we give the for­
mula expressing the line element ds z in terms of the 
curvilinear coordinates J.l, p, II and the pentaspherical 
coordinates Xi' 

ds2== 1 ((J.l_II)(J.l-P)dJ.l2+(II_J.l)(II_P)dIl2 
4as 2 f(J.l) f(lI) 

+ (p - J.l)(p - II) dp2) 
f(p) 

(1,43) 

withf(.\) == rrtl('\- ei ) as in (1. 35). In each case a is the 
quantity in the above list given for each configuration. 
The quantity s is the homogeneous coordinate that was 
introduced in (1. 3) and can be expressed in terms of the 
Xi depending on the configuration in question. This for­
mula is basic to the classification of coordinate systems 
which are inequivalent under the action of the under­
lying transformation group 0(3, 2). 

We summarize what has been done to this point. We 
have given the equations required to pass to a subspace 
of pentaspherical space having definite real Signature 
as in (1. 5), The associated group of transformations 
which preserve this subspace is isomorphic to 0(3, 2) 
the local symmetry group of (*), The corresponding 
second order curves or cyclides in these coordinates 
can then be classified into equivalence classes under 
the action of this group of transformations, Those 
curves of special interest are the families of confocal 
cyclides and the coordinate systems to which they cor­
respond, An important feature here is that all families 
of confocal orthogonal cyclides can be obtained as speci­
fied limits of the most general case corresponding to 
the configuration [11111]. 

II. THE TWO-DIMENSIONAL WAVE EQUATION AND 
R-SEPARABLE COORDINATES GENERATED FROM 
ORTHOGONAL FAMILIES OF CONFOCAL CYCLIDES 

In this section we summarize the results that enable 
(*) to have an R-separable solution. For more details 
we refer to Bocher's book3 and also to Morse and 
Feshbach. 4 The central result with which we will be 
concerned is the form of the equation (*) when written 
in terms of the cyclidic coordinates discussed in the 
previous section. Of central interest is the case of cy­
clidic coordinates corresponding to the configuration 
[11111]. The result is the following, If ~I is a solution of 
att </J == b.2 </J and if we write 
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(2.1) 

where /J., v, pare cyclidic coordinates of the type [11111] 
and 

- l/a= elxf + ezx~ + e3x~ + e4x: + esx~ 

with S as in (1. 3), then lj! satisfies the differential 
equation 

'(hp 2zrp 2zrp 
(p - v)W + (/J. - p)W + (v - /J.)awz (2.2) 

+ (/J. - v)(v - p)(p - /J.)(-i(/J. + v +p) - %Ee~ rp= 0, 

where 

o 0 0 0 
ou = 2-f7(ji.} o/J.' ov = 2J7(17) av ' 

and 

o 0 
ow = IJ(ji) op' 

Here /("11.) is as usual given by 

/("11.) = ("11. - e1)("1I. - ez)("1I. - es)("1I. - e4)("1I. - es)' 

Equation (2.2) admits a separable solution 

9= El (/J.)E2(v)E3(p) (2.3) 

with each of the separated functions satisfying an equa­
tion of the form 

.f7T\\ d I7T0.
dE

I [5 3 3 (~ ~ 2 A BJE ,,/,"11.,-,,/\"11.,-+ -"11. -- Lje l "11. _-"11._- I 
d"1l. d"1l. 16 16 1=1 4 4 

=0, ~,~ 

With this result all the separation equations for the co­
ordinate systems given in the previous section can be 
obtained by taking appropriate limits in the above equa­
tions, Equation (2.4) is an equation of the Lame type 
with six elementary singularities,7 The quantities A 
and B are separation constants. 

III. CLASSIFICATION OF ORTHOGONAL R-SEPARABLE 
COORDINATE SYSTEMS FOR THE WAVE EQUATION 

In this section a systematic treatment is given of the 
orthogonal R-separable coordinates of (*), which can be 
constructed as limiting cases of general cyclidic co­
ordinates with configurations [11111], [f1111], and 
[11111]. For each coordinate system we give the ex­
pression for the corresponding pentaspherical coordi­
nates XI and the Cartesian coordinates t, x, and y. The 
operators whose eigenvalues are the separation con­
stants are also given in each case and expressed in 
terms of the generators of the symmetry group of (*) 
which were derived in 1. We also say what we can about 
the solutions of the separated equations. Our procedure 
is the following. For the completely cyclidic coordinates 
listed in Eqs. (1. 35)-(1. 42) we must choose ranges for 
the curvilinear coordinates in such a way that the dif­
ferential form (1. 43) when expressed as in (0.2) must 
satisfy 

sgnF = sgnG = - sgn/l. (3.1) 

This ensures that the space is three-dimensional 
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Minkowski space. The classification of all such param­
etrizations into equivalence classes under the relation 
(1. 33) then gives the inequivalent coordinate systems 
we need. For the general configuration [11111] the equi­
valence relation (1. 33) allows us to interchange all the 
el in the way specified by these formulas, However, for 
the remaining configurations such as [2111] only the 
three unit indices can change under the relation (1. 33) 
when classifying equivalence classes of this type. In 
addition for each class of coordinate systems we choose 
a standardized representative which has a simple form, 
In most cases this will involve taking one of the indices 
e l to be 00. 

The method of connecting the operators whose eigen­
values are the separation constants with the generators 
of the symmetry group G = 0(3, 2) is achieved by noting 
that the generators 1~ Ij as defined in I are related to the 
generators of the underlying 0(3,2) group which pre­
serves the pentaspherical space identity (1. 1) with the 
choice of coordinates (1. 6). The relations are 

1'13 = L14 , 1 'lZ = L 1S , 1'Z3 = L 34 , 

1'4S = Lsz, l~lS = - iL1Z, 1'14 = - iLlS, (3.2) 

1~S2 = iL23 , l'ss=iL z4 , 1'24 = - iL35' 

where 

with the Xj as in (1. 6). By means of the relations (see 1) 

1'0=1'14 + l'4S, Ko= 1'14 -1'4S, Pl =1'12 + 1'zs, 

Kl = l~lZ - l'2S, P z = 1\3 + 1'3S' K z = 1\3 - 1~35' (3.3) 

the operators whose eigenvalues are the separation con­
stants in a given R-separable coordinate system can be 
expressed as second order symmetric operators in the 
generators of the 0(3, 2) symmetry group of (*). In the 
subsequent classification of R- separable orthogonal 
solutions of (*) we will have occasion to introduce a 
number of modifications of Bacher's diagramatic nota­
tion as well as some of the limiting procedures of in­
terest for the various degenerate configurations being 
considered. 

A further comment is in order here. In order to give 
all the coordinate systems that are potentially of inter­
est, we give in the subsequent listing, with the excep­
tion of systems of the type [11111], all the separable 
systems of (*) which are inequivalent under the under­
lying E(2, 1) group. This gives a more thorough treat­
ment of these coordinate systems already considered 
in an earlier article, 8 In the concluding remarks we 
indicate which of these systems, which are not equi­
valent under E(2, 1), are equivalent under the symmetry 
group 0(3, 2) of (*L 

We now proceed to the classification of the coordinate 
systems of interesL 

A. The configurations [111111. [111111. [11 1111 and their 
degenerate forms 

1. The configurations [11111 J, [n 111] and [11111 J 

Here we give those configurations of the form [11111] 
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which are inequivalent under the procedure outlined in 
the introductory paragraphs of this section. For confi­
gurations of this type we can transform the quantities 
e j via (1. 33) to be 

e1=00, e2=a, e3 =b, e4=1, e5 =0. 

In addition to Bacher's diagrammatic notation for such 
a configuration, as given in Sec. I, we put the sign of 
the expression ax~ at the bottom of the vertical line in 
the diagram of the [11111] configuration. From the for­
mulas (1. 6) the arrangement of these signs indicates 
how the choice of pentaspherical coordinates should be 
made. This involves a permutation of the quantities on 
the right-hand side of (1. 6). In each of the inequivalent 
parametrizations for the configuration [11111] a specific 
choice of the Xi is made to within a permutation of those 
Xi whose squares have the same sign. This is sufficient 
for our purposes as all coordinate systems that are re­
lated by such permutations will be equivalent and re­
lated by a group transformation. The two additional op­
erators.li, 13 whose eigenvalues are A and iJ, respec­
tively, as in (2.4), have the form 

(v +p) 02 (11 +p) 02 

A = (fJ. _ p)(fJ. _ v) ou2 + (v - p)(v - fJ.) W 

(fJ. + v) 02 

+(p-v)(p-fJ.)W' 
(3.4) 

~ vp 02 fJ.p a2 

B- ~+ ~ 
- (fJ. - p)(fJ. - v) au (v - p)(v - fJ.) (1) 

fJ.v a2 

+ -;-(p-_-v"7) '--(p-_-fJ.-c) awz 
when acting on the functions ¢(fJ., v, p) as in (2,1)" The 
part of the solution of (*) that gives the R-separation 
(called hereafter the modulation factor following Morse 
and Feshbach) is from (2.1), ,(2a1/4s. Corresponding to 
the configuration [11111] being considered in this sub­
section we have the following inequivalent possibilities. 

(a) [11111] 

v 
+ + + 

For such a configuration the penta spherical coordinates 
are 

2 (fJ.-a)(v-a)(p-a) 
ax~=-l, aX2=- (a-b)(a-1)a ' 

2 (fJ.-b)(v-b)(p-b) 
aX3 = - (b _ a)(b _ l)b ' 

(3.5) 

2 (fJ. - l)(v - l)(p - 1) 2 fJ.vp 
aX4=- (a-1)(b-1) ,ax5 =-;;b° 

The coordinates in three-dimensional Minkowski space 
are given by the formulas 

t= -X2 l((fJ.-a)(v-a)(p-a») 1/2 

(x1+ix 5) R (0-b)(a-1)0 ' 

X= ix4. =l((fJ._1)(P_1)(1_ V»)1/2, (3.6) 
(x1+ZXs) R (0-1)(b-1) 

iX 3 _1 ((fJ._b)(P_b)(V_b»)1/2 
Y=(x1+ix5)-Ii (a-b)(b-1)b ' 
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where R = i(l + v fJ.Vp! ab). The modulation factor is 

,(2d/4s=(1 +v fJ.Vp!Ob)1/2. 

The operators A, B defining the eigenvalues of the sep­
aration constants (we refer to these as basis operators 
subsequently) are 

A = bM~l- M~2 - OMr2 -~(o + 1)(P2 + K2)2 

+ t(b + 1)(P1j + KO)2 + t(o + b)(P1 + K 1)2, 

4.d = b(P o + KO)2 - a(P2 + K2)2 + ab(P1 + K1)2 (3.7) 

and the separation equations have the form 

.fh[J.J :'A .fh[J.J~~i - (h 'A2 +A'A + b)Ei = 0 (3.8) 

with h(A) = 'A(A-1)('A- b)(A- 0) and A= fJ., v or p for i 
= 1, 2, or 3 respectively just as in (2.3). Equation 
(3.10) is a standard form of an equation with five ele­
mentary singularities (see, for instance, Ince, Ref. 7, 
p. 500). It should be noted here that the form of the pen­
taspherical coordinates (1. 6) when subjected to the 
transformation P - iP, q - - iq, r - - ir gives no new 
information, i. eo, exactly the same coordinate system 
results. 

(b) [11111J 

+ + + 
The pentaspherical coordinates are as in (3.6) with the 
three-dimensional Minkowski space coordinates given 
by 

t = - X4/(X1 + ix5), x = iX2/(X1 + ix5), 

:v = iX3/(X1 + ix5). (3.9) 

The modulation factor ,(2 a 1 /45 is the same as in (a). 
The basis operators are 

A = OM~2 + bMt1- M~2 +t(a + 1)(P2 + K2)2 

+ }(b + 1)(PlJ - KO)2 + t (a + b)(P1 - K 1)2, 

- 413= b(P1 + K1)2 + a(P2 - K2)2 + ab(P 0 + KU)2, 

and the separation equations have the form (3.10). 

(c) [11111] 

v 
+ + + -

1
0 

11 Ib la 1
00 

(ii) ---I-=----F----l.r---j.---+.--
v, p, fJ. 

+ + - + -

(3.10) 

The pentaspherical coordinates are as in (3.6) with the 
three space coordinates given by 

t = - X3/(X1 + ix5), X = iX4/(X1 + ix5), 
(3.11) 

The modulation factor is the same as in (a). The basis 
operators are 

A = aM~l- bMr2 - M~2 - t(a + 1)(P o + KO)2 

+ l(b + 1)(P2 + K2)2 - t(a + b)(P1 + K 1)2, (3.12) 
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and the separation equations have the form (3.10). 

(d) (111111 
;a 
I 

\
00 

! . 
+ 

(ii) 10 Ilia I 00 

--~\~v-p--M~\----~l-b--~~----

+ + 

The pentaspherical coordinates are as in (3.6) with a 
= 0' + if3, b = 0' - i{3, 0', f3 E JR. The three space coordi­
nates are given by 

t = (xz + x 3) _ i(xz - x 3) y = ix~ 
Tz(X1 + ixs) , x -12(x1 + ixs) , (Xl + ixs) 

(3. 13) 

The basis operators are 

2A = O'{1\.J~l- M~z) + (3(M01M1Z + M1ZMQ1) 

+ (0' + l)[(Pz + K2? - (P 0 + KO)2] + a(P1 + K1)2 

- (.13 + 1)[(P2 +K2)(po +Ko) + (Po + K0)(1"2 +K2)], 

(3.14) 

413 = 0'( (P 0 + Ko)2 - (P2 + K2)2] + (0'2 + j3Z)(P1 + K1)2 

+ (3[(P o + K O)(P2 + K2) + (P2 + K2)(PO + Ko)]o 

The modulation factor is 

V2a1 145 = {1 + [MVP/( 0'2 + (32) 11 12F 12, 

and the separation equations have the form (3.10), 

(e) [Ul11] 

j c ja 
: I 

I I v I P I 
I I 

'd 'b 

The penta spherical coordinates are given by 
Z Z (M-a)(v-a)(p-a) 

aX1=-1, aX2=- (a-b)(a-c)(a-d)' 

2 (M-b)(v-b)(p-b) 
ox3 = - (b _ a)(b _ c)(b - d) , 

2 (M - c)(v - c)(p - c) 2 (M - d)(V - d)(p - d) 
ox4 = - (c _ a){c _ b)(c _ d), axs = - (d _ c)(d _ a)(d - b) , 

where a=a+if3, b=a-i{3, c=y+io, d=y-io with 
a, {3, 1', 0 E JR. The three space coordinates are given by 

t= - (x 4 + xs)/[(xz + x 3) + iV2x1], 

x = (x3 - x z)/[i(x2 + x 3) - J2x1 ], 

y = (xs - x4)/[i(xz + x 3) - J2x1], 

and the modulation factor is 

J2a 1 145 = [(- Xz - x3)/J2 _ iX1]1 12. 

The basis operators are 

(3. 16) 

A = 2j3[(P lI - Ko)N101 + M 01 (P O - K) 1 + f3[(P o - K O)(P2 - K 2) 

+ (Pz -Kz)(Po- Ko)] - 4y(M1ZM 01 + M01M12) 

- 2y[M12(PZ - K 2) + (Pz - K2)M12] 
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+ 2(1' - 0' [Hp1 - K1)2 - M~2]' 

B= 2[(0' + W + (j3 + W][Mr2 +Hpo-Ko)Z 
(3. 17) 

+~1 +HP2-K2)2+~Mol(P2-K2) +~(P2-Kz)Mol] 
- 2j30[(Po - Ko)M12 + M1Z(P O - Ko)] 
+ 4aY[(P1 - Kl)2 - 4M~z1 + [1/( 0'+ y)] 

[{2(a + 1')(01'- a(3) + ({3 - 0)(0'2 + Y _ (32 _ 02)} 

X{[(M12 +~(Po - Ko) ](~(K2 - P 2) - MOl] 

+ [~(K2 - P 2) - M01 ][M12 + HP o - Ko) J} 

+{2(a +1')(01'+ a(3) - (j3 + o)(az+ y_ j3z_ OZ)} 

X{[~(Ko - Po) - M12][~(P2 - Kz) + Mal] + [~(P2 - Kz) + Mod 

x [~(Ko - Po) - M12J} + 2a(Y - 1l2)[i(Pl - Kl)Z - M~z] . 

2. The configurations {( 11) 11t}, [11 ( 11) 1 } 

Here we must digress briefly to explain how the pen­
taspherical coordinates for the configuration [(11)111] 
can be obtained from the formulas (1. 35) for the general 
configuration. To find the pentaspherical coordinates 
for the configuration [(11)111] for which say el = ez, we 
proceed as follows, putting 

el == ez + E, A = ez + EA', 

where for definiteness we take A -= p. The resulting ex­
pression for the pentaspherical coordinates is 

2 (M - el)(v - el ) (1 ') 
aXl = (es _ el )(e4 - el )(e5 - e

1
) - p , 

(M - el)(v - e1 ) , 
ox~ p (e3 - e1)(e4 - el)(e5 - el) , 

ox2 (M - e3)(v - e3) 

3 (e1 - eS)(e4 - eS)(e5 - e3) , 
(3.18) 

The coordinate curves corresponding to the new cur­
vilinear coordinate p' are 

xUp' + x2(p' - 1) = o. (3.19) 

This defines a family of real curves for 0< p' < 1 if 
sgn(xUx~) = - 1. Otherwise for a real curve we must 
have sgn(xUx~) = 1. The diagrammatic notation for the 
family of degenerate cyclides specified by the curvilin­
ear coordinates M and v is 

The method of obtaining other degenerate forms cor­
responding to a configuration [(11)111] is to generalize 
the procedure outlined here to the case of two adjacent 
parameters ej, ej +1 becoming equal. The diagram re­
presenting the curve (3.19) is 

pi 10 pi 11 *00 
where p' may be in one of the regions indicated accord­
ing as the relative sign of xf and x~ is ± 1, as we have 
discussed above. The separation equations for the func-
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tion 1/!!11, v, p') are given by (2.4) with e1 = e2 and A = 11, v. 
For p we obtain 

= [ts e~(e2 + 3e3 + 3e4 + 3es) + tAe2 + t Jj ]E3 • 

For all the classes of inequivalent coordinate systems 
of the type [(11)111] the quantities e j will be standardized 
to be 0, 1, a, and 00. This greatly simplifies aU the cal­
culations. For instance, in the example we have pre­
sented here this standardization can be achieved by 
taking 

The resulting standardized form then gives the following 
expressions for the pentaspherical coordinates: 

, 2 ' 2 (Jl-a)(v-a) 
oXr=p-1,ax2=-p,ax3= a(a-l) ' 

2 (Jl-l)(v-1) 
oX4 (1- a) , 

Jlv 
ax~=­

a 

The separ~tion equations are 

A = Jl, v and i = 1, 2 respectively, and 

..; Ip'(p' - 1) l-/Jp.; I p'(p' -1} I ~:; - (t + A)E3 = 0. 

(3.20) 

(3.21) 

Here p(A) = A(A - I)(A - a) 0 Equation (3.21) is a form of 
Lame's equation (see, for instance, Ince, Ref. 7, 
p. 502). The basis operators A, B whose eigenvalues 
are the separation constants A and B respectively are 
in this case 

~ 1 I I I d ~J I I d 
A=-4"-V lp(p -1)ldp'v lp(p -1)ldp ' (3.22) 

~ 1 ( a ° ° 0) B = (v _ Jl) v,fj)(i7f a Jl vpr;;J a;;. - Jl Jj)(V) a v .fjJ(i7) a v . 

acting on ¢. 

We now proceed to the evaluation of the inequivalent 
types of coordinate systems of type [(11)111] and 
[fi(l1)1]o 

(a) [(11)111] 

v 
+ I 

- Jl -+ 

1° 

The pentaspherical coordinates are obtained from (3.19) 
subjected to the transformation 

p'-fJ. ' , v-v, Jl-p. 

The three space Minkowski coordinates are given by 

340 

t = - X S/(ix3 + x 4) == (l/R),f1;{J7a, 

x = ix2 /(ix3 + x 4 ) == (l/R) cos¢, 

y = ix1 /(ix3 + x 4 ) = (l/R) sin¢, 
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(3.23) 

where 

R = rl (Jl- a)(v - a)) 1 /2 + ((Jl- l)(v - 1)) 1/2J 

L\ a(l - a) (a - 1) 

and we have put v' == sin2¢. The modulation factor is 

and the basis operators are 

4.8 = (Po + KO)2 - a(P o - KO)2, 

(c) t [(11)111] 

I (ii) 
p,v 

Jl 

(3.24) 

(3.25) 

, 
-Jl-

The penta spherical coordinates are as in (a). The three 
space coordinates are given by 

t=x3 /(ix4 +xs), x=ix1 /(ix4 +xs), 

y = ix2/(ix4 + xs) 

The modulation factor is 

f2a 1 / 4s= _ + [(
JlV) 1/2 (Jl- 1)(v _ 1)) 1 /2Jl /2 

a (a-I) 

and the basis operators are, 

4.8= - (Po - Ko)2 + 4aD2, ..4.= - t - Mi2. 
(d) [11(11)1] 

[0 
, 

v)( 00 

:a 
P \b , 

Jl 

1

0 
, 11 *00 

Jl 

The penta spherical coordinates are given by 
, 2 I 2 (p - a)(v - a) 

oXi=Jl -1, oXz==-Jl, aX3= a(a-b) , 

2 (p-b)(v-b) 2 pv 
oX4 b(b _ a) , oXs == ab' 

The three space coordinates are given by 

t==..;;2xs/R, x==if2xdR, y=if2xz/R, 

(3.26) 

(3.27) 

(3.28) 

(3,29) 

(3.30) 

where R == i(x3 - x 4 ) - (x3 + x 4 ) 0 The modulation factor is 

f2 a 1l4s = IT {2Re [(i(P ~(~~ b) a) r /J}1 /2 (3.31) 

and the basis operators are 

.8 = Ct(PoKo + KoPo) + 2j3(P~ - K~), 

(3.32) 

Here as usual a = Ct + i/3, b = Ct- i/3, Ct, (3 EO JR. The sep­
aration equations have the form (3020) and (3021) with 
P(A)=A(A-a)(A-b) and a is replaced in (3.21) by abo 

3. The configuration {(11)(11) 1] 

There is only one such coordinate system of interest 
here. The diagrams of this system are 
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00 

+ +p'+ -J.L'-

The pentaspherical coordinates are given by 

oxr = fJ.' - 1, ax~ = - J.L', axi = (1 - v)( 1 - P '), 

oxi=(I- v)p', ax; = v. 

The three space coordinates are given by 

t=ix2/(ix 1 +xs), x=x4 /(ix1 +xs), 

y = x 3 /(ix1 + xs), 

and the modulation factor is 

V2 a 1 /4S = (vr=J? + -.fV)1 /2. 

If we write fJ.' = cos2¢, V = cos2 </!, p' = cos2 8, then 

t = cos¢/(sin¢ + cos</!), 

x = sin</! cos8/(sin¢ + cos</!), 

:\' = sin</! sinB/(sin¢ + cos</!l 0 

(3.33) 

(3034) 

(3.35) 

(3.36) 

The separation equations for this system of coordinates 
are given by 

..fPTiil ~ IPfii)
d
d
E1 

- (AJ.L + 13)E1 = 0, 
dJ.L fJ. 

(3.37) 

where ,;p7ji) = fJ.(fJ. - 1). 

Equation (3.37) is a form of the Legendres equation 
with spherical harmonic solution, 

The basis defining operators are 
~ 2 ~ 2 

4A=(Po-Ko) , H=M12 · (3.39) 

This completes the classification of inequivalent coordi­
nate systems of type [11111] and its degenerate forms. 
These are the only coordinate systems which will prove 
to be strictly R separable in the classification presented 
in this article. 

'" B. THE CONFIGURATIONS [2111]. [21111 and their 

degenerate forms 
1'\ 

1. The con figurations [2111] and [2111] 

Here we give the configurations of the form [2111] 
and [2111], which are inequivalent under the equivalence 
relation discussed in the begining of this section. By 
applying a transformation of the type (10 33) to the indices 
ei for the configuration [2111] it is always possible to 
choose these numbers in the standard form 

(3 0 40) 

with e1 the number associated with the invariant factor 
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index 20 The two operators whose eigenvalues are the 
separation constants are given as in (3.5) with f(>..) 
= >..(>..- 1)(>"- a). 

The separation equations with the choice of e j given 
above are 

.f77VI d .~dE. ( 
vf\>", d>" vf\>"1 d>..'- A>..+B)Ej=O (3 0 41) 

withf(>..) = >..(>.. - 1)(>" - a) and >..= J.L, v, or p for i = 1,2, 
or 3 respectively. This is Lame's equation with four 
elementary singularities. For the configuration [2111] 
the separation equations are as in (3.41) with f(>..) 
=>..(>..- a)(>..- b), where a= a +if3 and b= a- if3, a, f3 E R. 
We now give the inequivalent coordinate systems. 

For the choice of e j given in (3.40) there is no modu­
lation factor in the R- separated solutions. The solutions 
of (*) of the type [2111] are therefore separable. 

(a) [2111] 

a II 00 

The pentaspherical coordinates for this configuration 
are given by 

axf= -1, 2ax1x2= fJ. + v +p +a + 1, 

2 (fJ. - a)(v - a)(p - a) ox-
3- a(a-l) , 

2 (J.L - I)(V - l)(p - 1) 
ax4 = (I-a) , 

2 fJ.vp 
oxs=-a 

The three space variables are given by 

t2=_x~/xf= (fJ. - a)(v - a)(p - a)/a(a- 1), 

x2=xi/xf=(fJ.-l)(v-l)(p-l)/(a-l), 

y2=x~/xf=- J.Lvp/a, 

and the basis operators are 

A=P~_ (a + I)P~- aPf +Mi2- M~l- M~2' 

ib aP~ + aMi2 - M~2' 

(3.42) 

(3.43) 

(3044) 

For the remaining inequivalent systems of type [2111] 
we give the corresponding diagrams and the transforma. 
tion which relates the three space coordinates given in 
(3.43) to each system. The expressions for the opera­
tors A, 13 can be obtained from (3.44) via this substi­
tution. In each case the pentaspherical coordinates are 
given by (3.42). 

(b) [2111] 

p 
+ + 

(a) - (b), f-x, x-iy, y -to 

(c) [2111] 

(i) 
1

0 
11 v,p la v 11

00 

+ + 

(ii) 

1

0 I ~,p, fJ. la 
11

00 

+ + 
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(a)-(c), t-ix, x-y, y-it. 

(d) [2111] 

(0 
1° 11 v,p la 

+ + 
fJ. 

ro 
-

(iii) 

1° \1 la v, p, fJ.11 00 

+ + 

(a)-(d), t-x, x-t, y-iy. 

(e) [2111] 

! 1 p, fJ. I a 

+ 

(a)-(e), t-ix, x-it, y-y. 

In all the above systems the choice of pentaspherical 
coordinates is made in two ways. If the net signature of 
the terms ()"x~ from (1.37) for i == 1, 2, 3,4, 5 is plus, then 
the form of the Xi'S is as in (1. 23). If the net signature 
is minus, then the required form of the Xi is obtained 
from (1. 23) via the transformation 

p--ip, q--iq, r--ir. 

(f) [2111J 

(i) 

(ii) 

+ 

+ 

vip, fJ. 
b 

:a 

b 

r 

The pentaspherical coordinates are given by 

oxf==-1, 2oxl x 2 ==fJ.+ v +p+a+b 

()"x~ 

(JJ. - a)(v- a)(p - a) 
ala - b) 

(JJ. - b)(v- b)(p - b) 2 JJ.Vp 
b(b-a) ,oxs==C;;;' (3.45) 

where a== a + i(3, b == a - i{3, a(3 E R. The three space 
coordinates are given by 

(3.46) 

this follows from the use of formula (1, 24) relating the 
x;'s to p, q, r, arid s. [More exactly the coordinates ob­
tained from (1. 24) via the transformation p - - iP, 
q - - iq, r - - ir.] The basis operators are 

A == a(P~ - P~ - P~) + 2(3PoPl + M~2 - M~l- M~2' 
(3.47) 

jj == - (aZ + i3Z)P~ + a(Mf2 - M~2) - j3(MlzM 02 + M 02M 12)' 

The term a(P~ - pi - P~) is included in the above expres­
sion for A so as to correspond to the correct operator 
derived from equations (3.5). 

(g) [2111J 

la 
p 

b 
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(f)-(g), t-x, x-t, y-iy. 

2. Configurations having a radial coordinate in three 
space derivable kom configurations of the form 
[2111] and [2111] 

Such coordinates can be derived in a straightforward 
manner, which we illustrate in detail for the first sys­
tem of this section. 

(a) (i) 

1 
p 

+ + 

For this diagram write fJ. == el + jj in formulas (1. 37) and 
then take el - 00 0 The resulting penta spherical coordi­
nates have the form 

2 (v-a)(p-a) 
()"x 3 == a(a-1) 

(3.48) 
2 (v - l)(p - 1) 

()"x4 ==- (a-1) , 

and the three space coordinates are given by 

t= X 3 ==r(V- a)(p - a») 1/2 

Xl a(a-l) , 
(3.49) 

x==iX4 ==r(V-1)(P-1») 1/2, 

Xl (a - 1) 
,,==---2=r --ix (_ Vp)l 12 

- Xl a ' 

where r == l/il. The basis operators are given by 

A=-( 4 ) (v P{v) dd fli\V)dd _ fP[j)fdd v P{P)~) 
p - v V v P dp 

=i - D2 (3,50) 

and 

where P(\) == \(\ - 1)(\ - a). The separation equations 
have the form 

\== v, p and i == 1,2, respectively, and A == j(j + 1), 

rdZE3 + 2 5_ '(j + I)E == ° ~ r elr J 3 0 

(3.51) 

(3.52) 

Equation (3.51) is a form of the Lame equation and the 
solutions of (3.52) are yi and r- i - l

• 

(ii) 

1° v 11 la 
+ + 

(i) - (ii), t -it, x-ix, Y -iy. 

(b) (i) 

vi ° 11 p I a 

+ + 

(a) (O-(b) (i), t-x, x-iy, y-f, 

13 == M~l + aM~z. 

p II 00 
JJ. 

+ 

II 00 fJ. 
+ 
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(ii) 

/0 I 1 I a p II 00 v Jl 
+ + 

(b) (i) - (b) (ii), t -it, x-ix, Y -iy. 

(c) {i) :a 

1

0 rJl , 
v p 

b 

Here as usual a = a + i{3, b = a - i{3, a, (3 Em.. The pen­
taspherical coordinates are given by 

(3.53) 

(v-a)(p-a) 
a(a-b) 

2_(v-b)(p-b) 2 vp 
aX4 - b(b _ a) , OXs = ab ' 

and the three space coordinates are given by 

(3.54) 

with r2 = 1/1l. The basis operators are as in (3.50) with 
P(A) = A(A - a)(A - b). In particular 

(3. 55) 

and the separation equations are as in (3.51), (3.52) 
with appropriate changes in P(A) as above. 

(ii) ,a 
: 
!b Jl 

(c) (i) - (c) (ii), t - it, x - ix, Y - iy. 

The three space parametrizations corresponding to 
(a), (b), and (c) in this subsection are recognized as 
the three possible Lame bases for the group 0(2, 1). 
These bases have been discussed by the authors9 and 
Macfadyen and Winternitz. 10 The results presented in 
this subsection give the parametrization of these bases 
inside and outside the cone t2 _ x 2 _ y2 = O. 

3. Degenerate systems of the type [21 (11) ] 

The coordinate systems of this type are chosen in such 
a way that the parameters ei are e1 = 00, with the re­
maining free parameters 1 and 0 

(a) [21(11)J 

v I 
0 )<1 JI 00 

+p' + -

1° 11 *00 I 

P 

The penta spherical coordinates are given by 

axf = - 1, 2axlx2 = - Jl- L1 + 1, 

OXi=- (J.1.-1)(V-1)(l-p'), 

ax: = - (Jl- 1)(v - l)p', ox~ = J.1.V. 

The three space coordinates are given by 

t= ixS/xl' x=x3/xl' .y=x4/xl • 
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(3.56) 

(3.57) 

With Jl = cosh2A, v = - sinh2B, pi = sin2cp, the three space 
coordinates assume the form 

t = coshA sinhB, x = sinhA cosh1:i coscp, 
(3.58) 

y = sinhA coshB sincp . 

The separation equations have the form 

1 d dEl (m2 ) 
coshA dA coshA dA + COSh2A + K El = 0, (3.59) 

_1_~ dE2 +( _m
2 

+KJ E =0 
sinhB dB dB sinh2B 2, 

(3.60) 

and 

(3.61) 

where (*) has the solution £1 (A)E2(B)E3(cp). The basis 
operators A and B whose eigenvalues are - m 2 

- K and 
- m 2 respectively are 

A = M~l + M~2 + Pf + p~ 

=P~ - t(PoKo + KoPo + 1), (3.62) 

B=Mr2' 
The separation equations (3.59), and (3.60) can be 
identified with Legendre's equation. The linearly in­
dependent solutions of (3.60) are Pj(coshB), Qj(coshB), 
where K=-j(j + 1). The solutions of (3.59) can be ob­
tained from those of (3.60) by putting B -A + in 12. 

(b) [21(11) J 
(iii) 

1

0 (ii) ><1 (i) 

/1 

00 
P,Jl p,Jl P,Jl 

+ I -v _ 

1

0 11 *00 I v 

There are three cases to consider here as indicated 
in the above diagram. We put 

(i) Jl = cosh2A, p = cosh2B, 

(ii) Jl = cos2a, p = cos2{3, 

(iii) Jl = - sinh2A, p = - sinh2{3, 

with v' = cos2 cp in all cases. The resulting three space 
variables are in these cases: 

(0 t = coshA coshB, x = sinhA sinhB coscp, 

y = sinhA sinhB sincp, 

(ii) t = cosa cos{3, x = sina sinS coscp, 

::v = sina sin{3 sincp, 

(iii) t = sinhA sinhB, x = coshA coshB coscp, 

::v = coshA coshB sin</.>. 

The basis defining operators are 

~ 2",222 
A =MOI + M02 - PI - P 2 

= - P~ - t(PoKo + KoPo + 1), 

B=Mi2' 
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(c) [21(11)] 

(i) 

by putting J.1. = cosh2A, v = cos2
0!, p' = - sinh2B, this 

system gives the three space coordinates 

t = sinO! sinhA sinhB, x = cosO! coshA, 

Y = sinO! sinhA coshE. 
(3.65) 

(ii) 
p J.1. r 

With J.1. = cosh2A, p = cos2
0!, and v' = - sinh2B the three 

space coordinates are 

t = sinO! coshA sinhB, 

y = sinO! coshA coshB. 

x = coso! sinhA, 
(3.66) 

The basis defining operators for these coordinate 
systems are 

A=M~l- Mt2+~-P~, B=~2' (3.67) 

(d) [21(11)] 

With J.1. = cosh2A, v = _ sinh2B and p' = - sinh2C the three 
space coordinates become 

t = sinhA coshB coshC, x = coshA sinhB, 

y = sinhA coshB sinhC. 

The basis defining operators of this system are 

A=M~l- Mt2 +P~-P~, S-M2 - 02' 

(e) [21(11)] 
(iii) 

1° 
(ii) )(1 (i) 

p,J.1. p,J.1. p,J.1. v 

v , 1° /1 *00 
There are three possible cases to consider here: 

(i) J.1. = cosh2A, 

(ii) J.1. = cos20!, 

p= cosh2B, 

p= cos213, 

(3.68) 

(3.69) 

11
00 

where in all cases v' = - sinh2C. The resulting coordi­
nate systems in three space are 

(i) t = sinhA sinhB coshC, x = coshA coshl1, 
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y = sinhA sinhB sinhC, 

(ii) t = cosO! cosl3 coshC, x = sinO! sin!3, 

y = cosO! cos/3 sinhC, 
(3.70) 

(iii) t = coshA coshE coshC, x = sinhA sinhB, 

y = coshA coshB sinhC 

and the basis operators are 

A=M~1-Mf2-P~+P~, B=M~2' (3.71) 

4. Coordinate systems containing a radial coordinate in 
three space and derivable from the configuration 
[21 (11)] 

These systems are derivable in exactly the same 
manner as those of subsection 2. 

(a) (i) 

+ + 

The pentaspherical coordinates are given by 

axt="il, 2ax1X2=-1, axi=(l- v ), 

ax~= v{1- p'), ax~= vp', 
(3.72) 

With v = - sinh2A and p' = sin20!, Ii = 1/-r these formulas 
give the three space coordinates 

t = X3/X1 = r coshA, x = ix./x1 = r sinhA cosO!, 

y = - iXS/X1 = r sinhA sinO!. 
(3.73) 

These are just the familiar polar coordinates inside the 
cone t2 _ x2 _ y2 = 0. The basis operators are 

A=t - D2, B=Mt2' 
The separation equations are 

d2E1+.!. dE1_j(j+1) E =0 
~ r dr ---:yr- 1 , 

(3.74) 

where E1 (r)E2(A)E3(¢) is a solution of (*). The second 
of these equations is just a form of the Legendre equa­
tion with solutions Pj(coshA), Q;"(coshA). The other two 
equations have the elementary solutions E1 = yi, r-J-1, 
and E3 = exp(± im¢) 

(ii) 

I 
-p -

1° p' 

The three space coordinates for this second configura­
tion are obtained from (3.73) via the transformation 
coshA=sinhA. 
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(b) (i) V)(O 11 II: 
J.l 

I 
p 

p I 1

0 11 *~ 
(ii) )(0 11 II: v , J.l 

P 

P 
I 1

0 11 *~ 
The system given by diagram (i) yields the three space 
coordinates 

t = rsinhA coshB, x = r sinhA sinhB, Y = r coshA, 

(3.76) 
where 

v=-sinh2A, p'=sinh2B, and M=l/r2. 
The defining operators are 

A~ _1. DZ B~ -Mz 
- 4 - , - 01' (3.77) 

The coordinates (3.76) are the familiar hyperbolic co­
ordinates inside the cone tZ _ XZ - y2 = O. For diagram 
(ii) the only change is in the three space variables sub­
j ected to the transformation sinhA = coshA. 

5. Coordinate systems corresponding to the configuration 
[(21) 11] 

To obtain the expression for the pentaspherical co­
ordinates corresponding to [(21)11] requires the 
substitution 

(3.78) 

into (1. 37). Here E: is a first order quantity and for de­
finiteness we may take A== J.l. The resulting expression 
for the penta spherical coordinates is 

2 (p - e1)(v - e1 ) 

OX1 = - (e4 - e1)(eS - e1) , 

a [(p - et)(v - e1) J (p - e1)(v - e1) I 

2ax1x Z=-- ) ) -( )( )J.l, ae1 (e4 - es (es - e1 e4 - e1 es - e1 
(3.79) 

2 (p - e1)(v - e1) I 2 (p - e4)(v - e4) 
OX3 = (e4 _ e1)(e

S 
_ e1) J.l, ox4= (e1- e4)Z(eS - e4) 

2 (p - es)(v - es) 
oxs=( )2( ). e1 - es e4 - es 

The resulting coordinate curve for the coordinate J.l' is 

The inequivalent classes of coordinates of this type are 
now given. In each case the e j can be standardized as 
usual to be 

(3.81) 

From formulas (3.79) the penta spherical coordinates 
for the coordinate system are given by 

oxi=l, 2ox1xZ =1- v -p- M', 

ox~=J-L', ax~=(1-p)(v-1), ax~=vp. 
(3.82) 

With v = - sinh2A and p = sin2 a this gives the three space 
coordinates 

t = iX/Xl =K, X =xjXl = coshA cosa, 

y =X/Xl = sinhA sina. 
(3.83) 

Here K = 1Ii"'. The separation equations have the form 

d 2E 
dA Z'.1 + (- 7

2 sinh2A + V)E1 = 0, (3.84) 

d;!~ + (_ ~ sin2a _ V)E2 = 0, (3. 85) 

(3.86) 

and the basis operators A, B whose eigenvalues are the 
separation constants V, - ~ respectively are 

~ . 2 .-.2 A 2 
A = M12 - 1""2, B = Po. (3. 87) 

Equations (3.84) and (3.85) are easily seen to be forms 
of Mathieu's equation. Here as usual 1/J 

=E1 (A)E2(a)E3(K) is a solution of (*), 

(b) [(21)11] 
(iii) 

I ° 
(ii) 11 (i) ~' 

v,p v,p v,P Il' 

1° Il' *00 
There are three cases to consider here. If we choose 

(i) p=cosh2A, voocosh2B, 

(ii) poocos2 a, voocos2f3, 

x; +xVJ.l' = O. (3.80) (iii) p = sinh2A, v == - sinh2B, 

The diagram corresponding to such a curve is 

while the diagram representing the coordinate curves 
of the curvilinear coordinates p and v is 
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with Il' = K2 in all cases, then the resulting three space 
coordinates are 

(i) t=sinhAsinhB, x=K, y=cosMcoshB, 

(ii) t = sina sin(3, x=K, y = cos a cos(3, (3.88) 

(iii) t = cosM coshB, x =K, y = sinhA sinhB. 

The basis operators in this case are 

AooM62- P6, B=J>i. (3.89) 
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(c) [(21)11] 

*' 
00 

Jl' 

If we put p =cosh2A, v=- sinh2B, 
three space coordinates are 

and Jl' = K2, then the 

t = sinM coshB, x = K, Y = cosM sinhB 

with basis operators 

A = AI~2 + Pa, B = pi. 
6. Coordinate systems corresponding to the 
configuration [(21)(11)] and [(21) 11] 

(a) [(21)(11)1 

v~\ 
00 

p' 

The pentaspherical coordinates are given by 

axi = - 1, 2axjx2 = Jl' - v, 

Set 

v=-r2
, p'=sin2¢, and Jl'=-K2

• 

(3.90) 

(3.91) 

(3.92) 

The corresponding three space coordinates are given 
by 

t =x:! Xj =K, x =ixjxj =rcos¢, 

y =iX/Xj =rsin¢. 
The separation equations are 

1!L(r
dE.J.)_(m2 +52)E =0 

rdr dr ? j, 

d2E . 2 _ d 2E 2 _ 
d¢t+m E 2 -O, dK~+5 E3- 0. 

(3. 93) 

(3.94) 

(3.95) 

The corresponding basis defining operators A, B with 
eigenvalues - m 2

, - S2 respectively are 
A 2 A 2 

A = M 12 , B =Po. (3.96) 

Equation (3.94) is a form of Bessel's equation. 

(b) [(21)(11)] 

-V)(!- ;ir 00 
p' Jl' 

p' \0 \1 *00 , 
(ii)[ 0 (i) * 00. 

Jl' Jl' 
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For the case (i) with Jl'=K2
, p'=-sinh2A, and v=-r2 , 

the three space coordinates are 

t=rsinM, x=K, y=rcosM. (3.97) 

For (ii) the three space coordinates are as in (3.97) with 
cosM "=;0 sinM. The basis operators for this system are 

A = }\II62 , 

(c) [(21)111 

A 2 
B=Pj (3.98) 

ia 4(00 
I 

:b V,p 

1

0 

11' *00 
This is the only coordinate system of this type. The 
pentaspherical coordinates are given by 

axi = - 1, 

ax~ = 11', 
(3.99) 

2 (v-a)(p-a) 2 (v-b)(P-b) 
aX4 (b _ a) , ax5 (a - b) 

This corresponds to a choice of three space coordinates: 

(x+it)=v2ixjxj, y=ix.jxj=K, (3.100) 

where K = I!l'. The separation equations have the form 
(3.51) with P(>..) = (>..- a)(>..- b) and 

d2E 
dK23+BE3=0. (3.101) 

A 

The basis operators A, Bare 

..1=- AI~j + O!(Pi - Pa) - (3PoPj, B = P~. (3.102) 

7. Coordinate systems on the cone t 2 - x 2 - y2=O that can be 
obtained from the configuration [2111 J and its 
degenerate forms 

The method for obtaining coordinate systems on the 
cone is similar to that for obtaining the coordinate sys­
tems with a radial coordinate in three space. The meth­
od is illustrated for the first coordinate system of this 
subsection. 

(a) 

+ + + 

The pentaspherical coordinates for such a diagram are 
obtained from (1. 37) by putting Jl =e j + Il, p =ej +p and 
making the substitutions xi - eixi (i = 3, 4,5) and X2 
- eix2, Xj - Xj. Then the pentaspherical coordinates 
assume the form 

axf=/ip, 2OX1X 2 =0, ax~=(v-a)la(a-1), 
(3.103) 

oxi=(l-v)/(a-l), ax~=vla. 

The corresponding choice of three space variables is 

t=d(v-l)/(a-l), x=r,fVj(i, 

y=d(v-a)/a(a-1), 

where y2 = liMP. The separation equations here are 
given by (3.41) for the variable v and 
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r t!j!; + r dE2 - j(j + 1)E2 = O. 
d, dr 

(3.105) 

The basis defining operators..4, B corresponding to the 
separation constants j(j + 1) and Bare 

A~ 1 2 B~ -M2 M2 = .. - D , - 02 - a 12 • (3.106) 

\ 0 11 I a 1\ : _ . 
v IJ., P 

(b) 

+ + + 
The properties of this system are obtained from those 
of (a) via 

(a) - (b), t-ix, x-y, y -it. 

(c) la 
\0 11_00_ ! 

I 

:b v lJ.,p 

The pentaspherical coordinates are 

axf=~p, 2ax1X 2 =0, ax~=(v-a)/a(a-b), 
(3.107) 

ax~=(V-b)/b(b-a), ax~=v/ab. 

The corresponding three space coordinates are 

(x+it)=iv'2x4/xt. y=ix5/X1 • (3.108) 

The separation equations are given by (3.41) with P(A) 
= A(A - aHA - b) and (3.105), where as usual r = 1/ iii>. 
The basis defining operators..4, Bare 

A=t - D2, B= O'(Mf2- M~2) - !3(M02M12 + M12M 02)' 

(3.109) 

(d) 

v' 

The pentaspherical coordinates are 

axf = iip, 2ax1x 2 = 0, ax~ = - 1, 

ax~= (1- v') ax~= v', (3.110) 

The three space coordinates on the cone are 

t=r, x=rcos¢, y=rsin¢, 

where 1/ {lp = r, v' = cos2¢. The separation equations 
are (3.105) and the third equation of (3.75). The basic 
defining operators are clearly 

A~ -.! D2 B~ -M2 
- 4 - , - 12' 

(e) II _00_ ' 

The three space coordinates are 

t=rcosM, x=rsinM, y =±r 

with the basis defining operators 
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(3.111) 

C. The configurations [311], [3;;], and their 
degenerate forms 

(3.112) 

Here we give the configurations of the form [311] and 
[3fi] which are inequivalent with respect to the by now 
familiar equivalence relation. It is possible to standard­
ize the parameters ej such that 

(3.113) 

where, of course, e1 is the parameter associated with 
the invariant factor index 3. The two operators whose 
eigenvalues are the separation constants are given as 
in (3.5) withf(A)=A(A-1). The separation equations 
with the above choice of the e j are 

(3.114) 

with f(A) as above and El (IJ.)E2(v)E3(p) as the separable 
solution of (*). For the configuration [311] the separa­
tion equations are as in (3.114) withf(A) = (A- a)(A- b), 
where as usual a = b* = 0' + if3, 0', f3 E R. We now list the 
inequivalent systems of this type. 

(a) [311] 

p,v, IJ. 
III 00 

+ + 

(ii) 
v, plO 11 JII 00 

+ + 

(iii) 

1° 11 III 
00 

v plJ. 
+ + 

The penta spherical coordinates are given by 

axf = - 1, 2ax1x2 = IJ. + v + p, 

a(2X1x3 + x~) = v + IJ. + P - (IJ.V + IJ.p + vp) - 1, 

ax~ = - (IJ. - l)(V - l)(p - 1), ax~ = IJ.vp. 

The three space coordinates are given by 

(3.115) 

2t=2x2/X1=-IJ.-V-P, (3.116) 

x=ix4/x1 =..J{1J.-1){v-1){1-p), y=X5/X1=..J IJ.vp. 

The basis operators are 

A=PoM20+M2oPO-PlMo2-Mo~1 +p~+pf, 

B=- Mf2 +P~ +P2M 02 +MO~2' 

(b) [311] 

(i) 

+ 

(ii) 

+ 
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The properties of this system can be deduced from 
those of (a) via the transformation 

(a)-(b), t-y, x-ix, y-t. 

(c) [311] 

+ 

(a)-(b), t-it, x-ix, y-iyo 

(d) [3n] 

p, v, Il 
b 

The penta spherical coordinates are given by 

oxf==-l, 2OX1X 2 == Il + v+p, 

a(2x1x3 + x~) == IlP + VP + v Il- (a + b){ll + v + p) 

+ a2 + ab + b2, 

~ == (Il - a)(p - a)(v - a)/(b - a), 

ax~ == (Il- b)(p - b)(v - b)/(a - b), 

(3.118) 

where a == O! + is, b =:: O! - is, O!, S E R. The three space 
coordinates are given by 

(x +it) ==if'2x4/X1, y =:: - X 2/X1 

with the basis operators given by 

A ==M12P 1 +P1M12 + MozPo + PoM02 + 20!P~ 

+ O! (Pt - pn - 2SP oF 1, 

(3.119) 

(3.120) 

iJ = 0!(M12P 1 + P 1M12 + M02P O + P OM 02 ) + S(M 02P1 + P 1M 02 

- M12P O - PoM12) + (0!2 + S2)P~ - M~1 

+ (O!Z - SZ)(P~ - P~) - 4aSP oPl' 

1. Degenerate systems of type [3{ 11) } 

The coordinate systems of this type are chosen such 
that the free parameters e1 and es are 00 and 0 
respectively. 

(a) [3(11)] 

)( 
P,1l 

III 00 , 

v' 

v' 

The pentaspherical coordinates are given by 

ox~=-l, 2ox1xZ=-/.l-p-l, 

a(2xt xs + x~) = - IlP, ox: = IlP(1- v'), 

ox~= IlPV'. 

(3.121) 

The three space coordinates are given by the formulas 

t=±xjxl' x=ix4/X1, Y =ixS/x lo (3.122) 

Translating t by ± t and putting Il = ~z, P = T)z, and v' 
= sin2 0!. We obtain the more familiar form, 
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(3.123) 

The separation equations for this system assume the 
form 

d?-E; +..!.dEi + (z mZ) _ 
~ AdA q -V E;-O, (30 124) 

where A= ~, T) and i = 1,2 respectively, and 

d?- E3 2 
del' +m E3=00 

Equation (3.124) is Bessel's equations with linearly in­
dependent solutions Jm(qA), Y m(qA). The solutions of the 
tpir~ equation are E3 = exp(± im O!) 0 The basis operators 
A, B whose eigenvalues are q2 and - m2, respectively, 
are 

A = M01P1 +P1M01 +MOzP2+PZMOZ=P,:p+DPo, 

B=M;z. (3.125) 

(b) [3(11)] 

v' p, /l 

The three space coordinates in this case are 

y = (X2/X1 -t) = ±t(~2 + T)2), t =ix4 /X1 = ~T) coshA, 

(3.126) 

where /l = ~z, P = T)2, and v' = - sinh2Ao The resulting 
basis operators are 

.A = MozP 0 + P OM 02 + MlzPl + P1M1Z, 
(3.127) 

(c) 

v' 

This system corresponds to the choice of three space 
coordinates 

t = iXS/xl = ~T) sinhA, x = (XZ/x1 - t) =t(~2 - ~) 

(3.128) 

Il = ~z, P == - ~, and v' = - sinhA. The basis operators 
are 

2. Degenerate systems of type ((31) 1 } 

The formulas for the pentaspherical coordinates cor­
responding to the degenerate configuration [(31)1] are 
obtained from these of (1. 38) via the substitution 

(3.130) 

where for definiteness we can take A = v. The resulting 
expression for the pentaspherical coordinates is 
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rrI 2) 1 i32 ((JJ. - e1 )(p - e1») + (JJ. - e1 )(p - e1 ) II' 
v,2x1x S +X2 =2~ (eS-e1

) (eS-e
1

) ' 

2 (JJ. - e1)(p - e1) I ax2 (JJ. - eS)(p - eS) 
ax4 = - ( ) II, S ( )3 es - e1 e1 - es 

The coordinate curve for thecoordinate II' is 

xf + X:/II' = 0, (3.132) 

and the diagram corresponding to such a curve is 

II' II' 

while the diagram representing the coordinate curves 
of the curvilinear coordinates JJ., p is 

II' 

The inequivalent classes of this type are now given. In 
each case el and es can be taken to be 00 and 0, 
respectively. 

(a) [(31)1] 

1° ;iroo 

II,P , 
JJ. 

(ii) 

, 1° 
(i) 

*00 , 
IJ. JJ. 

The pentaspherical coordinates are given by 

axf=-l, 2ax1X2=-II-p-1, 

a(2X1X3 + x~) = - IJ.' - lip, ax: = IJ.', ax~ = lip. 

The corresponding three space coordinates are 

(i) t=iXS/Xl = ~1/, x=ix4 /X1 =k, 

y = (X2/X1 -t) =±t(~2 + ~), 

(ii) t = ±t(X2/Xl - t) = ±t(~2 + ~), 

X=X4 /x1 =k, y=iXS/Xl=~1/, 

(3.133) 

(3. 134) 

where p = ~2, II = ~, and k = ( IIJ. ' I )1 /2. The separation 

equations are 

~+ (Q_ 72;\.2)Ej =0 
d;\. 

for ;\. == ~, 1/ and i = 1, 2 respectively, and 

a2~~ 2 _ dk +7 E3 -O. 

(3. 135a) 

(3. 135b) 

Equation (3. 135a) is well known to have solutions ex­
pressed as I?arabolic cylinder functions. The basis op­
erators A, B whose eigenvalues are the separation con­
stants Q and - 7

2, respectively, are 

(3.136) 
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(b) 

p 
I 

IJ. 

In this case the three space coordinates are given by 

t=ix4/x1 =k, X=(X2/Xl-t)=H~2_~), 

y=iXS/Xl=~1/ (3.137) 

with II = ~2, P = _ 1/2, and k = (IJ. ')1/2. The basis operators 
are 

(3.138) 

D. The configuration [2211 and its degenerate forms 
1. Systems of the type [221] 

The inequivalent coordinate systems of type [221] are 
given in the following list. In each case the three free 
parameters e1, e3, and es are standardized to be 00, 1, 
and 0, respectively. 

(a) [221] 

(i) 1 

lip 

+ + 

(ii) ° 1 00 
IIplJ. 

+ + 

The pentaspherical coordinates are given by 

(3.139) 
ax~=(1J.-1)(1I-1)(p-1), 

A suitable choice of three space coordinates is 

(t + X)2 = - xVxf = (IJ. - 1)(11 - l)(p - 1), 

(3.140) 

The separation equations have the form (3.51) with 
p(;\.) == ;\.(;\. - 1)2, i. e., the associated Legendre equation. 
The defining operators are 

(3.141) 
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(b) [221] 

(i) 

v,pl ° 111 II 

<Xl 

IJ. 
+ 

(ii) 
1° II 

1 

p, IJ.II 

<Xl 

v 
+ 

(iii) 

1° 111 II 

<Xl 

1l,P,1l 

+ 

This system is related to (a) via the transformation 

(a) - (b), t -ix, x -it, y -Yo 

(c) [221] 

1° p,)! 1 II 
<Xl 

v 

(a) - (c), t -it, x-ix, y -iyo 

(d) [221] 

1° 111 II 
00 

II P IJ. 
+ 

(a)-(d), t-x, x-t, y -iyo 

2. Coordinate systems corresponding to the 
configuration [2(21)] 

Here the two free parameters e1 and e3 may be taken 
as ° and <Xl (not necessarily respectively, as will be 
seen). 

(a) [2(21)] 

lI,p~r II 

° 

The penta spherical coordinates are given by 

(3.142) 
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A suitable choice of three space coordinates is 

(t - X)2 =: x~/x~ = lip, 

(t2 _ x2) = 2x3x4/xr = lJ.'lIP _ II - p, (30143) 

The separation equations for this system are of the 
form (3051) with P(A) = A3 for the variables II and p. 
This equation can be related to Bessel's equation. The 
separation equation in the variable IJ.' is 

,,'1 /2~ (,,'1/2 dE3)+ BE = ° 
,... dlJ.' \; W 3 0 

(3.144) 

The basis operators A, Bare 

A =M~l- (Po +P1)2, B== (M12 - M20)20 (3.145) 

For (ii) the results follow from (i) via the transformation 

(i)-(ii), t-x, x-t, y-iy. 

This does not change the operators A and B but gives 
new expressions for the three space coordinates. 

(b) [2(21)] 

lI dr II <Xl 

p 

IJ. 

(ii), I ° (i) * <Xl 

I 
IJ. IJ. 

(b) (i) and (b) .(ii) are obtained from (a) (i) and (a) (ii), 
respectively, via the transformation 

t - it, x - ix, Y - iy 0 

(c) [2(21)] 

11° 1k <Xl 

v,p 
I 

11 

(ii) 

1° 
(i) 

* 
00 

, , 
11 IJ. 

The pentaspherical coordinates in this case are given 
by 

ox~ == lip, 2ax1x2 == II + p, ox~ == - 1, 

2ax3x4 == 11' -lI- p, ax~= Jl'. 
(3.146) 

For (i) a suitable choice of three space coordinates is 

(t _ X)2 = _ xUx~ = lip, (3.147) 

(X2 _ t2 ) = _ 2X1X2/X~ = II + p, y = ± iX5/X3 == ± (Jl')l /2. 

The separation equations for this system are of the 
form (3.51) with P(A) = A2

, A== v, p. This is a form of 
Bessel's equationo For the variable IJ.' the equation has 
the form (30144) and the basis defining operators ii, B 
are 

(3.148) 
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The corresponding properties for (ii) are obtained from 
those of (i) via the transformation 

t-x, x-t, y-iyo 

(d) [2(21)] 

" ° ~k 
00 

p v , 
J.J. 

(ii) I ° (i) 

*00 , , 
J.J. J.J. 

(d) (i) and (d) (ii) are obtained from (c) (i) and (c) (ii), 
respectively, via the transformation 

t-it, x-ix, y -iy. 

3. Coordinate systems having a radial coordinate in 
three space and derivable from the configurations 
[221J and [2(21)] 

(a) (i) 

1° 111 II 00 , 
v p 

+ +iI 

(ii) JO 111 II: p J.J. 

+ + 

The penta spherical coordinates are given by 

axr=il, 2ax1xZ =1, ax~=(v-1)(p-1), 

2ax3x4 = - 1 - vp, ax~ = vP. 
(3.149) 

For the case (i) a suitable choice of three space coordi-
nates is given by the equations 

(t + X)2 = xVxf = r(v - 1)(1- p), 
(3.150) 

y2 =xUxf = r 2vp, x 2 + yZ _ t Z = 2xzlx1 = r, 
where r = 1/il. The separation equations have the form 
(3.51) withp(,\)=(,\_1)2,\ and '\=P,v and the first of 
equations (3.75) for the radial coordinate. The equations 
in p and v are associated Legendre function equations. 
The basis defining operators A, Bare 

(3.151) 

System (ii) is related to (i) via the transformation 

t -it, x -ix, y -iy. 

(b) (i) 

1° 111 II 
00 

v,P iI 
+ + + 

(ii) 

I ° 111 II: v P J.J. 

+ 

The coordinate systems (b) (i) and (b) (ii) are related 
to (a) (i) and (a) (ii), respectively, via the transformation 

t-ix, x-it, y-y. 
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(c) (i) 

p 
II: ' 

v' *00 
II 00 , 

J.J. 

(ii) 

v' 
*00 . 

The pentaspherical coordinates are given by 

axf = ii, 2ax1xZ = 1, ax~ = p, 

2ax3x4 =-v'p-l, ax~=v'p. 
(3.152) 

A suitable choice of three space coordinates for system 
(i) is 

x-t=x3/x1=re", xZ-tZ=-2X3X 4/xf, 

= r(1 + s2e2
"), y = x5/xl = rse", 

(3.153) 

where s=O, Vp=e", and 1/il=rz. This system cor­
responds to horospherical coordinates on the unit hyper­
boloid. The separation equations are 

(]2E dE l+_l_(e-Z"B+A)E =0 
da2 da 1 , 

(3.154) 

dZE3 +BE = ° 
~ 3 , 

the equation for Ez(r) being identical with (3. 105). The 
basis operators A, Bare 

A=±_D2, B=(Mo1 -M12)z. (3.155) 

System (ii) is related to (i) via the transformation 

t - it, x - ix, y - iy. 

4. Coordinate systems on the cone t 2 - x2 - y2 = 0 
obtainable from [221] and its degenerate forms 

The method of obtaining such coordinates follows along 
the lines outlined previously. Consider the diagram 

v II il~ p 

The pentaspherical coordinates are given by 

axf = ij,p, 2ax1x 2 = 0, ax; = v-I, 

2ax3x4 = - v, ax~ = v (3.156) 
A suitable choice of three space coordinates is 

(t + X)2 = - x~/xr = y2(I- v), 

x2 + y2 _ fZ = 2xzlx1 = 0, (3.157) 

whe re 1/ [iff = y2. The separation equations are given by 
(3. 51) with P(,\) = (,\ - 1 )2,\ for the coordinate ,\ = v and 
for the radial coordinate the equation is (3.105). The 
basis operators are 
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(3.158) 

(b) 

This system is related to (a) via the transformation 

(a)-(b), t-ix, x-it, y-y. 

(c) 

v 

v' 

The penta spherical coordinates are given by 

axf = MP, 2axl x 2 = 0, ax~ = - 1, 

2ax3x4=-v', ax~=V' (3.159) 

A suitable choice of three space coordinates is 

t - x = iX3/Xl = r, t2 
_ x 2 = - 2X3X4/X~ = rv ' , 

y = X5/Xl = r(v/)l /2. 
(3,160) 

The separation equations have the form (3.51) with 
P(A) = A3. The equation in the radial coordinate is 
(3.105), and the basis defining operators A, Bare 

A 1 2 A 2 
A = 4 - D, B = (M 01 - M 12) . 

E. The configuration [41] and the degenerate form 
[(41)] 

1. The configuration [41] 

(3.161) 

The inequivalent coordinate systems of type [41] are 
given in the following list. In each case the two free 
parameters el and e5 can be chosen to be 00 and 0, 
respectively. 

(a) [41] 

(i) 

1111 

00 

v P,1l 

(ii) 

1111 

00 

The corresponding penta spherical coordinates are 

a~=-l, 2axl X2=-(Il+ v +p+2), 

a(2X1X3 + x~) = - (vp + Ilv + IlP + P + 11 + v + 1), (3.162) 

2a(xl x4 + X2X3) = Il vp, ax~ = - Ilvp, 

A suitable choice of three space coordinates is 

2(t + x) = 4x3/Xl = Ilv + IlP + VP _ i(1l2 + v2 + p2), 

2(x - t) = 2(X2/Xl - 1) = 11 + v + p, (3.163) 

y2=_XV~=- Ilvp. 

Here the second equation has been .subjected to a transla­
tion. This is merely a convenience. The separation 
equations for this coordinate system have the form 
(3.51) with ptA) = A. The solutions are expressible in 
terms of Bessel functions. The corresponding basis 
operators are 
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A 

A = (Po + Pl)M10 + M10(Pl + Po) - 2P2(M12 - M20 ) 

- 2(M12 - M20 )P2 - (Pl - PO)2, (3.164) 

13 = (M12 - M20)2 - P 2(M12 + M 20) - (M12 + M 20)P2. 

(b) 
(i) 

1° 1111 

00 

v,p, 11 

(ii) 

v, P I ° 1111 

00 

11 

This system is related to (a) via the transformation 

(a)-(b), t-x, x-t, y-iy. 

2. The degenerate case with configuration [(41)J 

The penta spherical coordinates corresponding to such 
a system are obtained by making substitutions 

(3.165) 

where A = 11, say. The resulting expression for the pen­
taspherical coordinates is 

axr = - (v - el)(p - ell, 2axl x2 = - (v - el ) - (p - ell, 

a(2X1X3 + x~) = 1, 2a(X1X4 + X2X 3 ) = - 11 '(V - el)(p - ell, 

ax~=Il'(v-el)(p-el). (3.166) 

If we further specialize to the case el = 00, these equa­
tions simplify to 

ax~= - 1, 2axl x2 =p + v, a(2xl x 3 +x~) =pv, 

2a(xl x4 + X2X3) = - 11 I, ax~ = 11 I. 
(3.167) 

The one coordinate system of this type corresponds to 
the diagrams 

v,P 

A suitable choice of three space coordinates is 

(v - t) = - 4x2/X l = 2(p + v), (y + t) = 2ix3/Xl' 

x=ix5/Xl =1::. (3,168) 

The separation equations have the form (3.51) for the 
variables v, p with p(A) = const and (3, 135b) in the vari­
able lez. The basis operators A, Bare 

A = M 02(P 0 + P 2) + (P 0 + P 2)M 02 + (P 0 - P 2)2, 

B=pr. 

F. The configuration [32] and associated coordinate 
systems 
1. The configuration [32J 

(3,169) 

As usual in the classification of inequivalent coordi­
nate systems the two free parameters el and e4 can be 
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standardized to be 0 and 00 (not necessarily respectively). 

(a) [32) 

IW p,J.l 
1\ 00 

ZI 

The penta spherical coordinates are given by 

axf = Jlllp, 2axl x 2 = - (Jlll + J.lp + ZIp), (3.170) 

a(2X1X3 + x~) = - J.l- II - p, ax~ = - 1, 2ax4x 5 = J.l + ZI + p. 

The suitable choice of three space coordinates is 

(t - X)2 =xUx~ = - Jlllp, 2y(x - t) = 2X1X2/X~ = Jlll + lip + JlP, 

t2 _ x2 _ y2 = _ X5/X 4 = J.l + II + p. (3.171) 

The separation equations are given by (3.51) with p("A) 
="A3, The corresponding basis defining operators are 

A = Mf2 - M~l - M~2 - 2P2(P 0 + Pi), (3.172) 

B=Mo1 (M12 - M 02 ) + (M12 - M 02)Mol - (Po + P l )2, 

(b) [32) 

Jl 
II 00 

This system is related to (a) via the transformation 
(a)-(b), t-it, x-ix, y-iy. 

(c) [32) 

(i) III 00 

II,P, J.l 

(ii) III 
J.l 

The penta spherical coordinates are given by 

ax~ = - 1, 2axl x 2 = - (J.l + II + p), 

a(2xl x 3 + x~) = - J.lZl - JlP - lip, 

ax~ = - J.lZlp, 2ax4x5 = Jlll + J.lp + lip. 

The suitable choice of three space coordinates is 

(3.173) 

(3.174) 

with the pentaspherical coordinates chosen as in (3. 173). 
The separation equations are (3.41) with j("A) ="A2 and 
the basis operators are 

A = (Po + P l )(M12 + M 02 ) + (M12 + M 02 ) (Po + Pi) 

(3.175) 

(d) o III 00 

p,J.l 

(c)-(d), t-ix, x-it, y-y. 
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2. Coordinate systems of type [32J corresponding to a 
radial coordinate in three space 

(a) (i) 

viii 0 
p II : 

(ii) 

lI,p 

The pentaspherical coordinates are given by 

ax~ = lip, 2axlx2 = - II - p, 

a(2xl x 3 + x~) = 1, ax~ = /J., 2ax4x 5 = 2, 
(3.176) 

For (i) this corresponds to a choice of three space 
coordinates 

(t-X)2= - xUx~= -lIpr, 2y(x- t) =2X1X2/X~ = (II +p)r, 

x2 +y2 _ t2 = _ X
5
/X

4
' 

(3.177) 

The separation equations are given by (3,51) with p(>..) 
= >..3 for>.. = II, P and the equation in the variable r is 
(3.105). The basis operators A, Bare 

A=t _D2, 

B=Mol (M12 - M 02 ) + (M12 -M02)Mol • (3.178) 

The corresponding results for (ii) follow via the trans­
formationt-it, x-ix, y-iy. 

3. Coordinates on the cone arising from the 
configuration [32J 

There is one case to consider here. 

(a) 

II 

The pentaspherical coordinates are given by 

ax~ = ZI, 2axl x2 = - 1, a(2xl x3 + x~) = 0, 

ax~ = [j,'P, 2ax4x5 = O. 

The associated choice of three space variables is 

(t - X)2 =xUx~ = IIr, 2y(x - t) = 2X1X2/X~= - r, 

(3.179) 

(3,180) 

The separation equations are (3,51) with p(>..) = >..3 
for>.. = II and (3.105) for the variable r. The basis 
operators are 

AA 1 2 
=4:- D , 

13 = MOl (M12 - M 02 ) + (M12 - M02)Mo1 • 

G. The configuration [5] 

(3.181) 

There is only one coordinate system for such a con­
figuration and it has the diagram 

ZI,P,/J. 
11I1I 00 

The pentaspherical coordinates are given by 
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axf = 1, 2ax1x2 = - (p. + v + p), (3. 182) 

a(x~ + 2x1xS) = p.v + p.p + vp, a(2x~s + 2x1X4) = p.vP. 

This gives the three space variables 

2(t - x):= - 2x2/X1 := p. + V + p, 

2(t+x):= - 2x4/X1 = -~p.vp +t[v2(p + p.) + p2(p. + v)] 

+ p.2(V + p) _ (p.s + v3 + p3)], (3.183) 

4y =4xS/Xl = p.v + p.p + Vp_~(p.2 + A2 +p2). 

The separation equations are (3.41) with I(A) == 1. This 
gives the product of three solutions of Airy's equation. 
The resulting basis operators are 

A = 8[2(P 0 - P1)2 + (Po + P 1 )(M12 + M20 ) 

(3.184) 

B:=Mo1(PO +P1) + (Po +P1)Mol + 4P2(M12 - M20 -PI +Po) 

+4(MI2-M20-Pl +PO)P2' 

H. Cartesian coordinates 

The defining coordinates t, x, y can be incorporated 
into the scheme we have used here in the same way 
that Bacher has done for the Laplace equation in three 
space. The diagrams for such a coordinate system are 

, 1° '* 
"" 

p. 

v' 1° *' "" 

1° *''''' , 
p 

The expressions for the pentaspherical coordinates are 

axf=-l, 2axI X 2 =- p.' -v' -p', 
ax~ = p', ax~ = v', ax~ = p.', 

(3.185) 

where the Xj are as in (1. 26). The separation equations 
are obviously of the form 

d2E. 
dA,i + KjE j == ° (3.186) 

with basis defining operators any two of the operators 
P~ (i=O, 1,2). 

IV. CONCLUDING REMARKS 

In this paper we have made a detailed study of the 
orthogonal coordinate systems in three-dimensional 
Minkowski space for which the two-dimensional wave 
equation (*) admits an R-separable solution. The method 
for doing this is due to Bacher and involves the use of 
pentaspherical coordinates. The direct relation between 
pentaspherical coordinates and the symmetry group of 
(*) was clearly demonstrated. The utility of the method 
over alternate ways of finding separable solutions of 
differential equations such as the classification of dif­
ferential formsll is clear. Not only can the coordinates 
be found, but the separation equations and modulation 
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factor can be determined from the key formulas in Sec. 
II. 

As mentioned in the introductory comments of Sec. 
III, we have given a list of coordinate systems, some 
of which are equivalent under the action of the 0(3, 2) 
symmetry group of (*) but not under the action of the 
E(2, 1) subgroup. The coordinate systems corresponding 
to the configurations [21(11)], [(21)(11)], and [3(11)], in 
which the coordinate curve for a contracted variable A' 
has a diagram 

(ii) A' 

are equivalent under the 0(3, 2) group action to one of 
the nine classes of coordinate systems which have a 
radial coordinate. This reflects the fact that the oper­
ator 13 as in (3.21) with A' = p' can always be chosen to 
be - t + D2. Further, for the systems corresponding to 
the configuration [32], those which have el = "", e4 = ° 
and e1 = 0, e4 == "" are equivalent under the action of 
0(3, 2) but not under the E(2, 1) subgroup. Similar com­
ments apply to the systems with configuration [2(21) J. 

No attempt has been made to firmly establish that all 
inequivalent classes of orthogonal R separable solutions 
of (*) have been found. This topic will be the subject 
of subsequent work. Taking into account the equivalent 
systems as indicated in the preceding comments, we 
have presented 53 coordinate systems inequivalent un­
der the 0(3,2) group action. In addition all the coordi­
nate systems except those belonging to the configuration 
[11111] give separable solutions of the Helmholtz equa­
tion att </!- Llz</!==Kz</!. There are 53 such systems. All 
the coordinate systems in Sees. 1-4, 6 of I are re­
presented here. In particular the nine coordinate sys­
tems of the Euler-Poincare-Darboux (EPD) equation. 
In subsequent articles it is our intention to look at the 
EPD equation in detail and to examine solutions of (*) 
which are R- separable but not orthogonal. 
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t(b) [(11)111] 

(P1) 

I' l' I" ~~ v 11 

y =x3/(x5 + iXj)' 

The modulation factor is 

+ + + -p'-

i
O 

11 *~ p' 

The basis operators are 

4A =a(P2 +K2)2 + (P j +Kj)2, 

The pentaspherical coordinates are given as in (3.20). The 
(P2) 

three space coordinates are given by 
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Lie theory and separation of variables. 10. Nonorthogonal 
R-separable solutions of the wave equation att 1/1 = A21/1 

E. G. Kalnins 

Centre de Recherches Mathematiques. Universite de Montreal, Montreal 101, Quebec, Canada 

W. Miller, Jr. 

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 
(Received 8 May 1975) 

We classify and discuss the possible nonorthogonal coordinate systems which lead to R-separable solutions 
of the wave equation. Each system is associated with a pair of commuting operators in the symmetry 
algebra so (3,2) of this equation, one operator first order and the other first or second order. Several systems 
appear here for the first time. 

INTRODUCTION 

This paper is one of a series l
-

9 investigating the 
relationship between the symmetry groups of the princi­
pal equations of mathematical physics and the coordi­
nate systems for which the corresponding equations 
admit an R-separable solution. We recall that a solu­
tion ",exl'X2 ,X3) of an equation in three variables is R­
separable if it can be written in the form 

"'(Xl' X2 , X3 ) = exp[ Q(Xu X2' X)]A (xl)B (X2 )C(X3 ) , 

where eQ contains no factors which are functions of one 
variable. The factor eQ is called the modulation factor. 
The last two papers in this series8 ,9 have dealt with a 
study of the wave equation in two space dimensions 

(*) 

In Paper 8 8 of this series (hereafter referred to as I) 
we have given a detailed treatment of the symmetry 
group of (*) which is locally isomorphic to 0(3,2). In 
that article are also discussed the principal equations 
contained in (*) when a generator of the Lie algebra is 
diagonalized. The resulting coordinate systems were 
called semisubgroup coordinate systems. In Paper 9 9 

(hereafter referred to as II) of this series, we com­
plemented the contents of I with a detailed study of the 
orthogonal R-separable solutions of (*). This was 
achieved using pentaspherical space and families of 
confocal cyclides. The methods were principally those 
developed by Bocher. 10 In this work we supplement the 
contents of I and II by looking for R-separable solutions 
of (*) which correspond to coordinates which are 
nonorthogonal. 

If 

=gii dx; dx} 

is such that gil * 0 for at least one pair of indices i * j 
and (*) admits an R-separable solution in the variables 
Xl' X 2 , X 3 , these coordinates constitute a nonorthogonal 
R-separable coordinate system. It is the purpose of 
this article to classify such coordinate systems. The 
contents of the paper are divided into three sections. In 
Sec. I we classify all coordinate systems in terms of 
their differential forms. This is done in detail by ele­
mentary and straightforward methods. The separation 
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equations for each system we find are also given here. 
In Sec. II we give the coordinate systems in Minkowski 
space which correspond to the differential forms given 
in Sec. I. We also give the operators which specify 
the separation constants in each system. These are the 
operators associated with each system. Finally in Sec. 
III we look at the properties of coordinate systems which 
are specified by elements of an SL(2,R) subalgebra of 
the symmetry group of (*). This corresponds to the 
SL(2, R) algebra in Sec. 7 of Paper 8 of this series. 

I. THE CLASSIFICATION OF SEPARABLE 
NONORTHOGONALCOORDINATESYSTEMS 

In this section we give a classification of the non­
orthogonal coordinate systems for which (*) admits an 
R-separable solution. As opposed to the sophisticated 
methods used in II, we pl'oceed in a straightforward 
manner here. These techniques have already been used 
previously. 

We use the conditions of R-separability together with 
the requirement that the space be flat. The first re­
quirement reduces to a number of special cases in 
which the metric gii has a prescribed form. For the 
space to be flat means that all the components of the 
Riemann curvature tensor are zero. The solution of 
these two constraints then gives us the list of possible 
nonorthogonal R-separable coordinate systems for the 
Laplace operator in a flat space. In each case we ob­
tain a specific form for the metric tensor gii. Each of 
the nonorthogonal R-separable systems that we find 
corresponds to a prescribed coordinate system in 
Minkowski space with coordinates f, x, y. This reflects 
the fact that the only other candidate space satisfying 
the above conditions is Euclidean three-space, which 
does not admit nonorthogonal R-separable solutions of 
the Laplace operator. 

A few words about our definition of R-separation are 
in order. More specifically we consider at first pure 
separation. A solution of (*) "'(Xl' x2 ' x3) in three new 
curvilinear variables 11, V,P-Xj,X2,X 3 is said to be 
separable if UJ =A(xj)B(x2)C (X3) and each of the factor 
functions satisfies a second or first order ordinary dif­
ferential equation. By a nonorthogonal coordinate sys­
tem we shall mean a coordinate system for which at 
least one gii (i *,i) is nonzero. Here gii is the metric 
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tensor expressing the line element ds 2 =gii dXi dx i' For 
such a coordinate system the wave operator has the 
general form 

A. = Ott - A.2 = ~ adJij + ~ aloi' (1.1) 

where i, j = 1,2,3 and at least one ali (i* j) is nonzero. 
From this general form it follows that at least one of the 
separation equations must be of first order. The defini­
tion of separable coordinates for such a coordinate sys­
tem that we adopt is that for at least one of the variables 
whose separation equation is first order the wave 
equation A.<]i = 0 c an be rewritten as a function of the 
single variable on one side and a function of the re­
maining two variables on the other side so that one vari­
able "separates." The equation in the remaining two 
variables separates in the same manner. (There are 
other more complicated ways for variables to separate 
which do not fall within this definition; see Sec. III. In 
this sense our results are not entirely complete.) In 
addition the coordinate functions 

l=F(xi ), x=G(x i ), y=H(xl ) (i=1,2,3) (1.2) 

are real functions of the Xi only. For the case of R­
separation the above definition carries over to the re­
duced wave equation, which results when the modulation 
factor eO is extracted. The function Q may, however, 
depend on the separation constants. For each coordinate 
system the two separation constants 11 and l2 are the 
eigenvalues of two operators L 1 and L 2 which are ex­
pressible as at most second order symmetric operators 
in the enveloping algebra of the 0(3,2) symmetry group 
of (*). 

We now proceed to the solution of our problem and 
examine the conditions which will permit a separable 
solution of (*). Recall that if we rewrite (*) in terms of 
the variables Xi the equation assumes the form 

A.<]i = Ott <]J - A.2<]J = all all <]J + ~2022<]J + O-agOgg<]J + a12 012 <P 

+ algOlg<p + ~g02g<P + alol<P + ~02<]J +agog<]i=O. 

(1.3) 

Here A. is the Laplacian corresponding to the contra­
variant metric tensor gii in the differential form: 

(1. 4) 

The expression for A. in terms of the metric tensor and 
variables Xi is 

(1.5) 

where g=det(gii) and gii is the covariant metric tensor 
of our original contravariant tensor gil. (Note: In this 
article we prefer to write all our results in terms of the 
covariant variables Xl' X2 , Xg as a matter of convenience.) 

It is now the problem of separation of variables for 
the equation A.<]J = 0 that is our concern. From expres­
sion (1.3) we find four possibilities. 

(1) All the separation equations are first order: From 
(1. 3) and the fact that aiJ = 2gii (i * j) and ail =: gil we 
have gll = g22 = ggg = O. Equ ation (1. 3) then assumes the 
form 
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a12012 <P + alSolS<p + ~S023<P + al 01<P + ~02<P + agos<p = O. 

(1. 6) 

If the separation equation for the variable Xg is fl dC/ dxs 
+ yC = 0, then (1.6) reduces to the form 

al2012 ¢ + blo l ¢ + b2 02 ¢ + bo¢=O, 

where ¢ = A (xl)B(x2 ). The condition that this equation 
admit a separation is that either al2 =O or bl=O, say. 
From the possible forms of the first order separation 
equations the condition bl = 0 requires alS == al == O. In 
any case the covariant metric giJ is singular and there­
fore inadmiss able. 

(2) Exactly one separation equation is of second order: 
If this equation is in the variable Xg, then gll = g22 = O. 
The resulting equation has the form 

aggogg<p+al2ol2 <P + alSolS<p+ ~S02S<P 

+ alol<P + ~02<p+agoS<p== O. (1.7) 

For a separable solution of (1. 7) it is necessary that 
either a13 = 0 or a23 = O. We cannot choose a12 = 0 as this 
would imply g 12 = 0 and hence a singular metric tensor. 

(3) Two of the separation equations are second 
order: If these equations are in the variables X2 
and X3, then a necessary condition for the separation of 
(with a11 = 0 by hypothesis) 

a22 022iJ! + a33033iJ! + a12 ° 12 iJ! + a13 013iJ! + a 23 023 iJ! + al 01 iJ! 

+ a2 02<P + a303iJ! = 0 

is that a23 = 2g23 = O. 

(1. 8) 

(4) All the separation equations are second order: This 
case is of no interest for this work as separation of 
variables now implies that aii = 0 for i* j. This is the 
case that has been treated in II and corresponds to 
orthogonal coordinates. 

We now proceed to those cases of interest by taking 
special choices of the contravariant metric gii. We 
enumerate the possibilities. 

(I) R-separable differential forms in which one 
nondiagonal element of the covariant metric 
tensor is nonzero 

(A) Pure separation 

The most general such form of the metric tensor is 

[

a h OJ 
li= h 0 0 , 

o 0 c 
(1. 9) 

corresponding to the covariant metric tensor 

(1. 10) 

The wave equation assumes the form 

a22 022 iJ! + a 33 033iJ! + a 12012iJ! + a 1°1 iJ! + a2021f + a303iJ! = 0 

(1. 11) 

We consider first the Xl dependence of the metric co-
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efficients a,h, and c. In order that the Xj dependence 
separate out in an equation of the form T(xj)ojA(xj) 
=KA(Xj), the coefficients in (1. 11) must satisfy the 
constraints 

a22=F(xj)a22 , a33 =F(xj)a33, a2=F(xj )a2, 

a3 =F(xt )a3, a j2 = G(Xt)~2' at = G(xj)a t , 
(1. 12) 

where the functions aij and ai depend upon x2 and X3 only. 
These conditions imply h=[1/G(xj)]h(x2'x3), By suitable 
redefinition of x\ we can take G = 1. The remaining con­
ditions imply c=c/F(x\), a=F(x\)a. There are then two 
cases to consider. (i) F(x\) = constant. (ii) F(x\) not a 
constant. In the latter case the form of F(x1) can be 
found from the requirement a2 =F(X\)a2' This means 
F'(X\) rxF2. We can therefore take F= l/x\ without loss 
of generality. The two cases to be considered are then 
specified by 

(1) h=h(X2,X3), a=a(xZ,x3), and c=C(X2,X3), 

(2) h=h(X2,X3)' a=a(xZ,x3)/X\, and C=c(X2,X3)Xp 

and will be considered separately. 

(1) The equations which ensure that the space is flat 
are obtained by equating the nontrivially zero com­
ponents of the Riemannian curvature tensor R ijkl to zero. 
For the case (1) these equations are 

h 2 a h 
2R1221 =a22 - ~ - T = 0, (1. 13a) 

~ aaZr2 ~ ah2 
2R\331=a33-h -2h -2c +~=o, (1. 13b) 

(1.13c) 

~~ 2R 3ZZ1 =- h32 + h + 2c =0, (1. 13d) 

a2h3 cza3 
2R 311Z =a32- h - 2c =0, (1. 13e) 

2R -h - a2cz -!:b !4. 
2331 - 33 2h 2c - 2h = 0. (1. 13f) 

For this case we consider two possibilities: Cz * 0, C2 = 0. 
If Cz * 0, then equation (1. 3) has the form 

(1. 14) 

where 1> =:B(xz)C(x3) and 0IA(Xl) =lA(xI)' Multiplying 
(1.14) by c, we obtain the separation condition 

C2/h =: [J(X2) +g(X3) ]r(x3)' 

From (1. 13c) we have 

cz/h = S (X3)c l 12 

and 

Now h * ° which implies!1' const. Accordingly we can 
define a new Xz variable X2=! so that h=h(X3)' From 
(1. 13d) we then have h3 = 0. Therefore, h = 1 without loss 
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of generality. The form of (1.14) now requires a=a(x2)' 
Equation (1. 13a) then implies a = 1 or a = 0. We also 
deduce that c = t(XZ)U(x3)' By a suitable redefinition of 
X3 we can take C=C(X2)' From (1. 13c) we then can take 
C =x~. We finally obtain the two differential forms: 

[1] dsz=2dxldxz+x~dxL 

[2] ds 2 =dXI + 2dxl dX2 + X ~ dx~. 

(1. 15) 

(1. 16) 

If cz=O, we can take c=1. From (1.14) we have the 
separation conditions a/h=!(xz), h/c=r(xZ)s(X3)' From 
(1. 13d) we have h = t(XZ)U(X3); hence a=: V(X2)U(x3)' By 
redefinition of the variable Xz we may take h =u(x3). 
From (1. 13a) we then have 

V22 = 01, u~ = 201u. 

The general solutions of these equations are 

v =: ~OIX~ + j3x2 + Y, U =: (W/2X3 + 0)2, 

where OI,j3,y, and OE:lR, and 01>0. There are two 
classes of differential forms to consider: 

(a) 01 = 0: We have the three possibilities 

[3] dS2=2dxjdx2+dx§, 

[4] ds 2 =dxI + 2dxj dX2 +dxL 

[5] ds z =xzdxI + 2dx j dxz +dx~. 

(b) 01 = 1: We have with suitable redefinitions 

[6] ds2 =x~x~ dXI + 2x~ dx\ dX2 + dxL 

[7] ds2=x~(x~-1)dxi+2x§dxjdx2+dxL 

[8] ds 2 =x~(x~ + l)dxi + 2x~dxj dX2 + dx§. 

(1. 17) 

(1. 18) 

(1. 19) 

(1. 20) 

(1. 21) 

(1.22) 

(1. 23) 

(1.24) 

This exhausts the list of separable differential forms in 
which the metric coefficients a, It, and c have no Xj 
dependence. 

(2) The equations requiring a flat space for the case of 
Xl dependence have the form 

X\R I22 \ =R1Z21 =0, (1. 25) 

2X1R1331 = 2R133\ + (azc + aC2)/2h - ~c = 0, 

2R 2332/ XI = 2R2332 =: 0, R3221 =R3221 = 0, 

2X1R 3112 = 2R3112 + 1t3/2c = 0, R 2331 =R2331 = 0. 

Here the curvature tensor components R ijk1 are those in 
Eqs. (1. 13) with a - a, C - c. Using arguments as for 
case (1), we find that the only forms of a and c com­
patible with the curvature equations are a = X2 and c = 1. 
This gives the separable differential form 

(1. 26) 

(8) R-separation 

As regards the possibility of an R-separable solution 
for coordinate systems of the type considered in this 
subsection, it can be shown that there are in fact no such 
systems. We do not reproduce the somewhat lengthy but 
straightforward calculations which lead to this negative 
result. 
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(II) R-separable differential forms in which two 
nondiagonal elements of the covariant metric tensor are 
nonzero and only one separation equation is second order 

(A) Pure separation 

The contravariant metric gii can be chosen as 

[~ 
h 

b~J gii= b2 

bc c2 
(1. 27) 

The corresponding covariant metric tensor is 

[ 0 

l/h -b:hCl 
gij= l/h 0 

- b/hc 0 l/c2 

(1. 28) 

The wave equation assumes the form 

a33 a331/! + a 12al21/! +a 13al31/! +al all/! + a2a21/! + a3a31/! = O. 

(1. 29) 
As before we consider first the XI dependence. The 
conditions for Xj separation are 

al2 =F(xI)aI2, al3 =F(xI)aj3, a l =F(xj)al, 

a33=G(xI)a33' a2=G(xI)a2, a3=G(xI)a3' 
(1.30) 

These equations imply h = h(X2' x3)/F(XI)' By redefinition 
of X I we may as before take F = 1. If G is not a constant, 
then the above conditions require G' 0: G2 , and we can 
take G = 1/ X I' We again have two cases to consider: 

and c=xl ll C(X2,X3)' 

(1) The curvature equations are 

RI221 =- h2
3/4c 2 =0, R 1331 '" 0, 

R 2332 = b~ + bb33 + cC22 - b32C - b3c 2 - c3b2 - C32b 

+ (h2c/h) (b 3 -- C2) + (C3/ c)(b2c + bC2 -bb3) 

+ (bhlh) (C2 - b3) = 0, 

R3221 = - i h 32 + (hl4c) (bh.j2h - c 2) =0, 

R 3112 '" 0, R 2331 = ih33 - h3C.j2c2 = O. 

(L 31) 

(1.32) 

These equations immediately give h3 = 0 and by rede­
finition of x2 we can take h = 1. Multiplying (1.29) by c2 

we have the further condition bc =F(X3)- By redefinition 
of the variable x 3 we can take bc = 1. 

The separation conditions a 33 =U(X2)V (X3) and a l3 
=u(X2)V(X3) imply that b2 and c 2 may be taken in the form 

(1. 33) 

With this choice the only nontrivial curvature equation is 
R 2332 = 0, and it has the form 

(1.34) 

The separation equations for (1. 34) are then 

2FF33+F~=Ci, 2HH22 - H~=-Ci< (1. 35) 
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There are two cases to consider, 

(a) Ci == 0: In this case equations (1.35) have the general 
solution. 

(1. 36) 

This gives four possibilities for the differential form 
according as the constants (3, y, 0, and E are or are not 
zero: 

[10] 

[11] 

[12] 

[13] 

(b) Ci = 1: In this case we can integrate Eqs. 
once to get the relations 

(1. 40) 

(1. 35) at 

dX3 =F1I2 dF /(F + (3)112 , dX2 =dH/(1 + YH)1/2. 

(1. 41) 
Rather than integrate these equations further, we re­
define the variables x2 and x3 by taking the new variables 
as Hand F, respectively. We then distinguish four cases 
according as the constants (3 and yare or are not zero. 
The resulting differential forms are 

[14] (1.42) 

(1. 43) 

(1. 44) 

(1.45) 

(2) For the case of Xl dependence the curvature equa­
tion R133l ==0 reduces to c==O, which is inadmissable. 
There are therefore no solutions of interest in this class. 

(8) R-separation 

If we assume that I/! in (*) has an R-separable solution 
of the form I/! == eRcj>, then the equation satisfied by cj> 
has the form 
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b33a 33¢ + bl2a 12¢ + bl3a 13¢ + bl a I ¢ + b2a 2¢ 

+ b3a3¢ + bo¢ == 0, (1.46) 

where the b iJ , bi are related to the a iJ , a i in (1.6) by 
the equations 

b33 == a33 , bl2 == a12 , bl3 == a13, 

bl == al2R2 + al3R3 + aI' b2 == a12RI + a2, 

b3 == al3RI + 2a33R3 + a3, 
(1. 47) 

bo == a12 (R12 + RIR2 ) + a13(R13 + RIR3) + a33 (R33 + R~) 

+a3R3 +a2R2 +aIRI • 

As usual, we look at the possibilities for Xl dependence. 
The conditions on the coefficients of (1.46) are 

b33==G(X1)b33' b2==G(xl )b2, b3==G(xJb3, 

bo == G(xl)bo, bl2 == F(xl )bI2 , bl3 == F(xl )bI3 , 

bl ==F(xl)bl • (1.48) 

As in the case of pure separation, F== 1 by redefinition 
of the variable Xl and, consequently, h == h(x2, x3). The 
remaining conditions require, as in the case of pure 
separation, that G==const or GCX:X~/2. This latter case 
is inadmissable by the curvature conditions o 

We may then take h == 1 and e == e(x2 ). The condition b2 
== b2(X2, x3) requires that R have the form XIU(X2, x3) 
+ v(x2, x3). If the Xl dependence in (1. 46) is now extracted 
via the separation equation dA(x l )/ dX1 == lA(x l ), the re­
sulting equation has the form 

b3i J 33¢ + (lb l2 + b2)a 2¢ + (Zb13 + b3)a 3¢ + (bIZ + bo)¢ == 0, 

(1. 49) 

where ¢ == B(x2)C(X3). The separation condition Zbl3 + b3 
== s(x2, x3) implies u(xz, x 3) == O. The further condition that 
e2(Zb13 + b3) == t(x3) requires that R3 == Zbe to within a sum 
of functions of single variables. The only nontrivial 
curvature equation is 

(1. 50) 

which has the solution b3 == e2 so that b == e2x3 + g(x2) and 
the modulation function R has the form 

(1. 51) 

Finally from the requirement bIZ + bo == v(x2) + w(x3) we 
obtain the constraints 

(1. 52) 

with (3, 'YE R. The general solution of the first equation 
is e== (ox~ +E)I/2. We now evaluate the possibilities de­
pending on the values of the constants 0, E: 

(1) 0 == 0 and E == 1; then g== WX2: The resulting metric is 

(1. 53) 

and the modulation function is R==WZX2X3• 

(ii) E == 0 and 0 == 1; then g== w/ x~ and the differential 
form is 

[19] ds2 == 2dxl dx2 + 2 (X2X3 +w/ x2) dx2 dX3 

+ (x3 + wi X~)2 dx~ + x~ dX;. 
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(1. 54) 

The modulation function is then R == tZxzX~ + wZx! x2• 

(iii) 0 == E == 1; then g== wand the differential form is 

[20] ds2==2dxl dx2 + 2 [X2X3 +w(l +X~)1/2]dx2dx3 
(1. 55) 

+ [x2x! (1 + XDl/2 + w)2 dx~ + (1 + x~) dx;, 

with the modulation function given by 

R == tZX2X; + Zwx3(1 + X~)1/2 

(iv) 0 == - E == 1: In this case g== wand the differential 
form is 

[21] ds2 == 2dxl dx2 + 2[VX2X3+ w( 11-~ 1)1/2] dx2 dX3 

+ [VX3X2/ (11 - ~ 1)1/2 + w)2 dx~ + 11 - X~ I dx;, 
(1. 56) 

where v == sgn(- 1 + x~). The modulation function is R 
== tVlx2X~ + lwx3 11 - X~ 11/2. This completes our list of 
coordinate systems of this type. 

(III) R-separable differential forms in which two 
nondiagonal elements of the covariant metric tensor are 
nonzero and two separation equations are of second order 

Pure separation 

The determination of the contravariant metric is 
rather involved. The wave equation for coordinate 
systems of this type will be taken as 

a22a22~ +a33a33~ +a12aI2~ +a13a13~ +ala1~ 

+ a2a2~ + a3a3~ == O. (1. 57) 

The contravariant metric can then be taken to be 

g"~ la~/f ~ be 
abc//l 

(1. 58) 

e2 

so that the components of the covariant metric tensor 
are 

/ 
1 - b/I el 

o . (1. 59) -a 

o /21 e2 

From the conditions for separation of the Xl variable, 
which we do not repeat here [these are the analogs of 
Eqs. (1.30)], we find 

(1. 60) 

where G == 1 or II Xl' There are then two distinct cases 
to consider: 

(1)/==/(x2,x3), a==a(x2,x3), b==b(X2,X3), and e==e(x2,x3). 

(2)/==/(X2,X3 ), a==a(x2,x3)/XU b==b(x2,x3)x~/2, 

and e==c(x2,x3)x~/2. 

(1) From the separation conditions al / a22 == r(x2) and 
al /a 33 ==s(x3) we have the relations a==t(x2)/, be==u(x3 )/, 

and h == abel/== t(X2)U(X3 )/. By suitable redefinition of the 
variables x 2 and X3 these relations can be reduced to a 
==/, be==/, h==/. [Note these results follow also for (2) 
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with a, b, and c replaced by Ii, b, and c.] With d =f/c2 

the contravariant metric then assumes the relatively 
simple form 

f 
d 

f 
with corresponding covariant metric tensor 

[!b 
f 

:b] 1 
gjj= 

f{f- d) 
-f 

° 
For this case the curvature equations are 

2R1221 = f22 + [1/2{f - d)] 

(1. 61) 

(1. 62) 

x [(2 - d/ /)f~ + f 2d2 - (d/ /) f~ + (d/f)f3d3] =0, 

2R133l =f33 + [1/2{f- d)] 

x [{f/ d)f3d3 + {f2/ d2)f2d2 + (1 - 2f/ d)f~ 

+ (2d - 3f)!;] =0, 

2R2332 = d33 - 2f33 + (2f/ d) f32 - {f2/ ~)d22 + [1/ (f - d)] 

(1. 63a) 

(1. 63b) 

x [- (2f/ d)f~ + (3f/ ~)(2d - f)f2d2 + t(1 + f/ d)~ 

- 4f2d3 + 2 (2 - d/ f) f2f3 + (d/ f - 2) f3 d3 - {f/ d)dJ3] 

(1. 63c) 

2R322l = f22 - f23 + [1/ (f - d)] [ti2d2 + (d/2f - 1) f~ 

+ (d/2/)f3d3 + (2 - d/ f)fd3 - {f/2d)f3d2 - ti2d3 

+ (b/2f)f~] =0, (1. 63d) 

2R3112 = f32 + [1/ (f - d)] 

x {f/2d)f3d2+(d/f -2)f2f3+tf2d3]=0, (1. 63e) 

2R233l = f33 - f32 + [1/ (f - d)] [{f/2d)f3d3 + (d/2f - l)f~ 

+ (d/2f)f3d3 + (2 - d/ f)fd3 - {f/2d)f3d2 - tf2d3 

+ (d/2f)f~] =0. 

From these equations we deduce 

2R1332 + 2R3112 - 2R133l = Ufi d{f - d)] [- (f / 2d)~ + f2] = 0. 

(1. 64) 

There are then two possibilities: (i) f2 = ° or (ii) d 
=r(x3)f2. We consider each of these cases separately. 

(i) From (1. 63c) we have that f3d2 = ° so that either f3 
= ° or d2 = 0. In the first case we can take f = 1. Equation 
R 2332 = ° requires 

(1 + d) d22 (5d - 3) ~_ 
d33 + 2d(l_d) ~-7+2d(d-iT --;]<-0. (1.65) 

The separation condition a3! a22 = r(x2)s (x3) must also be 
satisfied. There are then three possibilities of this typeo 

a. d = d(x3): The variable X3 can be redefined to be d 
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via the relation 

d3 =a1 /
2

- d1/ 2
• (1. 66) 

The corresponding differential form is 

[22] ds2 = 2dx1 dx2 + [2X~/2/ (1 - x 3)] (dxl dx3 + dX2 dx3) 

(1.67) 

b. d = d(x2): The variable x 2 can be redefined to be d 
via the relation 

d2=d3/ 2(d-l). (1. 68) 

[23] ds2 = [2/ (x2 - l)x~/2] (dxl dX2 + dx2 dx3) + 2dx l dx3 

+ dx~ + dx;! (x2 - 1 )2X~ + dx;! x2. (1. 69) 

c. d= w, const: The differential form is 

[24] ds2 = 2dx l dx2 + 2dxl dx3 + 2dx2 dx3 + dx~ 

+wd~ + (l/w) dx~. (1. 70) 

In addition we must consider the case when f3 * ° and d2 

= 0. From (1. 63a) this implies f3 = d3 so that f = d + 6 
with 6 *0. Integrating (1. 63c) once, we get d3 =6a l

/
2 

+ d l / 2. The variable X3 can then be redefined to be d. 
The resulting differential form is 

[25] ds 2 = 2(x3 + 6) dx~ dx2 + 2x~ /2(dx2 dxs + dXl dxs) 

(1. 71) 

(ii) In this case the separation condition a3! a22 

= u(X2)V(X3) ensures that d and f can each be expressed 
as products of functions in each of the variables x 2 and 
x3. We may therefore take f= h(x2)r(x3), d= h2(X2)S(X3). 
If rand s are both constants, then (1. 63f) implies h2 
=0. This case has already been found and corresponds 
to (1. 69), (1. 70). For non constant rand s = const = 1, 
(10 63a) can be put into the form 

h
2 

1 (h~ 2 h
2
r2 ) ~2h - h22 = ) - -J r + 2h2 - ~ . 2(r- h I r 

(1. 72) 

For the right-hand side of (1. 72) to be a function of X2 
only, we require that h = exp(x2) and r = exp(x3). By 
choosing now variables hand r the differential form 
becomes 

[26] ds 2 = 2x3 dx! dX2 + 2X2 dXI dX3 + 2dx2dx3 

+X2X3dxI +dx~ + dx~. (1. 73) 

It is not hard to show that this is the only form of the 
functions rand s which are compatible with the curvature 
equations. 

(2) For the case of explicit XI dependence it can be 
shown by straightforward but lengthy calculations that 
there are no differential forms of this type. Similar 
remarks apply to the case of R-separation. 

This concludes our derivation of the differential forms. 

II. EXPLICIT COORDINATES AND R-SEPARABLE 
SOLUTIONS 

Here we present the list of coordinates corresponding 
to the differential forms given in Sec. 10 We also present 
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with each coordinate system the separation equations 
and a representative solution where possible. We con­
nect the listed coordinate systems with the symmetry 
group of (*) by giving the operators which specify the 
separation constants in terms of the generators of the 
symmetry algebra. We need only recall here the form 
of the generators in the coordinate representation. [For 
more information on the group structure associated with 
(*) we refer the reader to Paper 8 in this series. ] The 
generators are 

10 Translations: Po = at, P j = OX, P 2 = Oy. 

2. Two-dimensional Lorentz subgroup SO(2, 1): 

M j2 =xoy -y ox, MOj=tox+xOt, M 02 =toy +y Ot· 

3. Dilatation: D=-tOt-Xox-yay-1. 

4. Special conformal transformations: 

Ko = - t - (t2 + X2 +y2)a t - 2txox - 2 tya y, 

K j =x + (t 2 + x2 - y2)a x + 2xtot + 2xyo y, 

K2 =y+ (t2 + y2 _x2)Oy + 2ytot + 2yxox' 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

In a number of cases we give simpler forms of the dif­
ferential forms than given in Sec. 1. This is achieved 
by making use of earlier results in this series of papers 
and is mentioned when it occurs. We now list the co­
ordinate systems: 

[1] ds 2 = 2dxj dX2 + x~ dx~. (2.5) 

The coordinates are given by 

t=Xj +h2X~ +X2(X3 + 1), x=x j +h2X~ +x2x 3, 

y =X2(XS + 1). 

The separation equations are 

(2.6) 

dA 2 dB !:l. d2C 
-d =lIA, 2x2 -d -X2B = l B, p+l2C =0, (2.7) 

XI X2 j X3 

where I/>=A(xj)B(X2)C(X3) is a separable solution of (*). 
A typical solution is 

I/> = exp(ljXj)X~ 12 exp(- l z!2l jX2) . 

1 
cosVZ; Xs 

sinv'l;" x3 

(2.8) 

The operators L j and L 2 which specify this coordinate 
system are given in terms of the generators by 

Lj=PO+P 1' L2=(M12-M02)2. (2.9) 

(2.10) 

The three space coordinates are given by 

t =x2 coshxs, X =X2 sinhx3 , y =Xj + x2' (2.11) 

The separation equations are 

(2.12) 
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A typical solution is 

I/> = exp(ljxI) exp(l2x 2) C./f2 (il jX2) exp(iv'l;" X3), (2.13) 

where Cv(z) is a solution of Bessel's equation. The 
operators which specify the coordinate system are 

[3] dS2=2dxjdx2+dx;. 

The three space coordinates are 

fft=Xj+X2' ffX=Xj-X2, y=x3' 

The separation equations have the form 

A typical solution is 

~ 
COSV2ljl2X3 

I/>=exp(ljxj +l2X2) 
sinv2l j l 2x 3 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The operators which specify the coordinate system are 

The three space coordinates are 

(i) t=Xj, x=Xj +x2' y =x3, 

(ii)t=xj+x2' X=X2, y=x 3. 

The separation equations have the form 

dA d 2B dB 
- =ljA, -,-rd - 2l j -d -l2B=0, 
dXI x2 X2 

A typical solution is 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

The operators which specify the coordinate system are 

(i) Lj =Po + PI> L2 =pL 

(ii) L j =Po, L2 =P~. 
(2.24) 

[5] (2.25) 

The three space coordinates are 

t=x2xj-l/xj, x=x2xj+l/xj, y=x3' (2.26) 

The separation equations are 

(2.27) 

A typical solution is 
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1 
COS,cz;X3 . 

Ij I j /2 ,-;--) 
</!=Xj X2 C lj (2i vl2x 2 

sin..r-z;x3 
(2.28) 

The operators which specify the coordinate system are 

Lj=Moj , L2=P~. (2.29) 

The three space coordinates are 

t =Xl~X2(1 - EXj) + (E - l/E)(1- EXj)(1 - xjxz!2) 

+ l/E (1 - x jx/2)]' 

x=x3[1- 2(1- EXj)(1- Xjx2/2)], 

y =x3[h2(1- Exl ) + (E + 1/E)(1- EXj)(1- xjx/2) 

- (l/E)(1- xjx/2)], 

EE:lR. (2.31) 

The separation equations are 

(2.32) 

A typical solution is 

(2.33) 

where l2 = j(j + 1). The operators which specify the co­
ordinate system are 

L j = (E2 + 1)M j2 + (E2 - 1)MOj - 2EMo2 , L2 =- t +D2. 

(2.34) 

(2.35) 

There are two alternative parametrizations in three 
space which correspond to the above differential form. 
They are 

(i) t =x3l (e Xj + E) + te -Xj (X2 + 1)(eXj + E)2 - 2e -xl (X2 + 1)] 

where EE: lR 

(ii) t =x3{(4/ QI) (E -coth±Xj)[1 + (E sinh±Xj -cosh±Xj) 

x (coshtx j - X2 sinh±X j)] 

(2.37) 

x =x3[1- 2(E sinh±X t - coshht)(cosh±Xt - x2 sinhht)], 

y =x3[(4/QI)(E - cothh l )[1 + (E sinhht - coshht) 

x (coshh j - X2 sinhht)] 

- (QI/4) sinhht(coshhl - x 2 sinhh j)], 

where CL, E E: lR and CL '" o. 
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The separation equations are 

dA 2 d2B dB 
- =l0, (1- X 2)"TTd + (2l t - X2) -d + l2B =0, 
dX t x2 X2 

(2.38) 

A typical solution is 

1 
P~j(X2) 11 x{ 

, (2.39) 
Q 1I( ) -j-t 

j X2 X3 

where l2 =j(j + 1). The functions p~ (z) and Q~ (z) are 
Legendre functions of the first and second kind respec­
tively. The operators which specify the coordinate sys-
tern are 

(i) Lt=2Mo2-E(Mt2+MoI), L 2=-t+D2, 

(ii) L t = (4/ CL)(E2 - l)(Mot + M t2 ) + (QI/4)(M I2 - Mot) 

-2EMo2' L2=-t+D2. (2.40) 

The three space coordinates are given by 

t=X3[- (4/CL)(E+tanht) 

x [1 + (sinht + E cosht)(sinh l + x2 cosht)] 

- (CL/4) cosht (sinh t + X2 cosh I)], 

(2.41) 

x =x3[1 - 2(sinht + X2 cosht)(sinh l + E cosh l )], (2.42) 

Y =X3[ - (4/CL)(E + tanhj)[l + (sinh l +E cosht) 

x (sinh I +X2 cosh l )] 

+ (CL/4) coshj(sinht +X2 cosht)], 

where CL, E E: lR and CL > o. 
The separation equations are 

2 d 2c dC 
X37Td + 2x3 -d -l2C =0. 

X3 x3 

A typical solution is 

(2.43) 

~ x{ 

i x:iJ- t ' 

(2.44) 

where as usuall2 = j(j + 1). The operators which specify 
the coordinate system are 

Lt = (4/ CL)(l +E2)(Mot +Md + (CL/4) (M t2 - MOj) + 2EMo2 , 

L2=-t+D2. (2045) 

(2.46) 

The three space coordinates are given by 
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t+X=2X2~ -h~vX7, t-x=-2£;, Y=X3£;' (2047) 

The separation equations are 

A typical solution is 

~ cos/f; x3 • 

( sinVl; x 3 

(2.48) 

(2.49) 

The operators which specify this coordinate system are 

L 1=-tD-t, L2=t(M12-M02)2. (2.50) 

The three space coordinates are 

t +X =2xI + 2(1- E/..fW)x3 + (w -E2)X2, 

t-X=-X2, Y =xJ..fW +EX2' 

The separation equations are 

(2.51) 

(2.52) 

dA dB 2 d 2c 2 dC I Z 
dXI =l0, dX2 =l2B, W dxi - 2w Z1 dX3 + 2 1 2C = O. 

(2.53) 

A typical solution is 

~ cos[zI(2Z2 - w211)]1! 2x3 • 

( sin[zl (2Z2 - w2l1) ]1I2X3 

(2.54) 

The operators which specify this coordinate system are 

Ll =Po +P j , L 2=t(w-E2)(PO +P j ) +t(Pj-Po) +EP2• 

(2. 55) 

[11] ds 2 = 2dx j dX2 + 2dx2 dX3 + WX~ 13 dx~ + dxV WX~ 13. (2.56) 

The three space coordinates are 

( /2 r--) 2/3 -3/2 (1 213 E)3 f+x=2Xj+2x3+WX2-3E VWX3 -W 3"WX2 - , 

(3/2 ') 213 1 3/2 2 E t-X=-X2, Y= VW X3 -6'W X2+ X2' (2057) 

The separation equations are 

The operators which specify this coordinate system are 
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L2 = tw3/2 (Mo2 -MI2 ) + t(P I - Po) 

- tE2(PO +P1) +EP2o 
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(2.59) 

(2.60) 

The three space coordinates are given by 

t +X =2Xl + 2x3 - X2XVW - (2E/..fW)X2X3 _E2x2 - W/X2' 

The separation equations are 

dA 2 dB ( ) -d =IIA, 2X2 d- + 12 +x2 B=O, 
Xl X2 

d
2
C _ 2l dC _!.1:J.. C-O 
~ 1 dX3 W -. 

A typical solution is 

(2.61) 

(2.62) 

1 
cosh";Zf + liZ) W x3 

sinh";li + IIZ2/ W X3' 

(2.63) 

The operators which specify this coordinate system are 

(2.64) 

[13] ds 2 = 2dxI dX2 + 2dX2 dX3 + (wx~/3/X~) dx~ + (xVwx~/3) dx~. 

(2.65) 

The three space coordinates are given by 

t + x = 2Xl + 2x3 - (9/ 4w)x~/3X2 + [W/2X2 - (3E/..fW)X2]X~/3 

_E2x2 + Ew3/2/3x2 -w3/108xL (2.66) 

t - X =- X2, Y = (3/2..fW)X2X~/3 + W3/2/6x2 + EX2' 

The separation equations are 

dA 2 dB (!::?. )_ 
dX

1 
=10, 2x2 dX2 + II +x2 B -0, 

(2.67) 

The operators which specify this coordinate system are 

Ll =Po +P1, L2 =Ko +K j + ~Ew3/2(PO +P1) - tw3/2P 2, 

(2.68) 

[14] ds 2 = 2dxl dX2 + 2dx2dx3 + (xJx2)dx~ + (Xz/X3) dx~. 

(2.69) 

The three space coordinates are given by 

t+X=2Xl-E2x2-4Ev'X;X;, t-X=-X2, y=2";X2X3 +EX2' 

(2.70) 

The separation equations are 

d2c 1 dC 
x3 ([J + (2 - 211x3) -d -1112C = O. 

x3 x3 

A typical solution is 
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l/I=exp[lj(Xj +X3)]x~2/2 D_j/2-il2[± (1 +i)v'2l jX3]' (2.72) 

where D.(z) is a parabolic cylinder function. The 
operators which specify the coordinate system are 

L j =Po +Pj, L2 =E(M"j2 - M 02 ) - MOl -D - i. (2.73) 

[15] ds 2 == 2dxI dX2 + [2x~/2/(x3 + /3)j 12] dX2 dX3 

+ (xJX2) dx~ + [XJ(X3 + /3)]dx~. 

The three space coordinates are 

(2.74) 

t + x =: 2xI - 2x3 + v'X3(X3 + 13) - 213ln("lx3 + 13 + Fx;) -l3lnx2 

- E2X2- 4Ex~/2(x3 + /3)112, (2.75) 

t-x=:-X2, y =:2v'X2(X3 +/3) + Ex2' 

The separation equations are 

d2c 1 dC 
(X3 + /3) p + b· - 2l j v'X3(X3 + /3)] d- (2.76) 

x3 X3 

+{2l1l2 +t II [l-t!; 13r/]} C = O. 

The operators which specify the coordinate system are 

LI=:PO+PI, 

L2 =:- i[{3(Po +PI ) -D -MoI - t +E(M"j2 -M02 )]' 

(2. 77) 

(2.78) 

The three space coordinates are given by 

t +x=:2xI- 2(1 +YX2)1/2 (E2/Y+X3) - 4Ev'X2X3 + 2x3, 

t-x=:- (2/y)(1 +YX2)1I2, 

Y =2 v'X2X3 + (2E/y)(1 +YX2)1I2. 

The separation equations are 

The operators which specify this coordinate system are 

L j =: Po +Pj, L2 =: (y/4)(Ko +Kj) + (1/y)[(1- E 2)PO 
(2.81) 

(2.82) 

The three space coordinates are given by 
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t + x = 2xI - (2/y)(1 + YX2)1I2(x3 + E2) - 4E v'X2(X3 + /3) 

-l3ln[ (,,11 + YX2 - 1)/(,,11 + Y X2 + 1)] + v'X3(X3 + /3) 

- 2l3 ln(v'x3 + 13 + fi;) 

t - x=:- (2/y)(1 + YX2)1I2, Y = 2v'X2(X3 + /3) + (2E/y)v'1 + YX2 • 

(2.83) 

The separation equations are 

d
dA =:ljA, 2llx2v'l+yx2 ddB + (tv'l +yx2-l2)B=:0, 
XI x2 

(2.84) 

d2C 1 dC 
(X3 + {3) d:;::T + [2 - 211 v'X3(x3 + /3)] d-

X3 X3 

[ 
1 (x + 13 )j 121 

+ l2-"2 ~ f=:O. 

The operators which specify the coordinate system are 

LI ==Po +P j , 

L2 = (y/4)(Ko +Kj) + (l/y)(Po-PI) - (2E/y)P2 

+ (E2/Y-I3)(PO +P j ). 

[18] ds 2 
=: 2dxj dX2 + 2wx2 dX2 dX3 +dx~ + W2X~ dx~ 

with modulation function R =: WljX2X3' 

The three space variables are given by 

t+x=:2xv t-x=:-x2, Y=X3+twX~. 

The separation equations are 

dA dB 222 
d- =l0, 2 d- - (ljw X2 +l2)B=:0, 

XI X2 

d2C 2 

P + (2ljWX3 + lll2)C = O. 
X3 

A typical solution is then 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

l/I =: exp(ljWX2X3 + llx j + t ljW2X~ + tl2x2) (2.89) 

1 
Ai(z) 

Bi(z ) 

with z =: (2liw)1I3x3 + l2(2liw)"1I3. The functions Ai(z) and 
Bi(z) are Airy functions. 

The operators which define the coordinate system are 

[19] ds 2 =:2dxjdx2 + 2 (X2X3 + W/X2)dX2dX3 

+ (xs +w/x~)2dx~ +x~dx~. 

(2.90) 

(2.91) 

with modulation factor R =: + tljX2X~ + wljxJ x2' The three 
space coordinates are 

t + x=: 2x j - E2x2 - 2Ex2X3 + 2 WE/X2, (2.92) 

The separation equations are 
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A typical solution is 

x {Ai(Z) 
Bi(z) , 

where Z = (4liw)j /3X3 + l2(4Ziw)"11 3 • 

(2.93) 

(2.94) 

The operators which define the coordinate system are 

[20] ds 2 = 2dxj dX2 + 2x2X3 dX2 dX3 

+ [x~xV (1 + x~)] dx~ + (1 + x~) dx~ 

with modulation function R = tljX2X~. 

The three space variables are 

t +X =2xj - EZX2 - 2Ex3(1 +X~)j/2, 

t-X=-X2, y=x3(1 +x~)112 +EX2. 

The separation equations are 

A typical solution is then 

IjJ = (1 + X~)"1I4 exp[tljX2X~ + ljxj + (l2/2lj) tan-jx2] 

XD-<1+iI
2

/l j )/2 [± (1 +i)x3 ,;z-;], 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

where Dv(z) is a parabolic cylinder function. The 
operators which specify the coordinate system are 

Lj=Po+Pj, 

L2 =- E 2(Po +P j) + 2EP2 +P j - Po +Kj +Ko· (2.100) 

[21] dS2=2dxjdx2+2EX2X3dx2dx3 (2.101) 

+ (x~xV 11 - xW dx~ + 11 - x~ I dx§, 

where E = sgn(x§ - 1) and the modulation function is R 
=tEljx2x~. 

The three space coordinates are 

t+x=2xj-E2x2-2Ex311-x~ll/2, 

l-X=-X2, y=x311-x;ll/2+Ex2 • 

The separation equations are 
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(2. 102) 

(2.103) 

A typical solution is 

IjJ = exp(tEljx2x~ + Ijxj)(x2 _ 1)6°2+/ 1) /4/j 

(2.104) 

The operators which specify the coordinate system are 

Lj=Po+P j, 

L2 =- E 2(P O +P j) - 2EP2+PO-P j +Ko +Kj• 
(2.105) 

[22] ds 2 = 2dxj dxz + [2v'X;/(1 - X3)] (dxj dX3 +dX2 dX3) 

+dxi +x3dx~ +dxV(1-x3)2. (2.106) 

The three space coordinates are given by 

t=U1-x3 sinhhz, x=2v'1-x3 coshh2 , 

y =x j + x2 + 2v'X; + In[(v'X; - 1)/(v'X; + 1)]. 

The separation equations are 

dA d2B dB 
-d =lIA, -;--Z-d - 2l j -d -l2B =0, Xj x2 x2 

(2.107) 

The operators which specify this coordinate system are 

The three space coordinates are given by 

t=2v'(t!x2)-1 coshh3, x=2v'(1/x2)-1 sinhh3, 

(2.109) 

_ (2.111) 
Y =xl +x3 + 2X2j/2 + In[(v'X;" + 1)/(vix2 -1)]. 

The separation equations are 

(2.112) 

The operators which specify the coordinate system are 

(2.113) 

[24] ds 2 =2dx jdxZ + 2dxjdx3 + 2dx2dx3 +dxi + wdx~ 

+ (l/w)dx~. (2.114) 

The three space coordinates are given by 

t=V(w-1)/wx3, x=Vw-1x2' Y=Xj+X2+x3. (2.115) 
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The separation equations are 

dA d 2B dB 
-d =ltA, 7Td -2l t -d -l2B=0, 

Xl X2 X2 

A typical solution is 

~ cosv'li + l2 X2 

( sinv'l[+l; X2 

(2,116) 

(2. 117) 

The operators which specify this coordinate system are 

Ll =P2, L2 = (w -l)(pij + pi) - (w + 1)P~. (2.118) 

[25] ds 2 = 2(X3 + l5)dXl dX2 + 2x~/2(dx2 dX3 +dXl dX3) 

+ (X3 + o)dxi +x3dx~ +dxl/(X3 + 0)2. 

The three space coordinates are given by 

(2.119) 

t=2v'0(X3 + 0) sinh[(xl +X2 +2vX;- 2v'6 tan-1 q6)2-16], 

X = 2v'0(X3 + 0) cosh[ (Xl + X2 + 2v'.X; - 2-16 tan 1 v'X76)2-16] , 

y =-16 xz. (2.120) 

The separation equations are 

dA d 2B dB 
-d =lIA ,"7Td - 2l1-d +l2B =0, 

Xj Xz Xz 

(X3+0)~ +(1-2l1) :~ +[l2-~ (1+ :;)] C=O. 

(2,121) 

The operators which specify the coordinate system are 

L 1=Mo1 , L2=OP~-Mijl' (2.122) 

+dx~ +dx~. 

The three space coordinates are given by 

t =X2X3 exp(xJ2) + exp(- xJ2), 

X=X2x 3exP(xJ2) -exp(-xJ2), y=x2+x3' 

The separation equations are 

dA d 2B dB 
-d =ltA, Xz d::;T + (1- 2l t ) d- +lzB=O, 

xl ~ ~ 

A typical solution is 
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(2.123) 

(2.124) 

(2.125) 

(2.126) 

The operators which specify the coordinate system are 

Ll =iM o1> 2L2 =PoM02 + M 02P O +P1M 12 +M1ZP 1• 

(2.127) 

III. OTHER TYPES OF SEPARATION 

In this section we examine the coordinate systems as­
sociated with the diagonalization of the operator L 
= ~M12 - t(Pa - K o)' The algebra of (*) when L has been 
diagonalized is SL(2,R) with basis 

A =~MI2 +t(Po-Ko), B=tMol +t(P2-K2), 

C=-~M02+t(Pl- K 1) 

and commutation relations 

[A,B]=C, [C,A]=B, [C,B]=A. 

(3.1) 

(3.2) 

The coordinate systems associated with the diagonaliza­
tion of L and an additional operator from the above 
SL(2,R) algebra are the semisubgroup coordinates of 
type 7 of Paper 8 of this series. In this section we give 
the three subgroup coordinates discussed in Paper 8 and 
leave open the question of whether there are any more. 
This will be the subject of subsequent study. The three 
coordinate systems we present are different from those 
presented in the earlier two sections in that they do not 
enable a separation of variables to occur explicitly in 
the equation. This becomes clear for the individual co­
ordinate systems. 

For the choice of variables 

t = sin~(i3 -; e) , 
coSO"- COS2:({3- p) 

sinO" cosi ({3 + p) 
x= 1({3)' cosO" - COS2: - e 

sinO" sini ({3 + p ) 
(3,3) 

y= I()' cosO" - COS2: {3 - e 

and </! = [cosO" - cosic{3 - e)]1 12 exp(ix{3) 0(0", e), we have 
L</!=iX{3</!, where the function 0(0", e) satisfies the 
equation 

(.4.2 _B2 _ c2)6= (L 2 +t)6= (t-X2)e. (3.4) 

The diagonalization of A is easily performed in this co­
ordinate system as A = ilp when acting on the function e, 
and so for 0(0", e) = <1>(0") exp(iTe) the corresponding 
solutions of (*) have the form 

</!XT(O", {3, e) = [cosO" - cost({3 _ e)]112 

x exp(ixJ3) exp(iTp)P~:;_1I2 (coSO"). (3,5) 

In particular we note that the SL(2,R) generators acting 
on the functions e have the form 

C + iB = exp(ie)(- il z - i cothz ilp + x/sinhz + t tanhiz), 

C-iB= exp(-ie)(- 0z+icothz ilp-x/sinhz +ttanhtz), 

(3,6) 

where sinO" = tanhiz. The pure derivative parts of these 
operators are the same as the corresponding operators 
that would be obtained on the two dimensional hyper­
boloid parametrized by t = (coshz, sinhz, cose, sinhz sine). 
This suggests the procedure necessary for the remaining 
two subgroup coordinate systems which diagonalize C 
and A - C. The appropriate change of variables is given 
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by a knowledge of the subgroup type coordinates on the 
hyperboloid. it After extraction of the appropriate 
modulation function, the separation of variables is 
achieved. The results are: 

L The diagonalization of C: The appropriate change of 
variables is coshz = cosha coshb, tanp = tanha sinhb, and 
the R-separation modulation function is 

f= (cosha coshb + 1)114 exp[ix tan-1 (sinha cothb)]. 

(3.7) 

The generators acting on the functions <1>, where 6=f<l> 
have the form 

A = sinhb CJ a - tanha coshb a b - iX coshb / cosha, 

B = - coshba. + tanha sinhba b + iX sinhb/cosha, 

Then for <I> = exp(iTb )H(a) the function H satisfies 

(3.8) 

( 
a2 a XT ) 

-;"':Ta +tanha -a + ~h sinha+x2-t H(a)=O 
a a cos a 

(3.9) 

with solutions 
-1I2+x -1I2+x 

H(a) =P;.tX-m,./".'r/2 (cosha) , Q;.iX'f7"[,.tX71Z (cosha), 

where P~v(z) and Q~v(z) are the generalized Legendre 
functions. 11-13 

2. The diagonalization of A - C: The appropriate 
change of variables is 

coshz = cosha +ir2e-a, tanp =re-a/(sinha + ir2e-a), 

and the modulation function is 

f = [(cosha + ir2e-a - 1)/(cosha + ir2e-a + 1) ]iX/2 

exp{- i tan~l[r/(ea + 1)]}. (3.10) 

The generators acting on the functions <I> = fi)! have the 
form 

B=aa+ra" A-C=ar , (3.11) 

A + C = 2raa + (r2 - e2a )ar + H2ea - 1). 
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Then for <I> = exp(iTr)H(a) the function H satisfies 

[a 2/aa 2 
- a/aa - T2e2a 

- -!iT (2ea 
- 1) - X2 + i ]H(a) = 0, 

(3.12) 

which has solutions 

H(a) =Mi/4,±2(X2 _iT)I/2 (2Tea), 

where M J", v(z) is a solution of Kummers differential 
equation. 14 We see that each of the subgroup types has 
an R-separable solution and does not fit into the scheme 
of Sec. 10 We do not yet know if there are any more 
systems of these types. 

The principal contribution of this article is to provide 
examples of R-separable solutions, which to our 
knowledge have not previously been exhibited. A unified 
group theoretical approach must be able to account for 
the explicit solutions and coordinate systems produced 
here. 
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We show that the Euler-Poisson-Darboux equation [a,,-a,,-[(2m+ 1)/r]a,j0=O separates in 
exactly nine coordinate systems corresponding to nine orbits of symmetric second-order operators in the 
enveloping algebra of SL(2, R), the symmetry group of this equation. We employ techniques developed in 
earlier papers from this series and use the representation theory of SL(2, R) to derive special function 
identities relating the separated solutions. We also show that the complex EPD equation separates in 
exactly five coordinate systems corresponding to five orbits of symmetric second-order operators in the 
enveloping algebra of SL(2,([). 

INTRODUCTION 

This paper is one of a series concerning the relation­
ships between the symmetry group of a linear second 
order partial differential equation and the coordinate 
systems in which variables separate for that equation. 
The previous three papers1 were devoted to separation 
of variables for the wave equation (Ott - .:Cl.2)1/J(x) = O. If 
we pass to polar coordinates, 

x1=rcosrp, x2=rsinrp, 

and consider solutions of the form I/J(x) = exp(imrp)<1>(t, r), 
the wave equation transforms to the Euler-Poisson­
Darboux (EPD) equation 

[Ott - arr - (1/r) or + 11'Nr2] <1> = O. (0.1) 

Many authors write <1>(t, r) = r meet, r) and take the 
EPD equation in the form 

(0.2) 

but for our purposes (0. 1) is more convenient. This 
equation also arises from the wave equations 
(Ott - .:Cl.n) I/J(x) = 0, n> 2, if one looks for spherically 
symmetric solutions. For n = 2, m is usually taken to 
be an integer while, for n> 2, m may be half-integral. 
In this paper we will treat these cases simultaneously 
by allowing m to be a nonnegative real number. 

It follows from the results of Refs. 1 that (0. 1) can 
be solved by separation of variables in exactly nine 
coordinate systems associated with nine orbits of sec­
ond order operators in the enveloping algebra of 
SL(2, R). Here SL(2, R) is the local symmetry group of 
the EPD equation. 

In this paper we undertake a detailed study of these 
coordinate systems and show how one can use the rep­
resentation theory of SL(2, R) and its universal cover­
ing group to derive special function identities relating 
separable solutions corresponding to distinct coordinate 
systems. 

In Sec. 1 we compute the symmetry algebra sl(2, R) 
of the EPD equation and show that we can introduce a 
Hilbert space structure on the solution space of the EPD 
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equation such that this space transforms according to 
a unitary irreducible representation of the universal 
covering group of SL(2, R), taken from the discrete 
series. We also relate the space to two other models 
of this representation which are more useful for com­
putational purposes. 

In Secs. 2 and 3 we classify the nine possible coordi­
nate systems such that variables separate in (0. 1) and 
relate them to nine orbits of symmetric second order 
operators in the enveloping algebra of sl(2, R). We also 
compute the spectral resolutions of these operators. In 
Sec. 4 we use our earlier results to compute the separa­
ble solutions of (0.1), and in Sec. 5 we determine over­
lap functions relating various distinct bases. 

Finally, in Sec. 6 we discuss the separation of varia­
ble problem for the complex EPD equation and show that 
this equation permits separation in exactly five coordi­
nate systems corresponding to five orbits of symmetric 
second order operators in the enveloping algebra of 
sl(2, «:). We relate these results to a paper by 
Viswanathan,2 which employs Weisner's method3• 4 to 
derive generating functions for Gegenbauer polynomi­
als. For a slightly different approach to the complex 
EPD equation, see Ref. 5. 

All special functions appearing in this paper are de­
fined as in the Bateman Project. 6 

1. SYMMETRIES OF THE EPD EQUATION 

The symmetry algebra of the EPD equation 

[a tt - arr - (l/r) 0r+m2/r2]<l>(t,r)=0, 

r?- 0, - 00 < t < co, (1. 1) 

is the set of all linear differential operators 

L =a1(t, r) at +a2(t, r) ar+b(t, r) 

such that Lip is a (local) solution of (1. 1) whenever <l? 

is a (local) solution. By using standard techniques in 
Lie theory, 1.4 it is straightforward to show that this 
algebra is isomorphic to sl(2, R). Indeed, the operators 
A, B, C form a basis where 
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A == i[(1- f. - ill Ot - 2troT - f], 

B==- (~+tOt+roT)' (1. 2) 

C == ~[(1 + t2 + ill 0t + 2troT + t]. 

Note that A + C == Ot. Here, we are ignoring the trivial 
symmetry E of multiplication by the scalar one: EiI> == iI>. 
The commutation relations are 

[A,B]=-C, [A,C]==-B, [B,C]==A. (1. 3) 

We can express (1. 1) in terms of the Lie algebra 
generators with the result 

(1. 1') 

where C2 - A2 - B2 is the Casimir operator for sl(2, R). 

By definition, s1(2, R) is the Lie algebra of 2 x 2 real 
traceless matrices. We choose the isomorphism be­
tween our symmetry algebra and sl(2,R) such that the 
operators A, B, C correspond to the matricesA,B,C, 
respectively, where 

(0 1.) (1. 0) (01.) 
A== ~ ~ , B== ~ -t ' C== -t ~ . (1. 4) 

Then, using standard results from Lie theory, 4 we find 
that the operators (1. 2) exponentiate to a local Lie rep­
resentation of the group SL(2,R) by operators T(G), 
where 

T(G) iI>(t, r) == [(a + yt)2 - y2il]-1/2 

XiI> [(6t + j3)(0 + yt) - y6r2 r ] 
(0 + yt)2 - 1'21'"2 '(0+ yt)2 - )121'2 ' 

G== (~ ~) E SL(2,R). (1. 5) 

Here, SL(2, R) is a local symmetry group of (1. 1) in 
the sense that if iI> is a local solution of the EPD equa­
tion, then T(G) q; is also a local solution. 

Motivated by the connection between the EPD equa­
tion and the wave equation discussed in Refs. 1, we note 
that for any C'" functionj(k) with compact support in 
(0,00) the corresponding function 

iI>(t, r) == exp(- imn/2) 10'" exp(itk) Jm(kr)j(k) dk == u[j] 

(1. 6) 

is a solution of (1. 1). If we introduce the inner product 

(f1,h> == fo'" j1 (k)j2 (k) dk (1. 7) 

on the space of C., functions, we find that, in terms of 
the corresponding solutions iI> i (t, r) of (1. 1), the inner 
product reads . 

(iI>1' iI>2) == (f1,j2> == i fo'" iI>1 (r, t) ° t¥"2 (r, t) r dr 

(1. 8) 

Here, the last two integrals are actually independent 
of t. 

It follows from this that if we complete our pre­
Hilbert space of C., functionsj to form the Hilbert space 
L2 (0,00), the space of corresponding functions iI> == U [j] 
defined formally by (1. 6) will form a Hilbert space H of 
weak solutions of the EPD equation with inner product 
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(1. 8). The transformation U determines a unitary equi­
valence between these Hilbert spaces, 

The action of the symmetry algebra sl(2, R) on H is 
given formally by (1. 2). Indeed, these expressions make 
sense when applied to the dense subspace of H consist­
ing of those solutions iI> which arise from C'" functions 
j with compact support on (0,00). Moreover, as we shall 
see, they define symmetric operators on this subspace. 
The operators U-1KU on L 2(0, 00) related to operators 
KE sl(2,R) onH are easily determined using integration 
by parts: 

A== ~ k (~+ ~ d~ - ;2
2 + 1) , 

1 d 
B== 2" +k dk ' 

C==~k(-~_~ d~ +~+1) 0 

(1. 9) 

[We are using the same letter to designate correspond­
ing operators on H and L z (0, 00). ] It is now straightfor­
ward to show that iA, iB, and iC are essentially self­
adjoint on L 2(0, 00), Moreover, it is well known that 
these operators determine a unitary irreducible rep­
resentation of the universal covering group of SL(2, R) 
from the discrete series. 7,8 

Indeed, it is easy to check that C has discrete spec­
trum iA == i(m + s + 1/2), s == 0,1,2,'" with a corre­
sponding ON basis for L2 (0,00) consisting of 
eigenfunctions 

j (t)(k)==( 2r(s+1) ) 1/2 (2k)m exp (-k)L(2m)(2k) 
s r(2m + s + 1) s' 

(1. 10) 
Cj;1) = i(m + s + t)j~1), (fs(t), js~1» = 6ss" 

From this fact and the relation 

C2 _ A 2 _ B2 == t - m 2 (1. 11) 

we see that the operators (1. 9) determine the irreduci­
ble representation D;"_1/2 from the negative discrete 
series. 4,7,8 

For 2m an integer this Lie algebra representation 
exponentiates to a single-valued unitary irreducible 
representation of SL(2, R) defined by unitary operators 
T(G), where 

T(G)j(k) == - I' -1 exp[i(ka/Y + rr /2 - rrm) 1 
x 10'" exp(il6/Y)J2m«2/Y)..fkz)j(Z)dl, y*" 0, 

T(G)j(k) = 0 exp(ika f3)j(a 2k) , 

G==(~ ~) ESL(2,R), jEL2(0,00). 

1'=0, 

(1. 12) 

For 2m not an integer, operators (1. 12) define a 
multiple-valued representation of SL(2, R). In this case 
we obtain a single-valued representation of the universal 
covering group of SL(2, R), and expressions (1. 12) are 
valid only in a neighborhood of the identity element of 
the covering group. For a discussion of the parametri­
zation of the covering group see Refs. 7, 9. 
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There is another model of n;"_1/2, due to Bargmann, 9 

which we will also find useful. This model is defined on 
the Hilbert space H m of all functions ](z) = L::=oa,..z", 
a" EO a:, analytic in the disk I z I < 1 and such that 

lim [(l-l)/1T] f !](z)!2(1_zzY-2dxdy<00, 
1-2m+l 1 .. 1<1 

1>1, z=x+iy. 

The inner product is 

(J,K>m= lim [(z-1)/1T] 
1-2m+l 

X f ] (z) K(z)(1 - ZZ)I-2 dx dy 
1 .. 1 <1 

(1. 13) 

and a convenient ON basis is provided by the monomials 

].(z) = [r(2m + s + 1)/r(2m + 3) s! J 112 Z', 
s =0,1,2,···. (1. 14) 

The operators A, B, C corresponding to (1. 2) and (1. 9) 
are 

A = i{(l + z2) d~ + (2m + 1) z} , 

B=i {(1-Z2) d~ -(2m+l)z} , (1. 15) 

C = i {z ~ + m + i} . 
For more details about this representation, see Refs. 
7, 9. Since C]. =i(m + s + 1)] S' it follows that the basis 
vectorsls(1)(k) and]s correspond. The unitary mapping 
VfromHm onto L 2(0,00) which carries]. tol;l) and 
the operators (1. 15) to (1. 9) is 

V](k)=(J, V(k, '»m, ]EHm, 
., 

V(k,z) = .0 1~1)(k)].(z) 
.=0 

= [2/r (2m + 3) ]lf2 (2k)m (1 _ z)-2m-t 

X exp(- k) exp[ - 2kz/(1- z)]. 

(1. 16) 

Similarly, the unitary mapping W= UV from H m onto 
His 

W](t,r)=(J, W(t,r,'»m, ]EHm, 

Wet, r, z) = [22m r mr(m + 1) exp(+im1T/2)j;l21Tr(2m + 3)] 

x -IT (1 + it) (1 - z) + 2z)2 + (1 - z)2r 2}-m-1/2. 

2. THE SEPARABLE COORDINATE SYSTEMS 

As shown in Refs. 1 the EPD equation permits 
separation or R-separation of variables in nine coordi­
nate systems corresponding exactly to the nine SL(2, R)­
orbits in the space S/{C2 - A2 - B2}, where S is the space 
of symmetric second-order elements in the universal 
enveloping algebra of sl(2, R). A particular separated 
solution <I> is characterized by (1. 1) and the eigenvalue 
equation S<I> = ;>,.<I>. The eigenvalue;>,. is the separation 
constant. If two operators S, Sf are on the same orbit, 
i. e., if cst = T(G) ST(G-1), where C E R, c* 0 and 
GE SL(2, R), then the coordinate systems associated 
with Sand S' are considered equivalent. A complete 
list of orbit representatives is 

1]. C2 , 

2]. (A + C)2, 
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3]. B2 , 
4]. 2A2 +AC + CA - aB2, a> -1, (2.1) 

5]. 2C2 + AC + CA + aB2, a> -1, 

6]. rB2 +AC +CA, O';;r<oo, 

7]. B2 _ S2C2, 0<s2<1, 

8]. C2 +k2B2, O<~<oo, 

9 ]. (A +C)B+B(A+C) 

(In case 4] and 5] we shall always normalize so that 
a=O). 

It is clear that the operators 1]-9] are symmetric 
in the L2 (0,00) model of the representation n;"-lf2. [Here 
we consider these operators as initially defined on the 
dense subspace of C., functions with compact support in 
(0,00). ] In this section we will determine the spectral 
resolutions of six of these operators in this model. 
Operators 6], 7], and 8] are most conveniently studied 
in the H m model and will be treated in the following 
section. 

System 1] has been treated above. It is straightfor­
ward to show that the operator iC has deficiency indices 
(0,0). Thus iC is essentially self-adjoint. The spectrum 
of the closure of C is i(m + s + 1), s = 0,1,2, .. " and 
each of these discrete eigenvalues has multiplicity one. 
The corresponding ON basis of eigenvectors is listed 
in (1. 10). 

For system 2] we have A + C = ik. Clearly the closure 
of - i(A + C) has continuous spectrum covering the posi­
tive real axis and a basis of generalized eigenfunctions 

li2)(k)=6(k-;>,.),0<;>,.<00, 
(2.2) 

where 6(;>,.) is the Dirac delta function. 

For system 3] we have B = 1 + k d/ dk. It is easy to 
show that the closure of - iB is self-adjoint with con­
tinuous spectrum covering the real axis and a basis of 
generalized eigenfunctions 

I ~3) (k) = (21T)-lf2 k i V.-lf2, _ 00 < jJ. < 00 

(2.3) 

System 4J with a = 0 is more interesting. Here the 
operator L = 2A 2 + AC + CA is symmetric with deficiency 
indices (1,1). The possible self-adjoint extensions La 
can be parametrized by the real number 0', 0 < 0' ~ 2. 
For each 0', La has discrete spectrum ,\ = m 2 - (0' + 2s)2 
- t s = 0,1,2, .. " each eigenvalue of multiplicity one, 
and continuous spectrum. The normalized eigenvectors 
I!~!(k) form an ON set for L 2(0, co): 

I~~).(k) = [2(0' + 2s) k-t Jl/2 J",+2.(k), s = 0,1,"', 

(/
(4) 1(4) > 6 
ex,s, a,s', == 88" 

L /,(4) == [m 2 _ (0' + 2S)2 - 1.]/(4) a a,s . 2 a,s· 

(2.4) 

The overlaps between distinct self-adjoint extensions 
La" L",., 0.*0", are given by 
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<f
(4) F(4) ) 
a,s' J a,', s' 

_ ,J(a + 2s)(a' + 2s') simT[(a - a')/2 + s - s'] 
- 1T[(a-a')/2+s-s'][(a+O")/2+s+s'1 . 

(2.5) 

Restricting ourselves to the case QI = 2 for simplicity, 
we find that L2 has continuous spectrum A = m 2 + {3 - t, 
{3 >- 0, with corresponding generalized eigenfunctions 

-( ) A4
$ (k) = [Ji"il(Yk) + J_i~(Yk)Jl2 fk sinh(1T\! {3), 

-q) -(4) , <f 2,$ , f 2, 6' > = 0 (13 - (3 ). 

The functions {f ~;~,j~;1}form a complete set for 
L 2(0,00). More details can be found on pp. 93-95 of 
Ref. 10. 

For system 5] with a = ° we find that the operator 
M = 2C 2 + AC + CA is essentially self-adjoint. The 
closure of M (which we also call M) has continuous 
spectrum ,\ = t - m 2 - tJ. 2, tJ. >- 0, of multiplicity one and 
a basis of generalized eigenvectors. 

f~5)(k)=[1T/v'2ktJ. sink(tJ.1T)]Ki" (k), 0< tJ.< 00, ) 
(2.6 

<f;5), f~?» = O(M - }1'), Mf: 5J = (t - m2 - /J.2)f;5). 

For system 9] we find that the operator N = (A + C) B 
+ B(A + C) has unequal deficiency indices (1,0). How­
ever, there exists an obvious extension of N to the 
space L 2(R) =L2(- 00, 0) EBL2(0, co) with deficiency in­
dices (1,1). Of the self-adjoint extensions of this latter 
operator we choose the one with continuous spectrum 
covering the real axis and generalized eigenfunctions: 

h.(9) (k) = exp(i,\/k)/k f2iT, - co < A < co, 
(2.7) 

Note that {f~9)} satisfies the usual orthogonality rela­
tions on L 2(R) but not on L 2(0, co). 

3. LAME BASES 

The spectral resolution of the operators 6], 7], and 
8 J is carried out in this section using the model of 
D-:n_l /2 due to Bargmann, 9 defined on the Hilbert space 
H m as given in Sec. 1. The reason for treating these 
operators in this model rather than the L 2(0, 00) Hilbert 
space model with SL(2, R) generators as in (1. 9) is that 
they are second order differential operators rather 
than fourth order. 

In fact, if we consider the functions 0 (z) defined by 
J (z) = zm-1 /~ (z), where J (z) rcH m, and put z = ie i8 with 
e complex, the generators A, E, and C acting on the func­
tions 0 (z) have the form 

A= - sine :e + (m -~) case, 
(3.1) 

B= - cose :e -(rn -t) sine, C = :e' 
The form of the generators (3. 1) is the same as used 

in Ref. 11, where the bases described by the operators 
1]-9J were studied for the principal series of SL(2, R). 
The appropriate variables which change eigenvalue equa­
tions for the operators 6J, 71, and 8] to Lame equations 
have been given in that article. The spectral resolution 
for each of these operators also follows along the lines 
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of our previous article. We now discuss each of the 
three Lame bases in the order 8], 7J, and 6J, treating 
the simplest cases first. 

For the coordinate system 8] it is convenient to 
choose the functions L (v) defined by 

q(z)=(dn(v,s)]1/2-mL(v), (3.2) 

where 

_ 1 sn(v, s) 
CQs8- (1 +k2)1!2 dn(v, s) 

and s = k/(1 + k 2
)1 /2. The eigenvalue equation for this 

coordinate system is then 

(..;1; + S2(1112 - t)cn2(v, s) - 1 ~ k 2 )L(v) = 0. (3.3) 

Suitable eigenfunctions are the Lame Wangerin functions 
with boundary conditions 

(1) [sn(v, s) J1 /2 L(v) bounded at v = iK' and L{(K + iK') 
=0. 

This gives the solution L.(v) = F~_l /z(v, s) with 2p 
zeros in the interval (iK', iK' + 2K). 

(ii) [sn(v, s) J1 /2 L A(V) bounded at v = iK' and L ,,(K + iK') 
= ° giving the solution L l.(v) = ~_;1 /2(V, s) with 2p + 1 
zeros in the interval (iK', iK' + 2K). 

It should also be mentioned that the resulting 
eigenfunctions 

J ~6)(Z) =:{[s' sn(v, s) + icn(v, s) lis' dnZ(v, S)}m-l /2 L(v), 

(3.4) 

where s' =: (1- S2)1 /2, are analytic inside the unit circle 
of the complex z plane and are elements of fi m(m 
=1,2,3," .). 

For the coordinate system 7] we choose the functions 
In (v) defined by 

o (z) = [is' / cn(v, s) ]m-lIO/h (v), (3.5) 

where 

cose=dn(v, s)/cn(v, s). 

The eigenvalue equation for this coordinate system then 
becomes 

(~- S2(1112 _ t )sn2(v, s) - A);}'J ,,(v) = o. 

NatUral choices for eigenfunctions are the Lame 
Wangerin functions with boundary conditions: 

(3.6) 

(1) [sn(v, S)]1I2;}'J ,,(v) bounded at v = iK and;}'Jl.(K + iK') 
=0 giving the solution/rl).(v)=~_ldv, s) with 2p zeros 
in the interval (iK', iK' + 2K); 

(ii) [sn(v, s) J1I21(1 A(V) bounded at v = iK' andlYJ A(K + iK') 
=: ° giving the solution;}'1 ).(v) = ~:l /2(V, s) with 2p + 1 
zeros in the interval (iK', iK' + 2K). 

In each case the spectrum is discrete and the eigen­
values are labeled by the index p, p = 0, 1, 2, .. '. The 
resulting eigenfunctions 

JP>(z) ={s'(s'sn(v, s) - dn(v, s)]/cnZ(r, s)}m-l /2/h,,(v) 

(3.7) 
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are analytic inside the unit circle of the complex z plane 
and belong to H m' The coordinate system 6] is the most 
complicated of the three under consideration. A con­
venient choice of function IV (v) is 

_ ( Nsn(ll, s)dn(ll, s) )m-1/Z/V(ll) 
S- (z) - [-(1 + 1'2)172 + r + 1Jsn2(ll, s) - 2r 

(3.8) 

where 

sinl! 
2[1- (1 + yZ)l/Z] + [(1 + yZj1/Z - 1- r]sn2(v, s) 

[1 +r- (1 +,?j1l2Jsn2(v, s) - 2r 

and 

(1+r2)1/2_r 
2(1 + 1'2)172 

The eigenvalue equation for this coordinate system is 

(
d2 

2 2 1 2 (rnZ-i)r 
dc:} - t (rn -.- )sn (W, t) + (1 + 1'2)172(S _ is ')2 

(1 + yZ)l/ZA) _ 
+ ( . ')2 /V~(w) - 0. s - zs (3.9) 

Here we have introduced the variables, W = (s + is')ll 
+iK'(t) and t=(s+is')/(-s+is'). The resulting equa­
tion is of the Lame type with modulus t on the unit cir­
cleo Natural choices for eigenfunctions are the Lame 
Wangerin functions with boundary conditions as for the 
coordinate system 7], where v is replaced by wand r 
by t. The eigenfunctions are then /V~(w) = F"m_1/Z(W, t) 
with P = 0, 1, 2, ... , and the spectrum is discrete. The 
corresponding eigenfunctions J ~6)(Z) are analytic in the 
unit circle in the complex z plane and are members of 

Hm. 

We see that for the discrete series D;"_1/2 of SL(2, R) 
the most convenient basis eigenfunctions for the three 
Lame bases are the Lame Wangerin or finite Lame 
functions. This is opposed to the situation in Ref. 11, 
where we dealt with the principal series of SL(2, R) and 
the corresponding basis functions for system 8] were 
the periodic Lame functions. For the discrete series 
D;"_1/2 in the Bargmann model the operator specifying 
system 8} is singular inside the unit disc. The operators 
of the other two systems are Singular on the unit disc. 
The imposition of boundary conditions that gives Lame 
Wangerin functions for these systems yields eigenfunc­
tions in H m' which are analytic inside the unit disc and 
zero at the singular points. 

4. THE TWO-VARIABLE MODEL 

If {t~j )(k)} is a basis for L 2(0, 00) consisting of eigen­
functions of the operator S, symmetric and second order 
in the generators (1. 9) of sl(2, R), then {F~i)(t, r)} is a 
basis for H consisting of eigenfunctions of the corre­
sponding operator S' constructed from the generators 
(1. 2), where 

F?)(t,r)=uWi)}, j=1, ... ,9, (4.1) 

and U is the unitary transformation (1. 6). Indeed we 
have the relations 
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Sj~j) = AAi), s'FF) = AF~j), 
(tAU ),/~t» = (U Aj

), Uj}i.» = (FF), F~t» = On.. (4.2) 

Furthermore, Fi:!)(t, r) is a solution of the EPD equa­
tion (1. 1). It follows from results proved in Refs. 1 
that for fixed j there exists a coordinate system 
{u(t, r), vet, r)} such that variables separate (or R­
separate) in the EPD equation and such that F~j)(t, r) 
= exp[Q(u, v) ]JA(u)KA(v), where J A, KA are solutions of 
the separated second order ordinary differential equa­
tions and either Q == ° (separation) or Q, ° and Q cannot 
be expressed as a sum Q(u, v) =q1(U) +q2(V) (R-separa­
tion). In particular the possible coordinate systems and 
separated equations (as well as the functions Q) are 
listed in Ref. 1, Paper 9. 

In this section it is our aim to compute all the func­
tions F~j)(t, r) defined by (4.1) and (1. 6). In general, the 
integrals (4.1) are rather difficult to evaluate. In par­
ticular we have not been able to find the integral for 
j = 5 nor two of the three integrals needed for j = 4 in 
the Bateman Project. 

However, our work is enormously simplified because 
we know in advance the coordinates in which variables 
separate for (4.1). Thus we can immediately evaluate 
the integral as a linear combination of four terms (since 
J A and K). each satisfy a known second order ordinary 
linear differential equation). The four constants can 
then be determined by evaluating the integral for spe­
cially chosen values of the variables u, v. In this re­
spect the functions Fi:! )(t, r) listed below can also be re­
garded as evaluations of a number of interesting inte­
grals related to the EPD equation. 

For several cases we find that the integral (4.1) does 
not converge sufficiently rapidly so that differentiation 
under the integral sign is permitted. It is not immedi­
ately apparent in these cases that F~j) is actually a 
solution of the EPD equation. However, it is always pos­
sible to justify our assertions by noting that if we allow 
t to become complex and take Imt > 0 in (1. 6), then the 
convergence in each integral (4.1) is sufficiently rapid 
that multiple differentiation with respect to rand t is 
permitted under the integral sign. In each case one can 
verify by inspection that the coordinates u(t, r), v(t, r) 
can be extended to the domain Imt? ° and that variables 
still separate in the EPD equation. Finally one can 
evaluate the integrals (4.1) for Imt > ° and then use the 
Lebesgue dominated convergence theorem or a similar 
device to justify going to the limit as t becomes real 
through positive imaginary values. 

We have the following results: 

1}: F~l)(t, r) ==F}l)(a, cp) 

( 
2(s!) )1/2 r(2rn + 1) 2-m-1/2 

- r(2m + s + 1) rem + 1) 

X exp[ - i(rn - 1)7T /2]'; cosa- coscp sinma 

x exp[ - i(s + m + 1/2)cp]C ~m+1/2)(cosa), 

S = 0,1,2, ..•. 

sincp r sina 
cosa- coscp' cosa- cosCP' 
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0,,; u,,; rr, 2rr-u>cp>u, 

lIP i(t2_-r-1)+it 
e =['?+{(?_tZ_1)2]17Z' 

i. i(t2 
- -r + 1) + ir 

e =[?+i{?_tZ_1)Z]1l2' 

tfi =,; COSU- COScp, (Ff), F~~») = ass'. 

Here, C~V)(z) is a Gegenbauer polynomial. 

2]: F~2)(t, r) = exp(- imrr/2) exp(itA)Jm(Ar), A> 0, 

u=t, v=r, Q=O, (F~2),F~~»)=O(A_A')o (4.4) 

FjJ.<:! )(t, r) = exp[± i1T(m + 1/2 + i/J.)/2](± t)-m-ljJ. -liz 

x exp(imrr/2)r
m 
r( +. +1.) 

rem + 1)\l2rr m Z/J. 2 

X ZF 1(i/J./2 + m/2 +t, i/J./2 +m/2 + t; m + 1; -r/t2), 

r< It I, 
F~3)(t, r) = [exp(- imrr/2)/ffi]{2 i " -1 IZ 

[r(m/2 + i/J./2 + t )y-m / r(m/2 - i/J./2 + t)] 

r> It I, 
Here the (+) sign holds for t > ° and the (-) sign for 

(4.5) 

t < 0. In this case u = t, v = r/t, Q '= 0, and (F~3), F~3.») 
= o(/J. - Ill). 

For systems of type 4] we consider three cases. 

4a]: It I ?r+l: For t?1 we have (v=a+2s) 

F~4.)s(t, r) = F ~4,>s( 8, cp) 

== exp[i1T(V /2 - m + t)] J2'lIT 
xP~~ Iz (cosh8)Q:'_1 12(coshcp), 

(4.6) 

s = 0,1,2, '0., for 8? cp, and F~4)s(8, cp) = F~4)sCcp, 8) for 
8 < cp. Here P~ and Q~ are Lege~dre function's and 

t = cosh8 coshcp, r = sinh8 sinhcp, 8, cp ? 0, (4.7) 

For t,,; - 1 we have F~4,)s(t, r) = exp(- imrr)F~4,)s(- t, r). 

4b]: I t I ,,; r - 1 : 

F(4) (8 ) _ exp[irr(- 5m/2 + v + t )]2v
-

m
•
1r(t + v /2 - m/2) 

"',5 ,cp - rrr(t+v+m)r(i+m/2-v/2) 

Qv-1 Iz(i sinh8)Qv_1 12(i sinhcp), 

t = sinh8 sinhcp, r = cosh8 coshcp, - 00 < 8 < 00 

4c]: It I +r,,; 1: For t? 0, 

wr(v + m +~) exp(- imrr/2) 
rev - m +t) cos[(rr/2)(v - m - t)] 

(4.8) 

x P~:;' 12(cos8) P~:'lIZ(COSCP), v = a + 2s, (4.9) 
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t=cos8coscp, r=sin8sincp, 0";8,cp,,;rr/2. 

For t < 0, F~4,>s(t, r) = exp(- imrr) F~4y_ t, r) 

These three parametrizations do not cover the full 
r-t plane but, as shown in Ref. 1, Paper 9, variables 
do not separate in the remaining domain. We omit the 
computation of the continuum eigenfunctions i~4,~ 

5]: F2)(t, r) =F~5)(8, cp) 

rr3 12r(t - i/J. + m)r(i + i/J. + m) 

2'; k/J. sinh(/J.rr) 

xP:i"/2+i,.(cosh8)P:i"/2+i,. (- i sinhcp), 

0<j.J.<00, (4.10) 

t = cosh8 sinhcp, r = sinh8 coshcp, 0,,; 8, cp. 

For t < ° we have F~5)(t, r) = exp(- imrr)F~5)(_ t, r). 

9]: 

{
,f2{Tf Km(2x~)I m(2X~) 

= i/1i72H;;)(2xfi)Jm(2X../T) 

if t> 0, A < 0, 

if t > 0, A> 0. 

(4.11) 

(4.12) 

Also F~)(- t, r) = exp(- imrr)F~9)(t, r). 

For cases j = 6,7,8 it is most convenient to use the 
modelH m, (1.13)-(1.15). The passage to the two vari­
able model proceeds along similar lines as in our earlier 
work with Lame bases. 11 In each case the resulting 
basis function is determined to within a phase. This 
quantity can be chosen by adopting a fixed normalization 
of the Lame Wangerin functions. 

8]: F~8)(t, r) = A~[dn(a, s) dn(/3, s) + iss' cn(/3, s) ]112 

x,F,;,.lIZ(a, s),F,;,_1I2(/3, s), 

where 

t=s sn(a, s) sn(/3, s)/R, r= 1/R 

and 

R = - i dn(a, s) dn(/3, s)/ss' + cn(a, s)cn(/3, s') 

and the variables a, tl are in the ranges a E [0, 2K], 
f3 E. UK', iK' + 2K). 

(4.13) 

(4.14) 

7]: FP)(t, r) = A~[s'sn(a, s)sn(/3, s) + cn(a, s)cn(i3, S)]1/2 

(4.15) 

where 

t=dn(a, s)dn(i3, s)/ss 'R, r= I/R, 

and 

R = s[sn(a, s )sn(/3, s) + cn(a, s )cn(i3, s)/s ']. (4.16) 
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The variables a,13 can vary in the two ranges a, 13 
E [0, ZK], a, 13 E [iK', iK' + ZK]. 

6]: Fi6 )(t, r) = A~[(S - is')dn(w, t)dn(ll, r) 

+ (s +is')cn(w, t)cn(ll, t)]1/2 

x F;,-1 12(W, t)F;,_l 12(1l, t), 

where 

t = 2v'Ss'(s + is')sn(w, t)sn(ll, t)/R, 

r= 2..fSS1/R 

(4. 17) 

(4.18) 

and R = [(s - is ')dn(w, t)dn(ll, t) + (s + is')cn(w, t)cn(ll, t)], 
t = (s + is ')/(s - is'). 

The variables wand Il vary in the ranges w, Il 
E [- iK', iK'], which is the line segment joining the points 
- iK', iK' in the complex plane. (Remember K' and K 
are complex.) Here for the Lame bases we have used 
the same notation as in Sec. 3, where the spectral anal­
ysis was performed. 

5. OVERLAP FUNCTIONS 

Here we compute several of the overlap functions 
<t!!) ,Jii », which allow us to expand eigenfunctions f~) 
in terms of eigenfunctions Ji i

). Since (T(G)fii>, T(G)fi iJ) 

=<t~j),fl.!», the same functions allow us to expand eigen­
functions T(G)fJi ) in terms of eigenfunctions T(G)f~i). 
Moreover, since <t~j), JiO ) = (F~j) , F~i», the over laps 
allow us to expand eigenfunctions F~j) in It in terms of 
eigenfunctions F~i). These last expansions converge in 
the Hilbert space sense. Pointwise convergence has to 
be checked separately. 

However, if we choose r?- ° and Imt > ° in (1. 6), then 
the function Ht,r(k) = exp(+im1T/2) exp(- itk)Jm(kr) be­
longs to L 2[ 0,00 ] and the transformation U [f], (1. 6), can 
be represented as an inner product on L 2[0, 00]: 

(5. 1) 

In this case it follows easily that all of the expansion 
formulas 

J ~j )(t, r) = J <t~j), f~i »] ~i )(t, r) dA, 

Imt > 0, r?- 0, (5.2) 

are valid in the sense of pointwise convergence, a. e. , 
(See the analogous arguments in Refs. 12 and 13.) In 
each case it is easy to verify that separation of vari­
ables persists in the domain Imt > ° if it holds for Imt 
=0. 

Overlaps involving system 2] are especially easy to 
compute: 

<tJ.j),/~2» =f~j)(A), 0< A < 00. (5.3) 

In addition we list the over laps <tIJ.U ), f}» between the j] 
basis and the discrete basis 1]: 

1+(3) /(1»= (r(2m+s+1»)1/2 mr(2m+i/l+~) 
VIJ. , s (S!)1T 2 r(2m + 1) 

x F (-s,m+ill+~12) 
212m + 1 ' (5.4) 

375 J. Math. Phys., Vol. 17, No.3, March 1976 

<J~4,~, J11 » 

= 2",-v+1(1 + n-v-m-1 12 rev + m + ~) (vr(2m + s + 1») 1/2 
rev + 1) (s! )r(2m + 1) 

x FA(v+m+~; v+t,-s; 2v+1, 

2 + l' 2i 2) 
m 'l+i'l+i' 

v=a+2q, q,s=0,1,2,···. (5.5) 

Here FA is a Lauricella function. 14 The over laps 
(1,.5)'/11 » and <t~9),/!1», while straightforward to com­
pute, are of a complexity similar to (5.5) and will not 
be listed here. [Note that the latter overlaps are not 
unitary since {j{9)} is an ON basis for L 2(R), not 
L 2[0, 00].] 

The overlaps <J~j),/~l», j=6, 7, 8, can be obtained 
immediately from the H m models. The computation of 
the overlap functions between the Lame bases 6], 7], 
and 8] and the basis 1] is easiest to perform by giving 
the recurrence formulas for these coefficients (see Ref, 
11. ) We consider explicitly the case of coordinate sys­
tem 8], where the basis functionJ~8)(z) is even under 
the interchange z - - z. Applying the operator C2 + k 2 B2 

to both sides of the identity, 

'" J ~8)(Z) = ~ a
n
z 2n, (5.6) 

n=O 

we obtain the recurrence relation 

k2(2n + 2)(2n + 1)an+1 

+ [4n(k 2 + 2)(1- m - 2s) - 4A- (2m -1) (2m - 1 +1?2)]an 

+ 2k2[2(n - 1)2 + (2m - l)(n - m) ]an_1 = 0, (5.7) 

2k2a1 - [4A + (2m - 1)(2m - 1 + k2) lao = 0. 

The normalized overlap functions bn are then given via 
the relation 

an = [['(2m + n + 1)/r(2m + 3)n!)1 12bn. 

For the case of eigenfunctionsJ~(z) which are odd the 
analysis goes through as before by making the substitu­
tion n - n + ~. We should mention here that even and odd 
eigenfunctionsJ~8)(z) correspond to Lame Wangerin 
functions with an even or odd number of zeros in the 
interval (iK' (s), iK'(s) + ZK(s» (see Sec. 3). Similar re­
currence relations for the basis eigenfunctions of sys­
tem 7] can be derived by making the substitutions k2 

- - 1/s2, A - - Vs 2
• The recurrence relation for 6] is 

somewhat more lengthy and will not be presented here. 

Finally we list the interesting over laps 

(t,4) j.(S)\=!!..(. v ) 1/2 r«v +ill)/2)r«v - ill)/2) 
",,"" / 4\/lsinh/l1T r(v+1) 

fv + ill)/2, (v - i/l)/2 \ 

x 2F1 \ v + 1 ; - 1), v = a + 2s, 

/.(3) +(4»_-rzi7= 2
i
lJ.-lr(v+i/l)/2) v=a+2s. 

VIJ. '}"',s -vv/1T r«v-i/l)/2+1)' 

As discussed in earlier papers in this series, the 
most general overlaps between basis functions are the 
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mixed basis matrix elements (T(G)t,i),j{1 ». The deter­
mination of these matrix elements is straightforward, 
though frequently the result is complicated. 

6. THE COMPLEX EPD EQUATION 

In the case where the variables r, f in (1. 1) are com­
plex and m is a complex constant, we can regard the 
EPD equation from another point of view. For the sym­
metry algebra we now choose the complex Lie algebra 
sl(2, a;), whose action on solutions of (1. 1) is given by 
(1. 5), where now the matrix elements a,~, 'Y, 0 are al­
lowed to be complex and constrained only by the re­
quirement detG = 1. 

We can now pose the problem of determining the pos­
sible coordinate systems {u, v} in which the complex 
EPD equation is separable. Here, we require that the 
coordinate transformation functions u(r, f), vCr, f) be 
only complex analytic in r, t rather than real analytic 
as in the case of the real EPD equation. Furthermore, 
we regard two coordinate systems as equivalent if one 
can be obtained from the other by a transformation 
(1. 5) from the group SL(2, a;). Just as in Sec. 2, we ex­
pect the equivalence classes of coordinate systems to 
correspond to the SL(2, cr)-orbits in the space gc =5c / 
{C2 _ A 2 _ B2}C, where 5c is the space of symmetric 
second-order elements in the universal enveloping alge­
bra of s1(2, cr). 

To determine the adjoint action of SL(2, (1;) on 5c , we 
choose a more convenient basis for sl(2, <r:): 

51 =iA, 52=iB, 53 =C, 

[51' 52] = 53' [53' 51] = 52' [52,53] = 51' 
(6.1) 

A general element Q of 5c can be expressed uniquely 
in the form 

Q = t qjk5 j 5k, qjk =qkj EO a;. 
j ,k:1 

(6.2) 

Using the well-known local isomorphism of SO(3, a;) 
and SL(2, cr), and identifying Q with the 3 x 3 symmetric 
matrix Q = (qjk), we see that under the adjoint represen­
tation Q transforms according to Q - 0-1QO, ° EO SO(3, cr). 
The elements ~f gc can be identified with the matrices 
Q such that trQ = 0, or more conveniently, w~ can add 
arbitrary multiples of the identity matrix to Q. It is now 
a simple exercise in matrix theory to classify the orbits 
in f! under the adj oint representation of S L(2, a;). We 
present only the results and lab~.l the four possible or­
bit types by the eigenvalues of Q. The symbol ;\.(2) [or 
;\.(3)] signifies that the eigenvalue A corresponds to !l 
generalized eigenvector of degree 2 (or 3). Every Q 
EO f) c is conjugate under the adj oint representation to an 
element in the following list. 

eigenvalues 

a. ;\., JJ.,p 

;\.+ JJ. +p=O, 

orbif representative 

ASf + JJ.5~ + P5~ 
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c. ;\.(2), - 2;\. (;\. +~)5: + (;\.- ~)5~ - 2AS: 

+ ~i(5152 + 5251 ) 

d. 0(3) (51 + i52)53 + 53(51 + iS2) 

(6.3) 

For our purposes we can add a scalar multiple of 
5f + 5~ + 5~ to any of the orbit representations without 
changing the element of 1. Then we find that any ele­
ment of t is equivalent to a scalar multiple of one of 
the following elements. 

a. 5~ - k25~, k *- 0, 

b. 5f, 

6],7], 8], 

1],3] 

c1. (HO) 25f+(1-6;\')5~+i(5152+5251)' 4],5], (6.4) 

c2. (;\.=0) 5f-5~+i(5l52+5251)' 2], 

9]. 

Each of the nine SL(2, R)-orbit representatives in 
(2.1) belongs to one of the five orbits (6.4), and we have 
indicated the orbit inclusions in the last column of (6.4). 
We see that each of our five orbit-types contains at 
least one of the SL(2, R)-orbits and that some contain 
more than one. From these facts we infer that there 
are no new separable coordinate systems obtained by 
complexifying the EPD equation: all coordinate systems 
follow from an obvious analytic continuation of the sys­
tems 1]-9]. However, the systems 1] and 3], the sys­
tems 4] and 5], and the systems 6],7],8] are equivalent 
for the complex EPD equation. 

A particularly interesting basis for the solutions of 
the complex EPD equation is that of type b: 

J ~(w, T) = Tn+m+l(l _ w2)m 12C:;+l /2(W), 

Bj~= (n +m +~)J~. 
(6.5) 

Here, C~(w) is a Gegenbauer function (a polynomial for 
n= 0,1,2, ... ) and the complex variables w, T are given 
by 

In terms of the variables w, T the local group action 
(1. 5) of SL(2, C) becomes 

T(G)<l>(w, T) = U1l2Vl/2 

X <l>«w + 2{3'Yw + a{3T + 'YOT-l)/V; TU-l ), 

u = [( 02 + (32T2 + 2{3oTw)/(a2 + y2T-2 + 2ayrl w) ]112, 

(6.6) 

V = [(2w + 2{3yw + a{3T + YOT-1)(2{3yw + a{3T + YOT-l ) + 1]1/2. 

(6.7) 

Here 

G = (: :) EO SL(2, a;). 

Weare now in a position to apply Weisner's method2
-4 

to expand solutions of the complex EPD equation in 
terms of the basis (6.5). Suppose <l>(r, t) ;: <l>(w, T) is a 
solution of the EPD equation such that 
T-m-l (l _ w2)-m 12<l>(w, T) is analytic in T and w in a neigh­
borhood of (w, T) = (0,0). Then there exist complex con­
stants an such that 
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~ 

r- m-1(1_ uf)-.. /2<1>(w, r) =L; anC;;,+1/2(W)rn • (6.8) 
n=O 

This method was employed by Viswanathan2 to derive 
generating functions for the Gegenbauer polynomials. 
[The awkward factor r-m- 1(1_ w2)-m/2 which appears in 
(6.8) is due to our insistence in retaining the EPD equa­
tion. One can easily remove this factor by transforminr 
the EPD equation to the equivalent equation for ultra­
spherical functions which appears in Ref. 2.] In order 
to derive useful results from (6.8), one characterizes 
a solution <I> of the EPD equation by requiring that it be 
an eigenfunction of a first or second order operator in 
the enveloping algebra of SL(2, C). As Viswanathan re­
marked, in practice one can compute <I> precisely in 
the cases where it is possible to find coordinate sys­
tems in which variables separate in the equations for 
<1>. The results of our paper show why this is so and 
exactly when separable variables exist. Once a suitable 
<I> is computed one can evaluate the constants an by 
choosing special values of the variables, e. g., w = O. 
Similarly one can derive expansions for T(G)<I>, i. e., 
functions which lie on the same SL(2, C)-orbit as <1>. 

According to (6.4) there are five types of orbits to 
consider to obtain all possible generating functions for 
the Gegenbauer polynomials via Weisner's method. An 
examination of Viswanathan's paper shows that he has 
found four of these orbits, omitting only the Lame 
case (type a). This case can be treated by using the 

377 J. Math. Phys., Vol. 17, No.3, March 1976 

coordinates (4.14) for a, i3 complex and substituting 
into (6.6). The remainder of the computations follow 
just as those given in Ref. 2. However, the resulting 
identities are somewhat complex due to the fact that 
sn(a, s) and sn(J3, s) are rather complicated algebraic 
functions of wand r. 
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On a phase interchange relationship for composite materials 
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A theorem exists relating the transverse conductivity of a fiber reinforced material in a determinate manner 
to the conductivity of the composite with the phase properties interchanged. It is shown that no such 
theorem can exist in the three-dimensional case, e.g., for a statistically isotropic composite material. 
However, an inequality is established relating the two effective conductivities. 

1. INTRODUCTION 

Kellerl presented and proved a very interesting "phase 
interchange" theorem for two-phase fiber reinforced 
materials. He considered two-phase materials whose 
boundaries are cylindrical surfaces, say parallel to the 
z axis, and for which effective conductivity2 perpendic­
ular to the fiber direction has as principal directions 
the axes x and}, 0 The conductivity properties of each 
phase are assumed to be homogeneous and isotropic. 
Let us denote one phase by the subscript 1, the other 
by the subscript 2. The conductivities of the individual 
phases are kl and k2 and the effective conductivities of 
the composite in the x and y directions are h~(kl' k2) and 
k~(l?I' k 2) respectively. Keller showed that 

(L 1) 

where h~(7<z' hi) is the effective conductivity in the )' 
direction when the phase denoted by 1 is now given con­
ductivity "2 and the phase denoted by 2 is now given con­
ductivity k1 • We have not changed interface geometry, 
but only interchanged phase properties. If the sample is 
statistically isotropic in the x-y plane, then 

k1 (hl , k2) = "~(kl' k2) = k* (hi, h2) 

and Eq. (1. 1) becomes 

1<*(7<1' llz)k*(kz, hi) = 11ll?Z" (L 2) 

Actually, Keller proved this theorem only for rec­
tangular arrays in the x-y plane, when one phase, iden­
tified as an inclusion (fiber), has specific symmetries. 
Mendelson3 has shown that Eqs. (L 1) and (1. 2) are valid 
for any two-phase material with cylindrical phase bound­
aries, no matter what the phase geometry, even if the 
phases are not distinguishable as matrix and inclusion 
(fiber) . 

That Keller's theorem can be useful in dealing with 
the problem of the prediction of effective conductivity 
of two-phase materials has been shown by Schulgasser. 4 

A major limitation on its potential application is its ap­
plicability only to the two-dimensional (cylindrical phase 
boundaries) case. The proofs of both Keller and Mendel­
son depend on the two-dimensional nature of the problem. 

For the three-dimensional case, i. e., a statistically 
homogeneous two-phase material when x, y and z are 
the principal directions of the effective conductivity, 
but when the phase boundaries are not aligned with the 
z axis, Eq. (1. 1) is not valid as can be shown by con­
Sidering counterexamples to the special case of statisti­
cal isotropy expressed by (1. 2). Two such counterex-
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amples will be presented in Sec. 3. We will show first 
of all that not only is Eq. (1. 2) not valid in the three­
dimensional case but also that no one-to-one relation­
ship exists between k*(k1, k z) and '<*(h2, k1 ), L e., that 
knowledge of k*(l?l, k z) is not sufficient to determine 
k*(kz, k1). We will show however that in the three­
dimensional case an inequality can be written in place 
of Eq. (1. 1). Specifically we find 

1?1(h1, k2)k~("2' "1) '" k1"z, (1. 3) 

or for the statistically isotropic case 

"* (k1, k 2lk*(k2, kd '" k1k 2 • (1. 4) 

2. NONEXISTENCE OF A KELLER-TYPE THEOREM 
IN THREE-DIMENSIONS 

To disprove the existence of a Keller-type theorem in 
three-dimensions it is sufficient to point out one instance 
for which it cannot pOssibly be true. Consider a statis­
tically homogeneous and isotropic two-phase material 
which in addition is statistically symmetric, so that an 
interchange of the two phase conductivities yields the 
same material. In general, if a Keller-type theorem 
exists then 

(2.1) 

where f is some definite function. But for symmetric 
materials 

lc*(k1, kz) = k*(kz, hi)' 

Hence for a symmetric material we conclude that 

1l*(k1 , l?2) =J{(h1 , kz), (2.2) 

g being some definite function, i. e., k*(l?l, k z) is a de­
finite function of hi and l?z. Now the detailed phase geom­
etry of a two-phase material is not completely deter­
mined by the requirement that the material be symmet­
ric. Indeed, we will present an example of a class of 
symmetric materials for which different values of k* 
are realizable. Hence Eq. (2.2) cannot hold true and 
no relationship of the sort suggested in Eq. (2.1) can 
exist. 

The class of symmetl'ic materials referred to above 
is constructed as follows. Let us make a laminate of 
thin slabs of matel'ials 1 and 2, of equal thickness and 
stacked aIternatelyo "Grains" of such a material whose 
dimensions are very large compared to slab thickness 
will behave as axially symmetric crystals whose con­
ductivity perpendicular to the slabs (i. e., along the 
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FIG. L Model of a statistically symmetric material. 

crystal axis) is 

k" = 2(1/kl + l/kz)-l, 

and in the directions perpendicular to the crystal axis 
is 

h=Hkl +llz). 

From these grains we now construct a statistically 
isotropic polycrystal (see Fig. 1). What has been de­
scribed above is clearly a statistically symmetric two­
phase material. It is known that a polycrystal constituted 
of axially symmetric crystals does not have a macro­
scopic conductivity uniquely determined by the princi­
pal conductivities of the constituting crystal. It was 
shown by Molyneux5 who conSidered realizable corre­
lation functions that at least a narrow range of effective 
conductivities is realizable. Schukasser6 demonstrated 
by presenting constructable polycrystal models that 
quite a large range of effective conductivities is realiz­
able. If effective conductivity of the polycrystal is not 
uniquely determined by k" and h, then k* for the above 
described statistically symmetric material is not 
uniquely determined by kl and k2 and hence no Keller­
type prinCiple can exisL 

3. A THREE·DIMENSIONAL INEQUALITY 

Consider a statistically homogeneous two-phase 
material for which the principle directions of the effec­
tive conductivity are x, y and z. Further, consider the 
functional U defined by the volume integral, 

U= (1/2V) iv (q 'q/k) dV 

= (1/2V) iv(l/k) (qxqx + qll, + qeqe) dV, 

where q is the heat flux vector and q" qy and q. are its 
components. For a statistically homogeneous material 
subjected to a macroscopic heat flux in the x direction 

U= t(qY/k: (3.1) 

where ( > denotes a space average, An appropriate set 
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of boundary conditions is that on the external surface 
S of a large block of such a material, n· q have the same 
value as for a uniform flow qo=(qx) along x. n is a unit 
vector normal to the surface. Then the boundary condi­
tions can be written 

lqx +mq, + nq. = lqo 

where l, m, and n are the direction cosines of n. (3. 1) 
serves as a definition of effective conductivity. Consider 
the classical variational principal 

(3.2) 

where - denotes admiSSible trial heat flux fields. Ad­
missibility requires that the condition 

(3.3) 

be met and that at interfaces the normal heat flux must 
be continuous. 

Now let us imagine a cut parallel to the x-y plane. 
Suppose that this cut, rather than being a cut through a 
statistically isotropic material, were a transverse cut 
through a fiber reinforced material (perpendicular to 
fiber direction). At each position on the z axis let us 
use the true heat flux field that would be obtained for a 
cut through a fiber reinforced material as the trial field 
in (3.2). This trial field clearly satisfies the condition 
(3.3) and the interface condition. We will denote such 
a trial field by the superscript 2D. For cuts perpendicu­
lar to the z axis at all positions on this axis we obtain 
statistically identical phase geometry and hence statis­
tically identical trial heat flux fields. Noting that 

q;r> =0, 

we write (3. 2) as 

(3.4) 

The trial field satisfies the boundary conditions for the 
three-dimensional problem since with q. = 0 they can be 
written 

[1/(1- n2)1/Z]qx + [m/(1- n2)1/Z)qy 

= [1/(1- na)l/Z) qo, 

and the coefficients of qx, q, and qo are precisely the 
direction cosines appropriate for the boundary condi­
tions of the two-dimensional case. Now the right hand 
side of (3.4) is simply 

(1/2kt2D) (qY, 

where k:2D denotes the effective conductivity in the x 
direction of a fiber reinforced material whose cross­
section is statistically identical to the cut through the 
statistically isotropic material described above. Utiliz­
ing Eq. (3, 1) we then have 

(1/ k:) ~ (1/k~2D), (3.5) 

or equivalently 

We could have looked at the above process from an­
other point of view. If U is minimized under no con­
straints other than those required phYSically, and if 
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(3. 1) is then used, the result is the correct l/k:. If the 
minimization is carried out under additional constraints, 
the resulting value of l/kt can be higher than but not 
lower than the correct value. The constraint q~ == 0 leads 
to the result l/kt2D ; the inequality (3.5) follows imme­
diately. Now (3.6) will be true if phases 1 and 2 have 
conductivities k1 and ka respectively, or if the phase 
conductivities are interchanged throughout. Thus we can 
write both 

(3.7) 

and 

(3.8) 

Inequalities (3.7) and (3.8) are of course valid if the 
subscript x is replaced by y or z. 

Applying Keller's theorem as expressed in Eq. (1. 1) 
to the right hand side of (3.7) we get 

k:(k1, ka);' k1 ka/k taD(ka, k1 ), 

or 

k1ka/k:(k1' ka) ~ k~2D(ka, k1). 

Inequality (3.9) together with (3.8) then gives 

k1ka/kt(k1' ka) ~ k~aD(k2' k1) '" kt(k a, k1), 

or simply 

*( ) k1 ka k~ ka, k1 ;, k:(k1, k
a
) • 

(3.9) 

(3.10) 

This is the sought after inequality (1. 3), which for the 
case k: == k: reduces to the inequality (1.4). 

Before presenting examples for the statistically iso­
tropic case which disprove the validity of (1. 2) for the 
statistically isotropic case, but which do satisfy the in­
equality (1. 4), several comments are in order. First 
of all the intermediate inequality (3.6) is valid not only 
for a two-phase material but for a material of any num­
ber of phases. Indeed it is true for a material with con­
tinuously varying properties, as long as the definition 
of k: aD is suitably broadened. Secondly, one might ex­
pect that a second inequality, perhaps bounding kt(ka, k1 ) 

from above, might be obtainable from the classical vari­
ational principal complementary to (3.2). That this is 
not so is shown in the Appendix .. 

Beran and Molyneux7 have calculated bounds on the 
quantity 

Q=k*a/kIkz 

for a symmetric two phase material. According to the 
inequality (1. 4) when k*(k1, ka) is taken equal to k*(ka, k1) 
because of the statistical symmetry of the material, Q 
may be greater than 1, and need not necessarily be equal 
to 1 as implied by (1. 2). Beran and Molyneux calculate 
upper and lower bounds on Q, but cannot show that they 
are realizable. For k2/k1 less than about 14 both bounds 
are greater than 1. Hence (1. 2) cannot hold and (1. 4) 
holds. For ka/ki greater than 14 their lower bound is 
less than 1. Inequality (1.4) indicates that we can sim­
ply set the lower bound at 1. 

As a second example consider the "spheres assem-
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blage" model proposed by Hashin and ShtrikmanB for 
which the exact conductivity can be calculated. For one 
alternative of their model (the other gives the same re­
sult with indices reversed) 

k*(k1, k2) = ka + 3v1ka(k1 - ka)/[3ka + va(k1 - ka) 1, 
where Vl and va are the volume fractions of the phases. 
Then 

k*(ka, k1 ) = k1 + 3Vlkl (ka - k1)/[3k1 + va(ka - k1)J. 

Using these expressions we find 

k*(k1 , ka)k*(ka, k1) 

kIka 

-1 + 9v1Va(ka - k1)a 
- (9 - 6va + 2v~)k1k2 + (3va - v~)(kr + k~) 

which is clearly always greater than 1 except for either 
va == 1 or VI == 1 when it is exactly 1, as we would expect 
for this case of degeneracy to a one-phase material. 

As a final interesting example of the inequality (1. 3) 
and to emphasize its applicability to any statistically 
homogeneous material no matter what the nature of its 
anisotropy let us conSider an extreme case. Take the 
inequality in the form 

kt(k1 , k2)k:(ka, k1);, k1 ka, 

where the material we are conSidering has phase bound­
aries which are cylindrical surfaces parallel to the z 
axis. Then we know 

k:(k1, ka) ==v1k1 +vak2' 

and by applying the inequality we find 

k:(k1, ka) '" (vdkl +Va/k2)-1. 

This is the well known Wiener lower bound on the effec­
tive conductivity of two phase composite materials. k: 
realizes the right hand Side when the phase boundaries 
are planes perpendicular to the x axis, as it must, Since 
for this case the problem is again two-dimensional. 

APPENDIX 

Consider a statistically homogeneous two-phase ma­
terial for which the principal directions of the effective 
conductivity are x, y, and z. Further consider the func­
tional U defined by 

U = (1/2V) iv k'VT· 'VT dV 

= (1/2V) iv k[(OT /ox)a + (aT /oy)a + (aT /oz)a]dV, 

where T is the temperature field in the composite ma­
terial. For a statistically homogeneous material sub­
jected to a temperature gradient in the x direction, 

(AI) serves as a definition of effective conductivity. 
Consider the classical variational prinCiple 

(AI) 

U ~ (1/2V) iv k(oT /()x)a + (aT /ay)a + (aT /ad1 dV (A 2) 

where - denotes admissible trial temperature gradients. 
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To be admissible it is required that T be continuous 
throughout the material. 

Now let us imagine a cut in the x-y plane. Suppose 
this cut, rather than being a cut through a statistically 
isotropic material were a transverse cut through a fiber 
reinforced material (perpendicular to the fiber direc­
tion). Let us use the true temperature field that would 
be obtained for the cut through a fiber reinforced ma­
terial as the field from which we derive the admissible 
temperature gradients in (A2). We will denote such a 
trial field by the superscript 2D. For cuts perpendicular 
to the z axis at all positions on this axis we obtain sta­
tistically identical phase geometry, and hence statis­
tically identical trial temperature gradient fields. We 
note that 

(aT /az)2D '" 0 

since for a given x-y coordinate position the tempera­
ture changes as we move in the z direction, by virtue 
of the fact that the phase geometry of two neighboring 
cuts changes. Then from (Al) and (A2) we can write 
only 

t k~(OT /ax)2 

381 J. Math. Phys., Vol. 17, No.3, March 1976 

..,; t k:2D( a T /ax)2 + (1/2V) fv[ (aT /az)2D]2 dV. 

No way of evaluating this last integral is apparent. Ad­
ditionally it is possible to conceive of phase geometries 
for which the above proposed trial field is not even ad­
missible, e. g., instances when phase boundaries are 
(locally) planes perpendicular to the z axis. For the 
case of continuously varying material properties the 
proposed trial field is clearly admissible. 

lJ. Keller, J. Math. Phys. 5, 548 (1964). 
2We will use throughout the language of thermal conductivity, 
but by mathematical analogy the results to be obtained are al­
so valid for electrical conductivity, electrical permittivity, 
and magnetic permeability. 

3K. Mendelson, J. Appl. Phys. 46, 917 (1975). 
4K. Schulgasser, J. Math. Phys. 17, 382 (1976). 
5J. Molyneux, J. Math. Phys. 11, 1172 (1970). 
6K. Schulgasser, "Relationship Between Single Crystal and 
Polycrystal Electrical Conductivity." Technical Report 
MED 16/75, Department of Mechanical Engineering, Ben 
Gurion University of the Negev, Israel, April 1975 (to be 
subm itted) . 

7M. Beran and J. Molyneux, Q. Appl. Math. 24, 107 (1966). 
8Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962). 
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A two·phase material in which the phase boundaries are cylindrical surfaces is considered. A technique 
exists for finding upper and lower bounds on the effective thermal conductivity (or electrical conductivity, 
permittivity, or magnetic permeability) of the composite in the direction perpendicular to the generators of 
the phase boundaries in terms of two different three point correlation functions. It is shown how a phase 
interchange theorem can be intrOduced into these bounds enabling us to express them in terms of a single 
geometrical constant of phase geometry. We determine what range of values of this factor is realizable for 
real phase geometries, and we show that the bounds thus obtained span exactly all realizable effective 
conductivities for such composites. Finally, we show that the bounds as expressed here enable us to use a 
knowledge of the effective conductivity of a composite for one ratio of constituent conductivities to narrow 
the bounds for some other ratio. 

,. INTRODUCTION 

We consider here two-phase fiber reinforced materi­
als. By this we mean any two-phase material whose 
boundaries are cylindrical surfaces, say parallel to the 
X3 axis. No other restriction is made on the geometry 
of phase boundaries. Indeed, we do not even require 
that anyone phase be identifiable as the matrix, the 
other being the inclusion (fiber). We are concerned with 
the problem of determining the effective thermal con­
ductivity perpendicular to the fiber direction (i. e., per­
pendicular to the generators of the cylindrical phase 
boundaries) when the statistical properties of the phase 
geometry for cuts perpendicular to the fiber geometry 
are isotropic and homogeneous. The conductivity prop­
erties of each phase are assumed to be isotropic and 
homogeneous. Hashin1

,2 derived bounds for this effective 
conductivity in terms of the phase conductivities and 
volume fractions of the two phases. He was able to show 
that these are the best possible bounds obtainable if this 
is the only information available defining phase geom­
etry. He showed this by presenting models of two- phase 
materials for which the effective conductivity could be 
exactly calculated and which exactly realized his upper 
and lower bound. For two-phase materials completely 
isotropic (statistically) in three dimensions Beran3 has 
developed a statistical theory for bounding effective con­
ductivity in terms of additional statistical information, 
viz. three-point correlation functions. Silnutzer4 has 
applied Beran's technique to the problem under consi­
deration here. It was only necessary to rewrite all of 
the results of Beran USing two rather than three dimen­
sions. Silnutzer found that k*, the effective conductivity, 
is bounded as follows: 

[(1/ k) - (k' /k)2 / 4J(k)2]-1 ~ k* 

~ (k) - ~~k'Z)/(k~j<l + 2I(k)/(k'2») , 

(1.1) 

where < ) denotes an ensemble average which is assumed 
to be equal to the spatial average for a statistically ho­
mogeneous material, and' denotes deviations from (k), 
i. e., if the two phases are labelled 1 and 2 then 

k;=k1 -(k) and k~=k2-(k). 
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I and J are integrals of different three-point correlation 
functions and are given as follows: 

1 11 a
2 

('() '( '( ris i () I=~<k) -~ -a- k 0 k r)k s)""Y.?drcis, L 2 
7T A A' ur1 Sl 1""S" 

(L 3) 

rand s are vectors in the plane of the cut with compo­
nents r 1, r z and Sl, 8 2 respectively. The repeated index 
indicates summation. The integrations are over areas 
infinitely large compared to the scale of the phase geom­
etry. Inequality (1. 1) and the definitions (1. 2) and (1. 3) 
are the two-dimensional analog of Beran's three-dimen­
sional results and are very nearly identical in form. 

The usefulness of (1. 1) and its three-dimensional 
counterpart depends on our ability to determine I and J. 
Little success has been achieved in this respect. In 
fact, short of actual measurement or calculation for a 
particular structure it has not been known what values 
of I and J are possible in real materials. For a certain 
class of cellular statistically isotropic three-dimen­
sional materials Miller5 has evaluated I and J in terms 
of cell shape. The analogous results for the two-dimen­
sional case under consideration here have been present­
ed by Beran and Silnutzer. 6 Both the extent of the appli­
cability and the universality of these evaluations of I 
and J are not clear. Firstly, it is necessary to deter­
mine to what extent real materials fulfill the restriction 
on phase geometry imposed in these works, especially 
that of complete independence of conductivity properties 
between any two cells, and secondly because the I's and 
J's computed do not produce bounds which span the com­
plete range of the Hashin bounds, a range which has 
been shown to be realizable. 

A disturbing feature of the Silnutzer (and Beran) 
bounds is that the upper and lower bounds depend on dif­
ferent three-point correlation functions. We will show 
here, without putting any restrictions on phase geom­
etry, that for the case of a fiber reinforced material 
both upper and lower bounds can be found in terms of 
eithey I or J. We will see that I can be written as 

(L4) 
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and that J can be written as 

J = (k~2 /k2{k)2)[Jl + (k2/k1)J2], (1. 5) 

where 11, J 1 and J 2 are purely geometrical functions of 
the statistics of phase geometry. V1 and v2 are the vol­
ume fractions of the phases (V1 + V2 = 1). Turning our 
attention particularly to 11 we will find the limits on the 
values that 11 can take for any given volume fractions of 
the phases and we will show that these limits are real­
izable, i. e., that these limiting values correspond to 
real materials. We will see that the Hashin bounds can 
be derived from those of Silnutzer. Further we will show 
that if for a material with a particular structure the 
actual k* can be exactly (or approximately) calculated 
then the exact (or approximate) value of the correspond­
ing factor I can be found. We will see that a knowledge 
of k*, say from measurements, for a particular ratio 
k2/k1 permits us to bound I and that these bounds on I 
can in turn be used to bound k* for different ratios k2/k1' 
the phase structure remaining unchanged. This last re­
sult is significant in view of the complete mathematical 
analogy between the problems of determining effective 
thermal conductivity, effective electrical conductivity, 
effective electrical permitivity and effective magnetic 
permeability of composite materials. That the analogy 
can in fact be extended to include the computation of ef­
fective elastic axial shear modulus of fiber reinforced 
materials was indicated by Springer and Tsai7 for the 
case of rectangular periodic arrays, and it was noted 
that this analogy is generally valid by Hashin2 who point­
ed out that the under lying mathematics is the same in 
both cases. Thus for example, a knowledge of the ther­
mal conductivity of a composite permits us to place ri­
gorous bounds on its electrical permittivity, assuming 
of course, that the phase conductivities and permittivi­
ties are known. 

2. THE BOUNDS AND THEIR IMPLICATIONS 

ConSider the correlation function 

per, s) = (k'(O)k'(r)k'(s» 

which appears in the integrand of the integral defining 
I. Were we to perform experiments to determine Per, s) 
by randomly sampling for any given rand s we would 
be faced with eight possible outcomes. These are: 

(1) k; .k; .k~=k~3(kUk~)3, 

(2) k{ . k{ . k~ = k~3(J?Uk~)2, 

(3) k; 0 k~ . k{ = k?(kUk~)2, 

(4) k~. k; 0 k{ = k~3(kUk~)2, 

(5) k~ok~.k{=k;3(kUk~), 

(6) k~ . k{ . k~ = k?(k;;k~), 

(7) k{ 0 k~ .1?; = k?(k;;k~), 

(8) 1?~ . k~ . k~ = k~3(1). 

In the second column k~3 has been extracted. But USing 
the definition of k{ and k~ 
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L e., each possible outcome of such an experiment 
yields the factor k? times a quantity completely inde­
pendent of phase conductivities, but rather dependent 
only on phase geometry. Then P(r, s) can be written 

P(r, s) = k~3G(r, s), 

G depending purely on geometry. Putting this into the 
definition of I we obtain (1. 4), viz. 

where 11 is a purely geometric factor for any particular 
phase geometry. The factor 1/vr has been removed from 
11 for later convenience. 

The possible outcomes for the same experiment per­
formed to determine the correlation function in the in­
tegral of J are: 

(1) (k{ . k{)/k2 = (k~2 /k2)(kUk~)2, 
(2) (k{ • k~)/k2 = (k~2/k2)(kUk~), 

(3) (k~ 0 k;)/k2 = (k?/k2)(kUk~), 

(4) (k~. k~)/k2 = (k~2/k2)(1), 

(5) (k{. k;J/k1 = (k~2/k2)(kUk~)2(k2/k1)' 

(6) (k{ • k~)/k1 = (k~2/k2)(kUk~)(k2/k1)' 

(7) (k~. kD/k1 = (k;2/k 2)(k1'/k;)(k2/k1 ) , 

(8) (J?~. k~)jk1 = (k? /k2)(1)(k2/k1 ). 

We see that all outcomes contain either of the factors 
k~2 /k2 or (k~2 /k2)(k2/k1 ) times a quantity independent of 
phase conductivity. Hence it is clear that J can be writ­
ten as in (1. 5), viz. 

It is Significant that two separate factors are necessary 
to determine J for a given geometry for any ratio k2/k1 • 

We will utilize a phase interchange theorem first 
proved by Keller8 for ordered arrays of cylinders with 
certain symmetries embedded in a matrix, and which 
was later proved by Mendelson9 to be valid for all two­
phase materials whose phase boundaries are cylindrical 
surfaces, there being no furthere restriction on phase 
geometry. Let the conductivity of phase 1 be k1 and of 
phase 2 be k 2. Then k*(k1, k 2) is the effective conductivity 
perpendicular to the fiber direction. Keller showed that 

(2.1) 

where k* (k 2, k1 ) is the effective conductivity when the 
phase denoted by 1 is now given conductivity k2 and the 
phase denoted by 2 is now given conductivity k1 • We 
have not changed interface geometry but only inter­
changed phase properties. (Flaherty and Keller10 have 
also proved this theorem separately for the case of 
axial shear modulus.) 

Now we note that the upper bound (right hand side) in 
(1. 1) is a function of k1' k2' V1, v 2 and 11, Let us denote 
this function by fu(kl> k2' V1,!1)' Then 

(2.2) 
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FIG. 1. Bounds on the effective conductivity k* as a function 
of the geometrical factor II' kl = 1, k2 = 5; vI =~, v2 = !. 

Similarly, for the same phase geometry, were the 
conductivity of 1 actually k2 and that of 2, k1 then 

or 

(2.3) 

But from (2.1) we can write this last inequality as 

k1k 2/k*(k1, k 2) '" fu(k2' k1' VI, II), 

(2.4) 

(2.2) and (2.4) together give a set of bounds in terms of 
a single geometric factor II' Writing these out in detail 
we have 

-1 

( ) (v1vi2)2(k2 - k1)2 ) 
k1k2 k1v 2 + k 2V1 - (V1 V2!2)(k1v 2 + k2V1) + (k1 - k 2)I1 

k* (k + k) (V1 V2/2)a(k1 - ka)a 
'" '" 1 VI 2V2 - ( /) ( ) ( ). v1V2 2 k1V1 + k2Va + k2 - k1 II 

(2.5) 

0.06 

0.04 lib ,UPPER LMT OF I, 

I, 

-0.04 110 ,LOWER LIMIT OF I, 

-0.06 

0:100 20:80 40:60 80:20 '00:0 

VOLUME FRAcnON RATIO, v.: v, 

FIG. 2. Permissible values of the geometric factor II' 
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FIG. 3. Bounds on the effective conductivity k* as a function 
of the geometrical factor II' kl = I, k2= 15; vI =v2=~' 

To obtain a visual image of the implications of these 
bounds we have in Fig. 1 plotted the bounds against II 
for the case VI = t, V2 = t for k1 = 1 and k2 = 5. The maxi­
mum and minimum possible values of II are at the inter­
sections of the bounds, and the values of k* at these 
crossing points are absolute bounds on the effective con­
ductivity. To determine the crOSSing points we set 

fu(k1' k2' VI, II) = k1k2/fu(k2' kj) VI, II) 

and solve for II' We find that the values thus determined 
are independent of k1 and 1<2 and are given by 

(2.6) 

2.5 HASHIN UPPER BOUND 

2.4 

• >< UPPER BOUND 

>-

~ 
2.3 

~ 2.2 

~ 

~ 2.' 
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w 
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-.03 -.02 -.01 0 .0' .02 .03 

I, 

FIG. 4. Bounds on the effective conducitivity k* as a function 
of the geometrical factorI j • k l =l, k2=5;VI=v2=~' 
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FIG. 5. Bounds on the effective conductivity k* as a function 
of the geometrical factor 11' k 1=l, k2~3;Vl=V2=!' 

and 

(2.7) 

Further we find that the values of k* corresponding to 
these are 

(2.8) 

and 

kt=k2+Vl/(kl~k2 +~~2) (2.9) 

respectively. These are precisely the Hashin bounds 
for effective conductivity which Hashin has shown are 
realizable. This was first shown by Hashin in the axial 
shear modulus case1 and was later pointed out by him 
to be valid for the conductivity case. 2 It turns out that 
for k2 > kl' k: is the lower bound and kt the upper; for 
k2 < kl' kt is the upper bound and kt the lower. Hence 
l 1a and lib are not only bounds on 11 but are also realiz­
able. In Fig. 2 we show the permitted range of 11 for all 
volume fraction ratios. 

Another feature of the bounds can be appreciated by 
considering Figs. 3-6 successively. Here we have 
taken Vi =v2=i and consider ratios k2/kl equal to 15,5, 
3 and 1. 5. We see that the bounds narrow progressively 
at a rate much faster than that at which kt approaches 
kt. In fact using I'Hospital's rule we easily show that 

for all values of VI and 11 0 

Referring to any of the figures we see how a knowl­
edge of k* (say from measurement) for particular val­
ues of kl and k2 tells us the possible range of II for a 
material of the structure for which this k* is known, 
e. g., from Fig. 3 we see that if for a fifty-fifty mix­
ture of materials with kl = 1 and k2 = 15 the effective con-
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ductivity is 4, then 11 must be between - .0167 and 
.0199. This range of 11 represents nearly 60% of the 
total range of 11' For kl == 1 and k2 = 1. 5 with k* = 1. 225 
we find that It must lie between 0 and. 00625. This range 
of 11 represents slightly less than 10% of the total range 
of 11 were nothing known about k*, and hence we see how 
a rather precise determination of 11 is possible if k* 
can be determined for ratios of k2/k1 close to L Now 
for ratios of k2/kl close to 1 the entire range between 
k: and k: is small, e. g., for k2/kl = 1. 5 we find that 
(k: - kt)/k: is less than 0.5%, so extremely accurate 
measurement techniques would be necessary to deter­
mine 11 precisely. However, if we can exactly (or ap­
prOXimately) compute k* for a given structure we could 
exactly (or approximately) compute 11 by considering 
the case of k2 - k1 • 

Pragerll first posed and presented a solution to the 
problem of determining bounds on k* for one set of 
phase conductivities when k* is known for some other 
set of phase conductivities. His results, obtained from 
classical variational principles (his Eqs. 27 and 28), 
are written for a statistically isotropic three-dimen­
sional two-phase material but the development is valid 
line by line also for the case under consideration here 
and the final results are unchanged, We see now how 
Prager's problem for the fiber reinforced case can be 
handled using the present bounds. The known value of 
k* for one set of k2' kl is used to find limits on 11' These 
limits on 11 are then used to find bounds on k* for a dif­
ferent set of k2' k1 • This technique will always produce 
bounds better than those of Hashin. In some instances 
Prager's solution gives narrower bounds, in some in­
stances those obtained from the present technique are 
narrower. We give two illustrations. Consider a fifty­
fifty mixture for which it is known that k* = 2. 2 when 
kl = 1 and k2 = 5. Then for kl = 1 and k2 = 3 the various 

~ Lf'PER BOUND 

1227 

1.226 
• ~ 
>-

I 1.225 

LOWER BOUND 1224 

~ 
l= 
u 

~ 1.223 w 

HASHIN LOWER BOUND 
1.222 

-.03 -.02 -.01 0 .01 .02 .03 

I, 

FIG. 6. Bounds on the effective conductivity k* as a function 
of the geometrical factor 11' k 1=1, k2=1,5;vl=v2=~' 
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FIG. 7. Bounds on the effective conductivity k* as a function 
of the geometrical factor 11' k 1=5, k 2=1;v1=t v2=L 

bounds obtained are as follows: 

Hashin: 

Prager: 

10 6667 ~ k* ~ 1. 8000, 

10 6875 ~ k* ~ 10 7500, 

Present work: 10 6875 ~ k* ~ 10 7647. 

The Prager bounds are slightly better than those ob­
tained by the present method. Consider now a fifty-fifty 
mixture for which it is known that k* = 1. 225 when kl = 1 
and k2 = 1. 5. Then for kl = 1 and k2 = 5 the various bounds 
obtained are as follows: 

Hashin: 

Prager: 

Present work: 

2. 000 ~ k* ~ 2. 500, 

2. 059 ~ k* ~ 2. 442, 

2. 143 ~ k* ~ 2. 375. 

The bounds obtained by the present method are some­
what better than those obtained from Prager's results. 

When the effective conductivity is known for some 
ratio k2/kl greater than 1 and sought for a different 
ratio 7<2/7<1 less than 1 the Prager equations give bounds 
worse than those of Hashin. However, before the Prager 
equations are applied the Keller theorem can be used to 
invert the ratio for which effective conductivity is known, 
so a fair comparison is as above, i. e., both ratios k2/ 

kl' either greater than 1 (or both less than 1). An inter­
change of 7<2 and k1 in the bounds found here produces a 
visually different set of bounds, but no new information. 
(Compare Fig. 7 with Fig. 1). This is to be expected 
since it was the Keller theorem which relates k*(k1 , k 2 ) 

to 7<*(k 2, 7<1) that permitted the construction of the lower 
bounds in the first place. 

Returning now to the Silnutzer bounds (1. 1) we see 
that by applying the present approach to the left hand 
side we can obtain upper and lower bounds in terms of 
J. But since J is not expressible in terms of a single 
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geometric factor, but rather in terms of two, J 1 and J 2, 

these bounds are of limited usefulness. Knowledge of 
k* does not offer bounds on either J1 or J 2 separately. 

3. CLOSURE 

Only the lower bounds that have been developed here 
in terms of II are new; the upper bounds are those of 
Silnutzer rewritten in terms of the purely geometrical 
part of I. The attainment of this lower bound adds con­
siderably to the usefulness of the Silnutzer result. Con­
sider Fig. 1. Were only the upper bound known, then 
we would only be able to place a lower limit on II (where 
the bound takes on the value of the Hashin lower bound), 
which we could not even say was realizable since it was 
not known whether the upper bound is the best possible 
in terms of 11' We could only say that the upper limit on 
11 is at least as high as the crOSSing point of the upper 
bound with the Hashin upper bound. The addition of the 
lower bound and the fact of its crossing at the Hashin 
bounds (which are realizable) permits us to place pre­
cise limits on II which are then realizable. 

We do not know whether the bounds presented above 
are the best possible in terms of II, but it is not un­
likely that they are because of the confluence of these 
bounds and those of Hashin at the extreme permissible 
values of II' In order to determine if indeed these bounds 
are best it would be necessary, given kl' k2 and VI, to 
construct a set of models of two-phase materials for 
which k* can be exactly calculated and all of which have 
the same value of II, but different values of k*-and then 
to determine if the range between the bounds for each 
value of II is spanned. The author is currently construct­
ing such a set of models. 

Another unanswered question is the relationship be­
tween I and J. If the bounds in terms of I are not best, 
does J contain information that permits narrowing the 
bounds for a specific structure? One indication that this 
is probably not so is as follows: For a completely sym­
metric material, i. e., one for which an interchange of 
}ZI and k2 produces the same material (VI = v2 = ~ of 
course) we see from Keller's theorem (2.1) that 

(3.1) 

(This was pointed out by Mendelson. 9) In terms of the 
correlation function P(r, s) in the integrand of (1. 2), 
symmetry implies that P(r, s) = 0 and hence 11 =0. Then 
the bounds (2.5) reduce to 

Lkl k/ ~(kl + k2 )][1 - Mkl - k2 )/ (k1 + k2)2]-1 

(3.2) 

These are the same bounds as are obtained from the 
results of Beran and Silnutzer6 when both of their cell 
shapes are taken to be the same, but their lower bound 
is obtained by placing the appropriate restrictions on 
the form of J, and not on I. 

This leads to the more general question of the effi­
ciency of three-point correlation functions in character­
izing two-phase materials as to their effective conduc­
tivity. We have seen that the simple statement that a 
fiber reinforced material is symmetric completely de-
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termines its effective conductivity. But bounds obtained 
through the three-point correlation functions are often 
quite wide (Fig. 3 with 11 = 0), Symmetry implies 11 = 0; 
11 = 0 does not necessarily imply symmetry. Hence the 
contribution of the higher order correlation functions 
must be very significant. 

Prager's method characterizes a two-phase material 
by its effective conductivity for any given constituent 
conductivities. The present work can be interpreted as 
doing the same thing since, using the technique de­
scribed at the end of the last section, we could have 
explicify written 

GL (kl' k2' VI' kt, k 2°, k 0*) "'" k* 

"'" GU (kl' k2' VI, k1°, k;, k 0*) 

where the superscript ° refers to the constituent con­
ductivities for which effective conductivity is known. 
GLand Gu are the appropriate functions. It will not ap­
pear at all in the final result. As has been shown, 
neither Prager's method nor the present method consis­
tently gives better results (narrower bounds) for all 
ratios kdk2 and kt /k2°. Hence it is to be expected that 
a better solution to the problem posed by Prager exists 
than either his solution or that obtained by the present 
method. 

Hori and Yonezawa12 have recently rederived the 
bounds (1. 1) upon which the present work is based, In 
place of the nondimensional geometrical factor 11 which 
we used in writing the right hand side of Silnutzer's 
bounds, they introduce a coefficient A (3) related to 11 as 
follows 

11 =A (3)VIV2(Vl - Va). 

They also show that a perturbation expansion for the 
case ka - kl gives 

(3.3) 

This is simply the right hand side of (1. 1) with I (or 11) 
taken as O. However, referring to Fig. 2 we see that 
11 = 0 (and hence 1=0) is not possible for all volume 
fractions; specifically it is not possible for VI < t or VI > ~. 
Hence we are lead to believe that (3.3) is not the cor-
rect perturbation solution, Indeed if we write 

k 2 =k1(1+0), 

then expansion of the Hashin bounds (2.8) and (2.9) in 
terms of 0 gives 

k: /kl = 1 + vao - hlV202 + (Vl)tVlV203 + , . . (3.4) 

kt /kl = 1 + v 20 - hlV202 + (VI + 1)tVIV203 + . . . . (3.5) 

A Similar expansion of the perturbation solution (3.3) 
gives 

k* /kl = 1 + 1'20 - ~VIV202 + (2v2)tv1 V203 + . . . . (3.6) 

It is only in the third-order term that the expansions 
differ and we see that indeed, without any reference to 
the present work, the perturbation solution falls outside 
of the Hashin bounds for VI < t or VI > t. It seems neces­
sary then to question the validity of even considering a 
perturbation solution other than that obtained by taking 
only the terms of the Hashin bounds (up to the second­
order) for which the bounds coincide. A higher order ap-
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proximation, even if the coefficient of the third- order 
term were to fall between the coefficients in the expan­
sions of the Hashin bounds, can only point to one partic­
ular value for k*, not unique to third-order accuracy, 
since we expect that all k* 's between the Hashin bounds 
are realizable. Indeed the method proposed in the last 
section for calculating 11 for a particular structure for 
which we know how to calculate k* simply requires cal­
culating the third-order coefficient in a power series 
expansion in O. Then since the boundS not only approach 
each other for k z - kl but also approach a straight line 
(see Fig. 6), the required 11 is simply obtained by pro­
portions as follows 

II-Ita k*-k: C*-Ca 
Ilb-Ila=kt-k: Cb-Ca ' 

where C* indicates the third-order coefficient of the 
material being considered and C a and Cb are the third­
order coefficients in (3.4) and (3,5). This reduces to 

I1 =C*-VIV2
2/ 2, 

Hence, the bounds (2.5) could be rewritten in terms of 
C*, the coefficient of the third-order term in a power 
series expansion of k* in O. Now the perturbation solu­
tion (3.3) is the analog of the well-known three-dimen­
Sional perturbation solution [in this case the ~ in (3,3) 
becomes t], and the processes of arriving at these re­
sults are identical. We must then question the validity 
of that perturbation solution also to terms of higher or­
der than those which coincide in the bounds which Hashin 
and Shtrikman13 have derived for the three-dimensional 
case, and which they also show are realizable, 

We close by pointing out that the technique developed 
here is valid only for the two-dimensional problem of 
fiber reinforced materials (and not for the more general 
three-dimensional case), since it is only for this case 
that Keller's theorem is valid, The extension of Keller's 
theorem to the three-dimensional case has been consi­
dered by this author. 14 
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Long-wavelength normal mode vibrations of infinite, ionic 
crystal lattices. II 

John A. Davies 

Department of Physics. Clark University. Worcester. Massachusetts 01610 
(Received 15 September 1975) 

In an earlier paper [J. Math. Phys. 16, 1156 (1975)] we presented a mathematical theory of the long­
wavelength normal mode vibrations of infinite crystal lattices whose particles interact with Coulomb forces. 
(Retardation was neglected.) The paper showed how the eigenvalues and eigenvectors of the complete long­
wavelength dynamical matrix are related to the eigenvalues and eigenvectors of the dynamical matrix 
obtained by neglecting the contribution of the macroscopic electric field. Rules were obtained for 
determining whether or not the various branches of the dispersion relations for a lattice approach definite 
frequencies in the long-wavelength limit. The paper was restricted to the rigid ion approximation. In this 
paper we show that the above treatment can be easily extended to include lattices with polarizable and 
deformable atoms. 

I. INTRODUCTION 

In a recent paper, 1 we presented a mathematical 
theory of the long-wavelength normal mode vibrations of 
infinite crystal lattices with Coulomb interactions when 
retardation is neglected. The paper was concerned with 
showing how eigenvalues and eigenvectors of the com­
plete long-wavelength dynamical matrix CO(~) are re­
lated to those of the long-wavelength dynamical matrix 
A where the macroscopic electric field contribution is 
neglected. Further, theorems were developed for deter­
mining which dispersion relations for such lattices ap­
proach definite frequencies in the long-wavelength 
limit. 

Our treatment in Ref. 1 was limited to the case of the 
rigid ion model. The purpose of this paper is to point 
out that the mathematical approach and substantive re­
sults of Ref. 1 also apply to lattices with polarizable and 
deformable atoms. In particular we show that the mathe­
matical approach and results of Ref. 1 apply with only 
slight modifications to the phenomenological model for 
lattices with polarizable and deformable atoms as 
presented in Sec. VI. 5 of Maradudin, Montroll, Weiss, 
and Ipatova. 2 

A logical step by step development of the extension of 
our mathematical treatment to the case of polarizable, 
deformable atoms would be largely an unnecessary re­
petition of the rather lengthy presentation of Ref. 1. 
Thus, we merely outline to the reader already familiar 
with Ref. 1 how that treatment can be extended. The 
notation and definitions in this article are consistent 
with those of Ref. 1. Lemmas and theorems of that ref­
erence are referred to by number. Whenever an equa­
tion from Ref. 1 is referred to, the equation number 
will be followed by the Roman numeral I. 

II. THE PHENOMENOLOGICAL THEORY OF 
CRYSTALS WITH POLARIZABLE AND 
DEFORMABLE ATOMS 

We list those results from Sec. VI. 5 of Ref. 2 which 
are applicable to this work. Some changes in notation 
are made in order to make equations conform to the 
notation of Ref. 1. In particular all quantities are made 
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dimensionless, the names of the f particles in a primi­
tive cell are denoted by Greek letters and Cartesian co­
ordinates are denoted by Latin letters. 

According to the phenomenological theory, the long­
wavelength normal mode vibrations of lattices with 
polarizable, deformable atoms (with retardation 
neglected) are governed by the eigenvalue equation 

CO($)'.lt0($) = {A + [41Ta3 /Vh ~(~)]N'(~)}+O(¢) 

= A.0(¢)+O(~). (1 ) 

The above equation replaces Eq. (31). Most of the above 
symbols are defined in Sec. II of Ref. 1. The new quan­
tities are EL ~(¢) and N'($). The quantity EL ~(~) is the 
the longitudinal, optical frequency dielectric constant. 
It is given by 

(2) 

where the 3 x 3 matrix X~ with elements Xjj ~ is a sus­
ceptibility relating the macroscopic electric field to the 
electrostatic polarization of the lattice. The 3fx 3f 
matrix N' (~) consists of 3 x 3 submatrices N' .v( ~) 
defined by 

N' .v( ¢)= f/L(CP )fj (ilK IlY /2. (3) 

The new quantities fv are 3 x 3 matrices with elements 
fjj(v). The symbol fv represents the (dimensionless) 
transverse effective charge of the vth atom in a primi­
tive cell. In the rigid ion model fv= Z), where I is the 
3 x 3 identity matrix, and N'($) reduces to the matrix 
N(~) of Ref. 1. 

We assume that ~, X~, and fv are real quantities. 
Thus, we make no distinction between their adjoints t 

and their transposes t. 

Some important properties of X~ and fv are given in 
Ref. 2. The susceptibility X~ is symmetric; that is 

X~=XOOt. (4) 

Another property is charge neutrality of the primitive 
cell, expressed by 

6fv=0. (5) 
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Let the pOint group of the space group of the lattice be 
G and let REG where R is a 3 x 3, real, orthogonal 
matrix. Designate by Fo(v,R) the type of particle into 
which a particle of type v is brought by a space group 
operation involving R. Then, 

(6) 

and 

(7) 

The following relations, which can be immediately 
derived from Eq. (6), are useful in extending the treat­
ment of Ref. 1 to polarizable, deformable ions: Let R 
E G, then 

~fJ// I1v=R~ UJ//I1)Rt, (8) 
v 

and 

(9) 

In Ref. 2, expressions are derived for the macroscop­
ic electric field, polarization, and electric displace­
ment field amplitudes produced by a normal mode vibra­
tion 1lf propagating in the direction 4). These expressions 
which replace Eqs. (25I), (290, (30I), and (311) are re­
written below in the dimensionless form employed in 
Ref. 1: 

E = - [417a3/vh ~(c,b)JL(c,b) ~ (fi 11.1/ 2)1lf., (10) . 
P = {(a3

/ vall - [417a3
/ VafL "'(¢)] X~L(~)} 

(11) 

and 

D= (417a3 /v )6 (J./ 111/2)lJr a I( K K 

" 
- (41Ta3 

/ Vh ~(¢)](l + 41TX~)L(¢)6 (t./ 11//2)lJr.. (12) 
• 

Next consider lattices for which the point group G be­
longs to the regular (cubic) system. In the remainder of 
this article we shall for the sake of brevity refer to such 
lattices as cubic lattices. For such lattices many of the 
above expressions reduce to simpler forms. 

If a lattice is cubic (in the above sense), then Eq. (7) 
implies that 

X~ = X ~I, (13) 

where X~ is a number. From Eq. (2), it follows that EL ~ 
assumes the ¢-independent value 

Further, we see from Eqs. (8) and (9) that for cubic 
lattices 

where il' is a number given by 

il'=t Tr 6fJvt
/ I1v' 

v 

Finally note that Eq. (12) reduces to 

D= (41Ta3/va)T(<P)Z.U./ 11// 2)lJr., 

where T(¢) is defined by Eq. (181). 
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(14) 

(15) 

(16) 

(17) 

III. A RESTRICTION ON THE TYPES OF LATTICES 
TO BE CONSIDERED 

In this paper, we make one restriction on the types 
of three-dimensional, ionic lattices to be analyzed. We 
confine our treatment to lattices for which the real, 
Hermitian matrix L:vfvfvt/ I1v has an inverse. This re­
striction is equivalent to assuming that 

det6fvfvl -/- 0. (18) 
I1v 

The principal values of L:vf}// J-i.v must be nonnegative. 
Thus, our restriction is also equivalent to insisting that 
all of the pr incipal values are positive definite. 

The physical meaning of the above limitation is clear. 
Imagine that we work with the princ iple axes of L:v fvfv t / 
I1v as coordinate axes. It is easily shown that the vanish­
ing of the ith principal value of L;vfvfvt/ I1v implies that 
only zeros occur in the ith row of fv' But referring to 
Eq. (10), we see that then no set of long-wavelength 
particle displacements in the direction of the ith princi­
pal axis will result in a macroscopic electric field. In 
effect, we have a three-dimensional lattice which exhibits 
ionic properties in fewer than three dimensions. An 
analysis of such lattices would be interesting. However, 
we exclude such lattices from our present treatment. 

IV. EXTENSION OF THE ANALYSIS TO 
POLARIZABLE, DEFORMABLE ATOMS 
(PART I) 

The starting point for our treatment of ionic lattices 
in Ref. 1 was to show that the matrix N(c,b) in Eq. (31) 
has the (3 f - 1) -fold degenerate eigenvalue zero and 
only one nonvanishing eigenvalue. This fact is also true 
for the matrix N/(¢) in Eq. (1). By direct calculation, 
we find that the normalized vector lJr1n(c,b) redefined by 

lJrv In(¢) = (Tr 6fw tL(4))fj I1wJ-1 /211v -1 /2f~¢, (19) 
w A 

is an eigenvector of N' (cf» corresponding to the 
eigenvalue 

AN
1n(4))=Tr (6 f/L(¢)fj 11) 

= Tr[i](fvf// I1)L(¢)]. (20) 
v 

[If w~ set fv = Z), we regain the original definition of 
1lfln(cf» given in Ref. 1. J By working with the normal co­
ordinates of Lv f}v t/ I1v one can easily show that the re­
striction stipulated in Sec. III (Eq. (18)J is the neces­
sary and sufficient condition that the factor of normaliza­
tion in Eq. (19) pe fin!te and that ANln(¢)-/-o for all 4). 
In general AN1n(cf» is cf>-dependent. However, Eqs. (15) 
and (16) show that in the case of cubic lattices (lattices 
whC!.se point groups belong to the regular system) A/n 

is cf>-independent and has the value given by 

(21) 

A direct calculation also shows that any vector or­
thogonal to lJr1n(¢) is an eigenvector of N/(¢) correspond­
ing to the eigenvalue zero. Since N/(¢) is Hermitian, 
this eigenvalue is (3f -1 i-fold degenerate. Further, from 
the theorem that eigenvectors of Hermitian matrices are 
orthogonal if they correspond to different eigenvalues, 
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it follows that the conditions N'($)llr=O and L(~) 
xL. f. 11;1 /2llr. = 0 are equivalent. 

The spaces and subspaces S3f(totall, S3f_1(AN=0;~), 
S3(normal), and S3f_3(zero) are now defined in complete 
analogy with their definitions in Ref. 1. The subspace 
S3(normal) consists of vectors llr of the form 

(22) 

where k * 0 is a number and I/J is an arbitrary three­
dimensional vector. The restriction stipulated in Sec. 
III insures that llr * 0 if I/J * 0 and, therefore, that S3 
(normal) actually is three-dimensional. 

In extending the work of Ref. 1 to include polarizable, 
deformable atoms, Lemmas I and II of Ref. 1 are to be 
left unchanged. Lemma III of Ref. 1 remains essentially 
the same except that now the branch of the dispersion 
relations "Yhose long-wavelength eigenvectors are paral­
lel to llrln(¢) approaches a frequency corresponding to 

A= AO + [47Ta 3 1 vh ~(~)] Tr,0 vf/L(tP)fj I1v 

as ¢ approaches zero. In general this frequency is ¢­
dependent. However, since Lemma III requires that A 
have at least a three-fold degenerate eigenvalue (non­
acoustic), it is actually only applicable to cubic lattices 
(barring accidental degeneracies). For such lattices 
Eqs. (14)-(16) show that 

A = AO + (47Ta31 v aEL ~)1 Tr :6 v fvfv II !lv, 

which is ¢-independent. 

A necessary and sufficient condition that a single 
given branch of the dispersion relations approaches a 
definite frequency (independent of rP) in the long-wave­
length limit can be determined by the same method ap­
plied to the rigid ion model in an earlier paper. 3 We 
find that a necessary and sufficient condition that AO in 
Eq. (1) be independent of rP is that for all rP, the llr°(tP) 
for the branch obey either the equation 

or the equation 

.0 (f I !11/2)llr 0(;) 
J( I< K 't' 

K 

= [47TIEL ~($)]X~L(<P),0 (fj !l//2) 
K 

XllrKO(¢) + [L(<P)/EL ~(~)JI)(fj ilK1/2)llrKO($). 

Equation (24) is equivalent to the equation 

.0f
K
it/ !1

K

1/ 2 
- [47TIEL ~(~)]x~ 

K 

where h(¢) is an arbitrary number. 4 

(23) 

(24) 

(25) 

Referring to Eqs. (10) and (12), we see that a branch 
"Yill approach a definite frequency if and only if, for all 
¢, in the long-wavelength limit either E = 0 or 0 = O. 
The same result was obtained in Ref. 1. 

On the other hand, Lemma N of Ref. 1 must be modi­
fied. The condition that llr°(¢) EO S3f_2(AM = 0; ¢) stated in 
the lemma must be replaced by the condition that Eq. 
(24) be obeyed. 
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For cubic lattices, Eqs. (13) and (14) show that Eq. 
(24) reduces to 

T(cP)~ (f/!1/ 12 )llrKO(cP)=0, (26) 

where T(¢) is defined by Eq. (l8I). Thus, for lattices 
whose point groups belong to the regular system, it is 
convenient to introduce a matrix analogous to the matrix 
M(¢) defined in Ref. 1 by Eq. (170. This is the 
Hermitian matrix M/(cP) given by 

M' KV(~) = (f/ 111/ 12)T(¢ )fj !1v
1/2. (27) 

Using Eqs. (15) and (16), we find that, for cubic lat­
tices, M'(cP) has the two-fold degenerate eigenvalue 

A,\I=1 Tr(,01vf/1 !1J, 
v 

(28) 

with corresponding normalized eigenvectors of the form 

llrK = (% Tr ,0fw f~1 !1j1 /2(£.1 I !1. )i)(cP), (29) 
w 

where ~t~(~) = O. Equation (18) insures that AM* 0 and 
that the normalization factor in Eq. (29) is finite. Any 
vector orthogonal to a vector of the form given by Eq. 
(29) is also an eigenvector of M'(~) corresponding to 
the (31 - 2)-fold degenerate eigenvalue zero. The con­
ditions M'(cP)llr== 0 and T(cP)'Zv !1v-lfvllrv== 0 are equivalent. 

We now define tl},e subspaces S31_2(AM = O;~) and S2(AM 
==%Tr'Zw I1w-1f)wl;¢) in complete analogy with the cor­
responding subspaces introduced in Ref. 1, i. e. , 

S3/_2(AM =0;cP) and S2(AM=z'KZK21 i1K;¢). 

It is important to emphasize that the operator M'(cP) 
and the subspaces ~3/_2(AM = 0; ¢) and S2(AM == 1- TrLw !1 w 
== % Tr 'Zw !1 w -If)w t :¢) are to be employed only when deal­
ing with cubic lattices. 

Lemma V of Ref. 1 remains unchanged when the work 
is extended to polarizable, deformable atoms. 

In Sec. N of Ref. 1 an alternative form for writing 
cor ¢) was introduced. In dealing with polarizable, de­
formable atoms, we find this alternative form useful 
only when dealing with cubic lattices. For such lattices, 
we can write 

CO(~)==A' - (47Ta 3Iva EL "')M'(<P), 

where A' is the ¢-independent matrix defined by 

A' = A + (47T0 3Iva EL ~)[N'(<P) + M'(cP)]. 

(30) 

(31) 

Using Eqs. (5) and (6) and the same general approach 
used in Sec. N of Ref. 1, we find that for cubic lattices 
any properties of A derived by group theoretical methods 
apply with equal validity to A'. 5 

Sec. V of Ref. 1 defines the term accidental degener­
acy. No modification of this section is required. 

V. EXTENSION OF THE ANAL YSIS TO 
POLARIZABLE, DEFORMABLE ATOMS 
(PART II) 

Equations (35I)-(41I) in Sec. VI of Ref. 1 list pro­
jection operators to various subspaces of S3/(total). 
These expressions must be generalized when the work 
is extended to include lattices with polarizable, de­
formable atoms. The new expressions are listed be-
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low (~he notation conforming with that used in Ref. 1): 

P(lIrl"(~») = (Tr 6 f/L(~)fj Il)-IN'(~), 
v 

P(S3f_I(AN= O;~))= I-P [1Ir1n(¢)], 

P(S3(acoustic)) =(6 Il)-I( Il. IlY /2I~ 
w 

and 

(32) 

(33) 

(34) 

(35) 

(36) 

The following additional projection operators are em­
ployed when dealing with cubic lattices (lattices for 
which G belongs to the regular system): 

P(53f_2(A.\I = O;¢)) = 1- (1 Tr ~fvf/I Il)-IM'(~), (37) 
v 

and 

P(52(A\/= 1 Tr 6fvfvtl Ilv;~») , v 

= (tTr 6fJ/1 !-L)-IM'(,p). (38) 
v 

The remaining development in Sec. VI requires little 
modification except in the details of the proofs of the 
lemmas. With the aid of Eq. (27), we find that Lemmas 
VI and VII remain true provided that it is understood 
that they apply only to cubic lattices and that the symbol 
52 (A.\I= L,. Z/I 1l.;~2 in Lemma VII is replaced by S2(A.\I 
= t Tr L,v !-Lv -If}v t; ¢). The statements of Lemmas VII 
through XIII require no modification. Their proofs are 
similar to those given for the point ion case in Ref. 1. 
Equation (6) is helpful in overcoming the difficulty that 
the effective charges are now matrices instead of 
numbers. 6 

The subspaces S(polar) and S(nonpolar) are defined 
exactly as in Ref. 1. 

Lemma XIV of Ref. 1 should be replaced by the fol­
lowing more general statement: Consider a branch of 
the dispersion relations all of whose long-wavelength 
eigenvectors !Jf0(~) lie in S(polar). If the 1Ir0(~) obey Eq. 
(24) for each ~, then the 1Ir0(c;b) span a subspace of 
53j(total) which is exactly three-dimensional. 7 

Lemma XV requires no modification. A generaliza­
tion of Lemma XVI which holds true for lattices with 
polarizable and deformable atoms is the following: Con­
sider a branch of the dispersion relations all of whose 
eigenvectors 1Ir0(t$) lie in 5(polar). A necessary and suf­
ficient condition that the branch approach a definite fre­
quency in the long-wavelength limit is that either the 
1Ir0(~) lie in S3f_I(AN=0;¢) for all ~ or that t~e 1Ir0(~) A 

satisfy Eq. (24) for all ¢. Further, for no ¢ does 1Ir0(¢) 
both lie in 53f_I(AN=0;~) and satisfy Eq. (24). 

Some comments concerning the proof of the above 
statement are given in a footnote. 8 

All of the work in Sec. VII of Ref. 1 preceding the 
proof of Lemma XVII is based upon general symmetry 
arguments and not upon any particular model for a lat­
tice. Thus, it applies to lattices with polarizable and de-
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formable atoms as well as to the rigid ion model. The 
statements of Lemmas XVII and XVIII require no modifi­
cation although some minor changes are required in 
the proof of Lemma XVII. 9 

We then find that Theorem I of Ref. 1 is correct as 
stated for the case of polarizable, deformable atoms. 
Eqs. (791) and (801), which are useful results for making 
calculations as well as decisive steps in the proof of 
Theorem I require no modification. An important step 
in the proof of Eq. (791) for the point ion model was 
provided by Eqs. (741) and (75Il, These equations must 
be replaced by the following: 

~ fvllr/"i = c/(Il) (39) 
v:::::T 

where 

CT r( Il) = 6 (fv!Jf /1'3)3' (40) 
v:::::T 

In order to avoid confusion between effective charges 
and expansion coefficients, replace ii in Eq. (761) with 
the symbol hi' Eq. (771) is then replaced by the more 
general equation 

(41) 

Having made the above generalizations, the reader 
familiar with Ref. 1 should have no difficulty in com­
pleting the proof of Theorem I for polarizable, deform­
able atoms using the same arguments as those in Sec. 
VIII of Ref. 1. 

In Sec. IX of Ref. 1 a method is developed for deter­
mining the long-wavelength eigenvectors for a branch 
of the dispersion relations of a cubic lattice in the point 
ion approximation once an eigenvector for the branch 
is determined for just one value of t$. We find that the 
method remains unchanged for the case of polarizable 
and deformable atoms. Only some of the details of the 
proof of the method need be changed. [Here we take the 
opportunity to point out that a typographical error oc­
curs in Eq. (861). In that equation Q(R) should be re­
placed with Qt(R).] 

Theorem II also remains true as stated for the case 
of polarizable, deformable ions. Equations (981), (991), 
(1101), and (1111) also remain true. In the proof of Eq. 
(98I), Eqs. (951) and (96I) are to be replaced by 

(42) 

where 

C/X')Il =6 (fvllrveXy)1\. (43) 
V:::::T 

In the proof of Eq. (1101), replace Eqs. (1031) and (1041) 
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with 

(44) 

where 

c(r) =i 6 [(fV>Ir/+»)I + i(fv>Irv (+»)2J. (45) 
v::::::1' 

Equation (1051), which defines the constant C appearing 
in Eqs. (1101) and (1111), should be replaced with 

C=.0' c(r)/ 11//2. (46) 
T 

VI. CONCLUDING REMARKS. POLARITON MODES 

We have shown that the treatment of Ref. 1 can be 
extended to lattices with polarizable and deformable 
atoms with no changes in such final results as Theorems 
I and II, the physical criterion that a branch of the dis­
persion relations approach a definite frequency (either 
E or D vanish), and the general forms of long-wave­
length eigenvectors. Only small modifications in mathe­
matical details are required. 

It is important to emphasize that retardation is 
neglected in this work. The results therefore do not 
apply to the long-wavelength behavior of polariton 
modes. In fact, our results correspond to those ob­
tained by letting the propagation vector go to infinite 
magnitude in treatments of long-wavelength polaritons 
(with spacial dispersion neglected). 

The above statement can be simply illustrated by 
considering polaritons in an infinite crystal of rigid 
ions. In terms of the notation used in Ref. 1, such 
long-wavelength polariton modes are governed by the 
equation 

AO(¢) = A>Ir°(¢) + (4rra3/v.) 

x(N(¢) -M($)/{Ia¢2/aoA(¢)] -1})>Ir°(¢), (47) 

where ao=e2/mc 2
, c is the speed of light, and e, m, 

and a are the electronic charge, a typical mass, and 
a typical cell dimension, respectively. 10 If we let ¢ 
approach infinity and assume A(¢) approaches a finite 
value (thus ignoring modes which become purely elec­
tromagnetic), Eq. (47) reduces to Eq. (31) of Ref. 1. 
However, consider the limit of the above equation as ¢ 
goes to zero. If A(¢) does not go to zero, Eq. (47) 
becomes 

A9>Ir0 = {A + (4rra 3/va )[N($) + M(¢)J}oIt° = A'>Ir 0
• (48) 

Thus, each branch of the dispersion relations for the 
polariton modes either approaches zero or approaches 
some other eigenvalue of the ¢-independent matrix A' . 
Therefore, all such branches approach definite fre­
quencies as ¢ approaches zero, regardless of the lat­
tice symmetry. 

lJ.A. Davies and C. L. Mainville, J. Math. Phys. 16, 1156 
(1975). 

2A.A. Maradudin, E. W. Montroll, G. H. Weiss, and 1. P. 
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Ipatova, Theory oj Lattice Dynamics in the Harmonic Approx­
imation (Academic, New York and London, 1971). 
3J.A. Davies, J. Math. Phys. 13,1207 (1972). See Sec. IX. 
4In both the derivation of the preceding result and of the corre-
sponding result for rigid ions in Ref. 3 (Lemma IV of Ref. 1), 
we assume initially that ifO(~) is real. Equations (23) and (24) 
are derived from perturbation theory using this assumption. 
However, the final lemma is correct even if ifo($) is com­
plex; that is, ifO(cP) ~R,'~O(cP) +~ifo($). The operator eO($) is 
real and Hermitian. Thus, if >lt 0($) is an eigenvector of 
eO(cP) corresponding to the eigenvalue A 0, thenAifO($) and 
jifo($) are separately eigenvectors of eO($) corresponding 
to the same eigenvalue. Thus, a necessary and sufficient 
condition that the branch approach a definite frequency is 
that t,tte requirelllent of the lemma I).olds separately for 
Aifo(¢) andYifo(¢). Further, if ifo(¢) obeys Eq. (23) or 
(24), then bothA+o($) andjifO(cP) will obey the same equa­
tion. Thus, the condition that ifo(cP) obey either Eq. (23) or 
(24) is a sufficient condition. It is also a necessary condition. 
IfAifO(¢) andj>lt°(cP) are linearly dependent, then "'O(cP) is 
just a complex constant times a real vector and the proof of 
the lemma is the same as for real ifo( $). If A "'o(.{;) and 
Y ifo($) are linearly independent, then A ° is at least twofold 
degenerate, For general directions of $ and barring acci­
dental degeneracies, eO($) can have such a degeneracy only 
if the degeneracy is required by Lemmas I, II, or III. In 
any of these cases, bothAifo($) andjifo($) obey Eq. (23). 
Thus, ",0($) must obey Eq. (23). 

'An important step in showing that A and A' have the same 
symmetry properties is to show that T(O,R) as defined by 
Eq. (13I) commutes with N'(cP) +M'($). Using Eqs. (3) and 
(27), we see that [N'($) + 1.1'($)1""~f,,tt;..(/.IK/.Iv)-1/2. Then making 
extensive use of Eq. (6), we obtain the result 

{T(O, R) [N'(,p) + 1.1'($) J}"" 

~ L~R5 [IC ,F o(A, R) If/fy(/.I~ /.Iv)-1/ 2 

~ RFpOl('.R)fv(/.IK /.1)-1/ 2 

~ f.tRfv(/.I. /.Iv)-1I2 

~f/fFO(V,R)R(/.I. /.Iv)-1/ 2 

~ L~f/f~<5 fA ,Fo(v, R) lR(/.I. /.10"112 

~([N' ($) + 1.1' (cP) IT(O, R)}"" . 

6Lemma VIII follows directly from Eqs. (5), (34), and (35), 
and the procedure used in Ref. 1. An important step in the 
proof of Lemma IX is showing that T(D, R) and P[S3f_3(zero) 1 
commute. This statement will be ture if T(D,R) and 
P[S3(normaI)1 commute. USing Eqs. (131), (6), (9), and (35) 
we obtain 

{T(D, R) P[S3(normaI) J}"" 

~ L~R5 [K ,F o(A, R) If/(:6wfwfwt //.Iw)"lfy(/.I~ /.Iv) "11 2 

~ Rf~I(.,R)<L:wfwfwt//.Iwl-lfv(/.I. /.Iv) "11 2 

~f/(Lwfwfwt //.IJ-1Rfy(/.IK /.Iv)-1I2 

~ f/(Lwfwfwt //.Iw) "IfF o(V' RlR(/.I. /.Iv) "11 2 

~ L~f/<2:wfwfwt //.IJ"lf~(/.I~ /.1.)-1/2& (A, F 0(11, R)) 

~{P[S3(normaI) IT(O, R)}KV' 

lThe generalization of Lemma XIV is easily proved by 
writing out Eq. (25) in terms of a set of Cartesian coordinates 
relative to which 1i~ is diagonal. One can then easily show 
that the vectors ifO($W) , ifo(.p<2l), and ",0($(3») are linearly 
independent, where ¢ (/) ~ (<5/1, <5 t2 ,/5 tal· 

8The proof is essentially the same as that given in Appendix B 
of Ref. 1. The chief problem is to rederive Eq. (B71). Once 
this is done, the proof differs from that in Ref. 1 only in 
minor details. Equation (B71) is rederived as follows. 
Suppose that the branch ,z,0($(a») obeys Eq. (23) and ifo($(b») 
obeys Eq. (24). Then AifO($(a») ~A °ifO($<a») and 

[A + (4".a 3/(v
a
€ L~($(b»))N'($(b)) l,z,°($(b») 

~A °ifO($(b»). 
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It follows that 

wot($(al)N($(bl)wO(tP(bl) =0 

or equivalently 

£L,.fJl. -1I2W• o( $Ia») ltL( tP(b»)z..,fvllv -1I2wv( ~(bl) = O. 

wO($(a») obeys the equation 2:.cf.Il.-1/2W.O(itl») =k2(.ptl») wh~re 
k '" O. Usin.z; Eq. (25) and the identity L(tPlx"L(tP) =([€L"(tP) 
-ll!4n-}L(tP). we find that 

L( $(b»)I"fvllv-11 2wv O($(b») =€ L ,,(.p(b»)h(~(b») $Cb) • 

where h(.p(b») '" O. Equation (B7D follows immediately. 
9In order to prove Lemma XVII. use Eq. (6) to show that 
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{PI'P[S3(normal) l}.v 

= f/Il. -II 2(n uI g) <Iax(I')*(R)R) fJ".,fwfwt / IlJ-1fvllv-1/2 • 

The above equation replaces Eq. (66!). The above expression 
vanishes if none of x. y. or /Ii: belongs to D(I'). To show that 
the above expression does not vanish if any of x. y. or /Ii: 

belong to D(I'). calculate Tr2:.c{PI'P[S3(normal) H.'$,' With the 
aid of Eq. (8) we find that Tr2:.c{PI'P(S3(normal)lJ •• 
= (nl'lg) TrLRil')*(R)R. Equations (551). (57!). (59!). and 
(64I) show that this quantity cannot vanish if any of x. y. 
or z belong to D(I') . 

IOEquation (47) is obtained from Eq. (6.6.13) of Ref. 2. 
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Spectrum generating algebras and Lie groups in classical 
mechanics 

M. Andria 

Fachhochschule Koln. D 5 Koln 1. Claudiusstr. 1. Germany 
(Received 3 March 1975) 

We give a general framework for a geometric foundation of time dependent classical mechanics. The theory 
is based on the concept of evolution space which is phase space extended by time. Lie algebras of constants 
of motion which may possess explicit time dependence are constructed. and general conditions for getting 
global Lie group actions from infinitesimal actions are derived. In a natural way these groups map 
solutions of the Hamiltonian equations of motion onto one another and act on the orbit space via 
symplectic transformations. The theory is applied to the nonrelativistic free particle, the harmonic and 
damped oscillator. nonstationary quadratic systems, and to the motion of a particle in constant 
electromagnetic fields. 

I. INTRODUCTION 

A lot of structures of classical mechanics are moti­
vated by analogies between quantum theory and classi­
cal dynamics. The classification of elementary parti­
cles and quantum mechanical states of a physical prob­
lem is essentially based on group theoretical meth­
ods. 1-7 In this scheme an elementary relativistically 
invariant quantum mechanical system is described by 
irreducible representations of the inhomogeneous 
Lorentz group. 8 For a nonrelativistic particle the 
group action is given by the Galilean group. 

Similar methods can be applied in classical physics. 
The basic objects are given by phase spaces (symplec­
tic manifolds) and evolution spaces for time dependent 
problems. Invariance and noninvariance properties can 
be characterized by groups of transformations acting 
on these spaces. 

General methods have been developed for getting 
global actions of symmetry groups from infinitesimal 
actions on phase spaces of conservative mechanics. 7.9-12 

In this paper we shall give a framework for time de­
pendent mechanics by using evolution spaces,,13 such 
that all relevant physical properties can be derived in 
a natural and stringent way. For the construction of 
group actions we use finite dimensional spectrum gen­
erating Lie algebras2, 3, '1,14 of constants of motion of 
classical orbits. The infinitesimal actions of the corre­
sponding groups are extended to global ones. 

In special cases the set of orbits of different energies 
defines a manifold on which a group acts via symplectiC 
transformations. The general theory is applied to sev­
eral physical problems. 

2. PRELIMINARIES 15-18 

In this section we set out the standard definitions and 
results of differential geometry. The relationship with 
the language the physicists are familiar with is 
indicated. 

Let M be an n-dimensional C~ -differentiable mani­
fold. We denote by C=C~ (M), the space of real valued 
C~ -functions f: M - ill on .W, and by 11,1p the tangent 
space to M at the point p E M. An element Xp of Mp is 
called a tangent vector at p. 
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Let u l , ..• ,un be local coordinates in a neighborhood 
U C /1,1 of p. Then the coordinate derivatives 2/out I p, ••• , 

a/outl p,"'" a/aun Ip form a basis of }'vIp such that each 
tangent vector Xp can be expressed as a linear combi­
nation of these derivatives. 

A differentiable contravariant vector field on Ai is an 
assignment of a tangent vector Xp to each point p of 1\11 

such that for allfE C the function Xf given by (Xf)(P) 
= Xpf is differentiable. On U the field X can be ex­
pressed by X = Xk(u)auk with Xk(U) = X(uk) and 1 '" k '" n. 
(We adopt the summation convention whereby a repeated 
index implies summation over all values of that index. ) 

The space D of all contravariant C~ -vector fields on 
M is a real Lie algebra with Lie product defined by 

(X, Y]f = X(Yf) - Y(Xf) for X, YE D and f;'C, C. 

A covariant vector field or 1-form Il on ,'vI is a linear 
homogeneous mapping from the space D into the space 
of functions C. The value of II at X is denoted by II (X). 

Each functionfE C defines the 1-form df by df(X) =Xf. 
With respect to the local coordinates u t , ... ,un on 
U eM we have XI = Xk(U) (a /au k) f. df is called the differ­
ential or gradient off. Furthermore we have duk(a /au i ) 

= 2u k /au i = 07. Any 1-form II on U may be expressed 
uniquely in the form 

IJ.=llk(u)du k with flk(U)=IJ.C~k) 
A form field of degree r or r-form on ]'vI is a r­

linear alternating map 0' from the r-fold product 
DX' "xD into C, i.e., the function 

0': (Xl"" ,Xr) r-0'(X1, ••• , X r) with Xl"'" XrE D 

is linear in each Xj and skew symmetric in the 
arguments. 

The values O'k
1 
•• 'k

r 
= 0'(a/Ol/ 1 , ••• , a/aukr

) where 
1 '" k j '" n, 1 '" j '" r with respect to the basis field 
a /a1l 1 , ••• , a faun on [j C M are called the (covariant) 
components of c/. 

The wedge product or exterior product 0' A{3 of the 
r-form 0' and s-form f3 is defined by 

0' /\{3(Xt , . , , ,Xr • .l 
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for Xl"" ,XT+sE D and where the sum has to be taken 
over all permutations 1f of 1, ... ,r + s. a 1\[3 is a form 
field of degree r+s. In terms of local coordinates on 
U an r-form a can be expanded as 

a == (l/r!) a k '''k du k1 1\.· ·Adu~'. 1 , 

The components of a 1\(3 are given by 

(al\f3)kl"'k =O'lkl"' k (3k 1'''''' ], r+S r T+ r+s 

where [ ] denotes the antisymmetrization operator used 
in physics. 0' hl"' k, and (3"'l"''''s are the components of 0' 

and)3. An r-form 0' can be contracted with a fixed vec­
tor field X to give an (r - l)-form i(X)a defined by the 
interior multiplication i(X) with 

(i(X) a)(X2 , ••• , X r ) = IY. (X, X 2 , ••• ,xyl. 

i(X) a is obtained by inserting into the function 0' of 
y vector variables the fixed vector X as the first 
argument. A straightforward calculation gives 

(i(X) a)k
2
"'k

r
=(i(X) 0') (a:~ , ... , a:kY) =X

k
O'kk

2 
••• k, 

with respect to the coordinate system. u1, ••• ,un on 
UCM. 

The interior multiplication is an antiderivation in the 
sense that 

i(X)(a 1\(3) = (i(X) a)l\J3 + (- 1)' a J\(i(X) 13), 

where 0' is an r-form and f3 is as-form, 

Locally the 1-form dt of a functiont is given by 
dt = at IQuk[du k ]. The operator d sends O-forms (func­
tions) into 1-forms. This operation can be extended 
to form fields of arbitrary degree. For a given r-form 
0' = (11 r!) a kl'" kr du k1 ", • ·I\dukr we define the exterior 
derivative da by (r"" 1) 

dO' = (l/r') da I\duk1 1\' "Adu kT ' . . ki 0 00 kr ? 

dO' is a (r + l)-form. The components are given by 

(da)kl''' kY+l = (-l)r(r+ 1) Q![kj"'k,.k
y

+
1
)' 

a Ckj .......... !] denotes the antisymmetrization of the 
derivative (o/aukr+!) O'kl ... kr' One shows that da is in­
dependent of the coordinate system. The exterior 
derivative is a lR-linear map with 

d(da) = 0, and d(O'I\(3) = (dO') 1\(3 + (- Wal\d(3, 

where a is a form of degree rand f3 a form of degree s. 

Let 1>; M - N, P I- ¢ (p), be a differentiable trans­
formation from the manifold M into the manifold N. If 
t is a function on N, the mapping rp defines the function 
rp'*t On M as the function whose value at the point PE M 
is the value of tat tf;(p), 1. e. , 

t/l*/(p) =t(<f;(p»· 

The mapping ¢ induces a linear mapping of the tangent 
space Mp into N 0 (p) defined by 

(ep", X p}f10(P) =Xp(¢* t) I p with XpEMp, tE C~(N). 

Introducing local coordinates u1, ••• , un around P in the 
manifold M of dimenSion n and VI, ••• ,7)1 around 1>(p) 
in the manifold N of dimension l we have for Xp 
= X~(a /ou k ) I p, 
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j i3 I ·th yj 0(rp,*V
1 )1 ri rp,*Xp = Y :;-r WI = -~-, - )(. 

uV ,(p) uu p 

The transformation ¢ induces trmiformalions of 
fOHns in the following way: Let a be a r-form on N. 
We can pull back this form from N to Ai by the definition 

(¢*a) (Xl' ••. ,Xr ) I p == 0' (¢*Xi , ... , <p*Xr ) 10(P)' 

for Xi E :V1p (i = 1, ... , r). With respect to the coordinate 
systems one obtains 

The pull back operation for forms commutes with the 
exterior derivative and the operations addition and ex­
terior multiplication. For two transformations 0/ and 
;{! we have (<f;0¢)*=if!*0o/*' 

A curve t ... <P t on AI is a map of an interval of the 
real line IR into M. A differentiable curve t t- <Pt on \1 
is said to be an integral curve of a contravariant vector 
field X on M with initial point p if 

for all f E C~ (ivi). The vector field X is said to be com­
plete if, for each P E l\Il, X has an integral curve 
t t- ri>t with initial point p and parameter domain 
- c:L) <: f < 00. 

The Lie derivative Lxa of an y-form 0 with respect 
to X is defined by the derivative of C/ along the integral 
curve t f--,. <b t of X, i. e. , 

Lxa = lim (<Pta - alIt. 
t -0 

The three operators' interior product i(X), exterior 
derivative d, and the Lie operator Lx are related by 

Lx == i(X)d + di(X). 

This formula proves to be very useful for applications. 

3. SYMPLECTIC MANI FOLDS 7.9,13,15,16 

Let ,\f be a real manifold of even dimension 2n. A 
symplectic torm on IVI is a 2-form 0 satlsfying: 

(a) dO = 0, i. e., Q is closed, 

(b) Q is nondegenerate, i. e., for each p E M, 
Q(Xp, Yp) Ip=O for all XpE Mp only if YpE: Mp is zero. 

Q defines a nondegenerate skew- symmetric covariant 
tensor field of degree two. The pair (.\1, ~) is called a 
symplectic '1wnijold. 

Theorem 1. (Darooux)15.18; Let (M,O) be a 2n-dimen­
sional symplectic manifold. Then, for each point of J\!l' 
there exist an open set U c ,'vi containing the point 
and a local coordinate system x = (Xk) == (qa, Po) 
= (q1, ' .. , qo, Pi' ... , Pn) on U such that (k == 1, . '0, 2n; 
a=l, ... ,n) 

o = ~Oki dxk Adxi = dPal\dqa 

with 

- 5Gb ) ° ;a,b=l, ... ,n 
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on this open set. x = (Ilk) is called a canonical coo'Ydinafe 
system. 

For each f E: c~ (M) the differential df defines a co­
variant vector field. By using n as a "metric" tensor 
we may pass to the contravariant (canonical) vector 
field which we denote by X, uniquely defined by15.17 

for all contravariant vector fields Y on M. By using 
the fact that i(X,) is an antiderivation, the vector field 
X,=Qa(a/2 qa) +paCa/apa) with respect to canonical co­
ordinates (Xk) = (qa, Pal can be written in the form 

X=~_a __ ~_a_ 
, apa aqa aqa aPa ' 

-df~- (o~ dqa+ a~ dPa) =i(X,) n = i(X) dp.I\dqa 

= [i(X) dPa] dqa - [i(Xf ) dqa] dPa 

= (X,Pa) dqa - (x~a) dPa=padqa - QadPa' 

A transformation ¢ : lv[ - M which leaves the 2-form 
n invariant, d:>*n = n, is said to be symplectic. Since 

Lxp = d(i(X,) n) + i(X,) dn = - d(dj) = 0 

the integral curve t r- ¢t of the vector field XI pre­
serves n, Leo, ¢tn = n" 

The Poisson bracllet {r, g} of two functions f,gE: c~ (M) 
is defined by 

{f",d=xg-f· 

In terms of canonical coordinates we have 

{} 
_ af ag of og 

f,g (q,p) - aa . -;;-P - ap 0 aa . q () a a q 

The space of functions c~ (M) equipped with the Poisson 
bracket defines a Lie algebra. 

4. EVOLUTION SPACES 7, 13 

Let (,11, n) be a 2n-dimensional symplectic manifold. 
We consider the direct product 

TV=]v!XlR 

which is a (2n + l)-dimensional manifold locally de­
scribed by a system of coordinate functions 

(x, t) = (qa, Pa, 0. 
Let f : M x lR -lR be a c~ -function. For any t E: lR de­

fine the function 

ft:2v[-lR by ft(x)=f(x,t), 

Then the Poisson bracket [j, g J of two functions 
f,g: TV-lR is given by 

[j, g ](x, t) = Vt, gt}(x). 

The space of functions C"'CW) defines an infinite dimen­
sional Lie algebra with Poisson bracket as Lie bracket. 

Now let h : TV - IR with dll *" 0 be a C., -function on TV 
called Hamiltonian. Then a closed 2-form n h on TV is 
defined by 

n h= 7T*n - dh/\dt 
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where 7T: TV- ,11 is the projection from TV onto M and 
71* n denotes the pull back of no n" has rank 2n such that 
the restriction of n hl 

n h I Mt with Mt = MX {t}for all tE: lR, 

is nondegenerateo (TV, nh) is said to be an evolution 
space. 

n h is degenerate on TV and we shall show that there 
exists a vector field Z on TV such that 

for all contravariant vector fields Y on TV, A vector 
field Z with this property can be defined in a natural 
way: Let h t : M - IR be the function with ht (x) = hex, t). 
Then X ht is the canonical vector field on M given by 

i(Xht ) n = - dh t • 

Then X" with Xh(x, t) = exh (x), 0) defines a vector field 
t 

on TV. 

Theo'Yern 2 13,15,16: Let h: TV-lR be a Hamiltonian 
with dh * 0 and define the vector field Zh on W by 

a 
Zh=Xh + at' 

Then 
i(Z")nh,,,o. 

In terms of local coordinates Zh is expressed by 

ah a ah a a 
Zh= apa • aqa - aqa' cPa + at· 

The integral curve of Zh through the pOint (qo,Po, 0) E: TV 
is given by 

t r- (q(t),p(t), t) with (q(O),p(O), 0) = (qo,Po, 0) 

where 

qa(t) = ::a (q(t),p(t), f), PaCt) '" - ::a (q(t), pet), t). 

Since i(Zh) n" = 0 the Lie derivative of n h is zero 
(dn h = 0), 

L Zhnh '" i(Zh) dnh + d(i(Zh) n,,) = 0, 

such that the integral curve of Z" preserves the 
2-form n". 

5. GROUP ACTIONS 

We shall prove a basic theorem concerning group 
actions which are generated by a system of constants 
of motion I: TV - IR defined by the solutions of the 
equation 

The constants of motion define a Lie algebra with the 
Poisson bracket as Lie bracket. In the following we 
consider a k-dimensional Lie algebra of constants of 
motion given on a (2n + l)-dimensional evolution space 
W where }l? 2n. 

Let 11, ••• ,Ik be a basis of the Lie algebra. We asso­
ciate vector fields XIJ (j = 1, ... , k) on TV in the follow­
ing way: For Ii defined by /1 (x) = Ii (x, t), with (x, t) 
::c:'\1xIR we have the vector fields Xli with 
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i(Xli) ~ = - dI{. 
t 

Then the vector fields Xli with Xli (x, t) = (xli (x) , 0) are 
defined on W. The map II ..... Xli generates a tie algebra 
homomorphism. 

We are interested in Lie algebras of complete vector 
fields which generate Lie groups of transformations. 
We shall say that a Lie group G acts on a manifold N 
if there exists a homomorphism 

1>: G - DiffN, g r- 1>" 
from the group G into the group DiffN of diffeomor­
phisms 1>" on N. Sometimes G is called a tranjorma­
tion gyOUp. 

Now let h with dh *- 0 be a (Hamiltonian) function de­
fined on N. If the transformations of the group G do not 
leave invariant the function h, the Lie group G is said 
to be a noninvariance gyOUP with respect to h. The cor­
responding Lie algebra is called a spectrum generating 
algebra. 

In the following we shall construct spectrum generat­
ing Lie algebras of constants of motion and the corre­
sponding Lie groups acting on evolution spaces and orbit 
spaces. 

Theoyem 3: Let (W=MXlR'~h) be a (2n+l)-dimen­
sional evolution space. We assume that the vector field 
Zh =Xh + a/at is complete. Let L be a finite dimensional 
Lie subalgebra of C~ (TV) with a basis It, ... ,Ik of L 
(k ~ 2n) such that 

(i) [i hl ali - 0 . -1 k I, +"fJi-' J- , ... , , 

(ii) dP, .•. ,dIk span a 2n-dimensional vector space 
at each point of W= MXlR, 

(iii) each Ii generates a complete vector field Xli on 
W. Then 

(a) a connected Lie group G with Lie algebra iso­
morphic to L acts on the evolution space. The 2-form 
nh is left invariant by the group actions; 

(b) the group action maps an orbit onto an orbit of Zh' 

Proof: (a) The map Ii r- Xli defines a Lie algebra 
homomorphism. From a result of Palais19 it follows that 
for a given Lie algebra of contravariant vector fields 
Xli there exists a connected Lie group G which acts on 
the evolution space. Since Lxlinh=O for all Xli the 2-
form nh is left invariant by the corresponding group 
transformations. 

(b) It can be shown that14 ([Z h' Xli 1 Lie bracket of 
vector fields) 

From condition (a) it follows that [Zh,Xri] = O. There­
fore the group actions commute with the orbits. G maps 
a trajectory of Zh onto a trajectory of Zh' 

We show that there are intrinsic relations between 
symplectic transformations on the manifold (M, n) 
and transformation on W. From Xlit = 0 it follows that 
the group actions on W preserve the time t. Therefore 
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the manifold M t = MX {t}c W with tE IR is left invariant. 
On the other hand, group actions on Ware induced by 
symplectic transformations on M, i. e., there is a Lie 
algebra homomorphism from the Lie algebra of func­
tions I{ : M - IR into the Lie algebra of contravariant 
vector fields Xli defined on M with i(Xri) n = - dI{ for 
all t E IR. Assuriling that all vector fields are complete 
there exists a connected Lie group G acting on M. Since 
LXIi n = 0 for each t E IR the group G acts on M by sym­
plectic transformations which may be given by 

1>~t):M-M, xr-1>~t)(x), forallgEG. 

This transformation on M can be extended to a trans­
formation on W, 

>l',,:W-W with >l'g{x,t)=(1)~t)(x),t}. 

The space Mt c W is left invariant by this action. 

On the other hand we have Zht = 1, i. e., the time is 
not left invariant with respect to the integral curves of 
the complete vector field Zh' Therefore any trajectory 
of Zh is transversal to the manifold Alt for tE lR. The 
trajectories commute with the action of the Lie group 
G which leaves each M t invariant. From this it follows 
that the integral curves of Zh interpreted as a I-param­
eter group of transformations on W connect the mani­
folds M t for different values of t. 

It is interesting to note that for t = 0 the problem has 
been discussed by Dirac20 in the case of special rela­
tivistic dynamics. In this connection we have transfor­
mations induced by the inhomogeneous Lorentz group. 
The preceding results show that even in the general 
theory it does make sense to discuss the problem for 
t= O. 

6. ORBIT SPACES 

Let (W= MXlR, nh) be a (2n + I)-dimensional evolution 
space. We assume that Zh is complete on W. Let W be 
the set of orbits of Z h and a : W - W the map assigning 
to each point of W the trajectory of Zh through the point 
WE W. Since the projection of W=MxIR onto lR maps 
Zh=Xh + a/at onto a/at every trajectory passes through 
one and only one point of M t = MX {t} for any given 
tE IR. Therefore there exists a manifold structure on 
W such that for any tE IR the restriction 

O'IM:Mt-W 
t 

is a diffeomorphism. W is called the orbit space of the 
evolution space W. 

One shows that the 2-form nh given on W induces a 
symplectic 2-form non W defined by (a: W- W)9,13.25 

n(a*XI , O"*XJ)(a(w» = nh(XZ, XJ)(w) 

for WE Wand all functions I and J with Z'; = Z hJ = O. 
Therefore (W, n) defines a symplectic manifold where 
O'*n=nh• 

Theorem 3: Let the conditions of Theorem 2 hold. 
Furthermore we assume that the set of orbits of Zh de­
fines a C~ -manifold W. Then 

(a) The Lie group G with Lie algebra isomorphic to 
L acting on the evolution space W induces a unique group 
action on the orbit space W. 
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(b) The group G ac ts on W by sy mplec tic 
transformations. 

Proof: (a) The group G maps a trajectory of Zh onto 
a trajectory of Zho From a theorem of Palais19 it fol­
lows that there exists a unique group action 

¢g : W - W, tv 1-+ ¢g(w) 

such that 

o-(cpg(W» = ¢g(o-(w» or 0- ° cPg = ¢g ° 0-

with WE Wand the prOjection 0-: W- Wfor all gE G. 

(b) We have to show that n leaves invariant with 
respect to the group action ¢g, i. e., ¢:n = n. Since 
<t>:nh=nh and nh==a-*n we have 

a-*n = CP: (0-*0) = (0- a cpg)*n == (¢g a o-)*n = a* (¢:n) 

such that n = ¢:n, where we have used 0 ° cPg = rpg 0 (j 

and CP: 0 (j* = (0 ° cPg)*. 

7. PHYSICAL APPLICATIONS 

The preceding theory shall be applied to physical 
problems which can be described by Lie algebras of 
constants of motion Ii with Zhli = 0 for a given 
Hamiltonian function h. 

The space of constants of motion can be identified 
with the space of functions Coo(W) on the symplectic 
orbit space (W,O). C"(W) defines a Lie algebra under 
Poisson bracket on W 0 In the following we study finite 
dimensional Lie algebras of functions generating Lie 
group actions on orbit spaces. 

For special problems we shall give solutions Ii 
(j == 1, ... , 2n) of 

. ali . 
ZhIJ=O or ar=-XhF, 

with initial conditions Ii(x, 0) =Xi calculated in terms 
of Lie series,21 i. e. , 

Ii(x, t) = exp(- tX) • xi ==C~ [(- t)m/m!] Xi:' ) • xi 

=xi _t[xi ,h]+(t2/2!)[(xi ,h],hJ-ooo. 

Furthermore we shall construct the map 

a: W- W with nh==a*n. 

For a given system of coordinate functions Ii defined 
in a neighborhood U of point WE W there exist coordi­
nate functions Ii defined on a(U) such that for all 
WE U we have 

Ii(a(w» =Ii(w), Ii oa=I1, 

respectively. 

7A. THE NONRELATIVISTIC FREE PARTICLE 

In the case of a free nonrelativistic particle with 
time independent Hamiltonian 

h:W-ffi, h(q,p,t)=p2/2m, pEffi3 \{0}, 

and the vector field Zh is given by (a == 1, 2, 3,) 

Z ~~ +t Pa _0_ 
h ~ at a=l 111 oqa· 
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The solutions Ii: W-ffi of Z"IJ = 0 with Il(x, 0) =xi are 
given by 

l a(q, p, t) = exp(- tX) • qa - t[qa, h] + (t2 /2! )[[qa, h], hJ _ ••• 

=qa_ Pa t 
rn ' 

Ia~3(q,p, t) =Pa' 

The differentials dli at each point of W have rank 6. 
There exist coordinate functions Qa and P a on W such 
that (a: W- tV) 

l a = Qa a 0-, Ia~3 ==Pa a a. 

n is given by 

3 

n = ~ dP.l\dQa 
·=1 

since 

a*n=a*(~ dPal\dQa) =B d(Paoa)l\d(Qa°(j) 

3 3 

= ~ dP. I\d(q· - (Pa/m) t) ="'6 dPal\dqa - dhl\dt = nh' 
a=l a=l 

Therefore we are given a system of canonical coordi­
nates on the symplectic manifold (W, 0)0 

One immediately verifies that the functions Po, Go, 
J., and h with 

3 

Ga=- mQa, J a= ~ Ea/>cQbPe, Po and h=p2/2m 
b, c::1 

define a realization of the Poisson algebra of the 
Galilean group21.22 if one uses the Poisson bracket 
defined on the orbit space as Lie bracket. The func­
tions Ga, <la, Pa, and h generate complete canonical 
vector fields on W which have rank 6 since the differ­
entials of the functions have the same rank and n is 
nondegenerate. Therefore the group generated by the 
canonical vector fields is globally defined and acts 
on W via canonical transformations. The Galilean 
group can be interpreted as a noninvariance group of 
the free nonrelativistic particle. 

7B. THE HARMONIC OSCILLATOR 

In the case of the three-dimensional harmonic oscil­
lator with Hamiltonian 

h(q,p, t) = p2 /2 + q2 /2, q,p E ffi3\ {O}, 

coordinate functions Qa, P a on the orbit space Ware 
given by 

Qa 0 a(q, p, t) = qO cost - Pa sint, 

Po 0 a(q, p, t) = qa sint + Po cost. 

If we introduce the complex variables 

Za = (1/v'2)(Qa + iP.), za = (1/v'2)(Qa - iPa) 

we have 

3 3 

"'6 dPal\dQa=i~ dzal\dza• 
a~ a~ 

With respect to the corresponding Poisson bracket 
given on W the functions 

Aab = ZaZb' Aa4 = iZa (t ZbZb + 1) 1/2 , 
b=l 
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3 

A4a = -A44' A44 =- 6 Za za- l 
a·l 

define a realization of the Lie algebra of the group 
U(3, 1)23 which is a noninvariance group of the three­
dimensional harmonic oscillator.-

7C. A CHARGED PARTICLE IN A CONSTANT 
ELECTROMAGNETIC FI ELD 

For a particle with mass m and negative charge - e 
moving in a constant magnetic field B = (B1, B2 , B3) the 
vector potential A may be given by (Bs = IB I, q E m3

) 

A = HB, q] = (- -rzBsqz, -rzB3% 0). 

Then the Hamiltonian h is defined by (w=eB3/mc) 

h(q,p, t) = (1/2m)(pl - -rzmwqz)Z 

+ (1/2m) (P2 + -rzmwql)Z + (1/2m) p~, 
with 

1Tl = PI - -rzmwqz, 1TZ = pz + -rzmwq1" 

six constants of motion are 

P (q, p, t) = Xo - (1T j /mw) sinwt + (1Tz/mw) coswt, 

P(q,p, t) = Yo - (1T j /mw) coswt - (1T2/mw) sinwt, 

l3(q,p, t) =q3 - (P3/m) t, 

r (q, p, t) = -rzmwyo + (1T1/2) coswt + (1Tz/2) sinwt, 

fi(q,p, t) = - -rzmwro - (7T j /2) sinwt + (1Tz/2) coswt, 

?(q,p, t) =Pa, 

where 

Xo = -rzqj - pz/mw, Yo = -rzqz + Pl/mw. 

By choosing these constants of motion as a coordi­
nate system one immediately sees that the particle 
moves on a cylinder with constant velocity in the direc­
tion of qa' 

On the orbit space W a system of canonical coordi­
nates is given by the functions (a: w- W) 

Qv Qz, Q3' P 1, Pz, P a 

with 

Qloa=P-xo, Qzoa=xo, Qaoa=la 

Ploa=2(r--rz111WYo), P2oa=mwyo, Paoa=r. 

With respect to these coordinate functions one verifies 

a*n = [th' 

If there is an additional electric field then in a similar 
way one can calculate the constants of motion and con­
struct the orbit space, 

70. TIME-DEPENDENT QUADRATIC SYSTEMS 

We consider a Hamiltonian h with [(x k) = (qa,Pa)] 

and assume that the problem can be described by 2n 
constants of motion lk with 
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which are solutions of 

elk 
Zht'=[lk,h]+ay==O with t'(x,O)==xk• 

Then the coefficients aki and bk must satisfy the dif­
ferential equations 

Furthermore 

[t', li](X, t) == [lk, lJ](x, 0) == [x\ xi] = - [tki 

such that 

Now introducing the complex variables 

za = (1/.J2) [la(x, t) + iI ·+'(x, t)], 

zo= (1/..f2)[I"(x, t) - iIa+,(x, t)], 

we can define a realization of the Lie algebra U(n, 1) by 
setting (1 '% a,.b '% n) 

Aab=zazb' A a,+1=iZa(t ZbZb+ l ) l/Z, 
b=1 

_ h 

A'+1 a == - Aa ,+1' An+l ,+1 == - 1 - 6 ZbZb' 
b=1 

We shall apply this result to the problem of a damped 
oscillator: The problem may be described by the 
equation 

mq + {3q + kq == ° (q E m3). 

The corresponding Hamiltonian is defined byz4 

h(q, p, t) == (p2/2m) • exp[ - ({3 /m) t] 

+ (k/2) qZ. exp[({3/m) t]. 

Using the equations given above we have for instance 
(d=1,2,3) 

add = k exp[({3/m) t], ad a+d 

and 

adS+a=- (l/m)exp[- ({3/m) t], add 

such that 

add - ((3/m) add + (k/m) add = 0, 

The general solutions lead to the result 

[A=({3z-4km)1/Z, la(x,O)=qa, r+3(x,0)=Pa] 

I"(x, t) = (1/2A) exp({3/2m) t {(A - (3) exp[(A/2m) t] 

+ ({3 + A) exp[ - (A/2m) t]} 'qa 

- (1/ A) exp[ - ({3 /2m) t] {exp[ (A/2m) t] 

- exp[ - (A/2m) tn· Pa, 
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I"+3(X, t) = (km/ ll) exp[(j3/2m) t]{exp[ (ll/2m) t] 

- exp[ - (ll/2m) t]}·qa 

+ (1/2ll) exp[- (j3/2m) t]{(j3+ll) exp[(ll/2m) t] 

- (13 - ll) exp[ - (ll/2m) tl}· Pa' 

The constants of motion generate a Lie algebra of 
the group U(3, 1) which is a noninvariance group of this 
problem as in the case of the stationary three-dimen­
sional harmonic oscillator. Finally the constants of 
motion can be used as a system of canonical coordinates 
on the orbit space. 
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The dynamical quantization of the "Kepler manifold" in any number of degrees of freedom is constructed. 
The Kepler manifold is the phase space of the regularized Kepler motion and is shown to be an SO(n,2)­
homogeneous symplectic manifold, corresponding to an extremely singular orbit in the co-adjoint 
representation; the quantization is obtained by "approximating" this orbit by more regular ones, which are 
equivalent to homogeneous bounded domains. The most relevant result is that the usual quantum­
mechanical "hydrogen atom" model is recovered in the particular representation introduced by Fock in 
1935 [SO(n)-homogeneous integral equation in momentum space]. 

INTRODUCTION 

"Geometric quantization" is generally accepted today 
by mathematicians as a powerful technique which gives 
almost all unitary irreducible representations for a 
wide class of Lie groups. 1,2,3 There has been little 
interest in the theory among theoretical phYSicists, 
however; the reason may be found in the narrow limits 
of applicability of the theory, i. e., harmonic oscil­
lators,4 free relativistic and de Sitter particles, 5 and 
energy levels of the hydrogen atom. 6 The aim of the 
present paper is to give an example which should be of 
interest also for theoretical physicists. The problem of 
applying the theory of geometric quantization to the 
Kepler problem attracted the attention of several people. 
Simms6 considered each energy level separately and 
showed that the usual level structure could be obtained; 
a certain deviation from original Kostant theory was 
however necessary (this will be discussed in Sec. 2). 
Onofri and Pauri 7 suggested applying the theory to a 
certain SO(4, 2)-homogeneous symplectic manifold which 
represents the phase space of the (regularized) Kepler 
motion with negative energy. It was shown, however, 8 

that there does not exist any invariant polarization in 
this case, and Kostant theory does not apply. Recent 
developments of the theory allow us to deal with non­
invariant polarizations as wen3; but there does not seem 
to exist a simple recipe to construct the so-called 
Kostant-Blattner-Sternberg kernel. In this paper we 
shall adopt an alternate procedure. We shall show that 
a correct quantization of the "Kepler manifold" can be 
obtained through a limit of quantizabZe manifolds, ad­
mitting an invariant (complex) polarization. Whether 
the same result can be obtained by means of the 
Kostant-Blattner-Sternberg approach is still to be in­
vestigated. Although our procedure may appear rather 
heuristic, it is a posteriori justified, since we obtain 
the usual quantum-mechanical model of the hydrogen 
atom (for negative energy). In particular we obtain the 
representation found by Fock9 in terms of functions de­
fined on a hypersphere in momentum space. 

The material is organized as follows: In the first 
section we study some singular orbits Ow/ with respect 
to the co-adjoint representation of SO(n, 2). The lowest­
dimensional one Owo is shown to represent the phase 
space of Kepler motion with negative energy in n - 1 di­
mensions; to make this identification one must first 
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regularize the Hamiltonian flow as shown by Moser lO 

[see also Refs. 4 and 11]. In the second section, we con­
struct the quantization of the orbits Ow/; the corre­
sponding unitary irreducible representation of SO(n, 2) 
is studied in some detail, in particular the "coherent 
state" basis is constructed. In the third section we study 
the limit l- O. The result is that (i) a natural realiza­
tion of the carrier space of the representation of SO(n, 2) 
in this limit is given by functions on the sphere Sn-1, and 
(ii) the energy eigenvectors are solutions of the integral 
equation 

) r(in - 1) (' ) f >Ys(x == 27T"/2 s+zn-l 
5 n- 1 

>Ys(y) • 
Ilx_ylln-2 y, 

where (s +in-l) is the eigenvalue of mk/(- 2mH)1I2. 
This equation is identical with the usual one as reported 
in Ref. 12. 

From a mathematical point of view, the idea of ob­
taining unitary representations through an analytic con­
tinuation in the invariants goes back to Knapp and 
Okamoto13 ; it was suggested by the present author for 
SO(n,2), with an eye toward the Kepler problem, in Ref. 
14. The mathematical ideas are essentially all con­
tained in Harish-Chandra's works; in particular the 
singular case is considered in Ref. 15. We included a 
lot of well-known results, the aim being to make the 
paper readable for a wider group of theoretical phy­
sicists. 

1. A FAMILY OF SINGULAR SO(n, 2)-orbits 

Let us consider the group of linear transformations 
of Rn+2 onto itself which leave the pseudo-Euclidean form 
g invariant, where gl1 ==g22 = - g33 == ••• = - gn+2 n+2 == 1, 
and gj j = 0 for i *- j. We consider only transformations 
which are connected to the identity. This group is de­
noted by SO(n, 2); n = 3, 4 correspond to the de Sitter and 
conformal group, respectively. We shall deal in general 
with n ;. 3. Let g == expX be the exponential mapping, 
X being an element in the Lie algebra Bo(n, 2). 
A basis in Bo(n, 2) is given by Xli' exp(cpX/ j ) being a 
special transformation in the (i,j) plane. Of course XIJ 
== -Xii and 

(1) 
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or equivalently [XiJ,Xikl==gjjxJk (two equal indices), or 
zero if all indices are different. 

It will be useful, in the sequel, to have special sym­
bols for the generators, namely: 

X 1 .. +2 =Z .. , 

X 2u+2=Wu, 

maximal compact subalgebra 
Bo(n) EB so(2) 

(2) 

Greek indices run from 1 to n and are "tensorial" with 
respect to the compact subgroup SO(n). 

The dual space of Bo(n, 2) is denoted by so(n, 2)*. The 
Killing form B(X, Y) = (1/2n) Tr(adX adY) is nonsingular; 
then Xi~ provide a basis in so(n, 2)*; here X~E so(n, 2)* 
is defined by (XI>, Y)=B(X,Y) for every YEso(n,2). Ex­
plicitly we have B(Xih X hk) == gikgJh -lJihgjk' A generic 
point WE so(n, 2)* is then given by 

(3) 

and we shall simply write W = (s, m",v, z"" w",). 

The orbits in so(n, 2)* with respect to the co-adjoint 
representation constitute the most general model of 
homogeneous symplectic manifold with respect to the 
group. 1,2 We shall denote by Ow the orbit through w. We 
shall limit ourselves to some "singular" orbits, namely 
OWl (l?- 0) defined by 

(l > O), 

(l = O). 
(4) 

As submanifolds of so(n, 2)*, these orbits are charac­
terized as follows: 

(i) OWI={w=(s,muv,zu,Wu)l s2+:0 m~v 
",<v 

-:P(zJ +W~)==l2; sm",v=z",wv-ZV W1>} (1)0). 

Since 

ad*X(yb}=[X,y]1> (5) 

the stability subgroup of WI is given by the commutant 
of 5 which is SO(2}0 SO(n}, the maximal compact sub­
group. It follows that OWl is equivalent to the n-dimen­
sional complex bounded domain D(n) C en of type IV. 16 

Said otherwise, it is possible to parametrize OWl by 
complex coordinates (1;1,1;2' ••• ,I;n) in such a way that 
the action of SO(n, 2} on OWl is given by holomorphic 
transformations. This will be shown in Sec. 2. 

(ii) Ow ={w=(s,m,.v,z""W",) l s2+.0 m~v 
u "'~ 

I;zJ =:0 w~; .6 z",w,. =o}. 
.. '" IJ, 

It follows that L", i2", = L:", w~ = S2 = L: .. <v m~v and the global 
structure of Ow is given by 7 0 Wo '" R x SO (n)/SO(n - 2). 
This is the sam~ as the manifold introduced by Moserlo 
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Tt 5"-1 (cotangent bundle on 5"-1 with the zero- section 
deleted) and called the "Kepler manifold" by Souriau. 11 

The identification of Ow with the phase space of 
o 

Kepler motion can be seen by introducing a local chart 
of canonical coordinates. Let (x, p) be canonical co­
ordinates in T*(Rn-l_{O}), H=p2/2m- k/r is the 
Hamiltonian, where p2 =p. p, r= (xoX)1I2. Let z 
=(ZI,···,Zn_I), w=(wI,···,Wn_I), p=(mln, •.. ,m n- 1n). 
Then the following transformations are canonical 
(locally): 

s =mk/(- 2mH}1I2, 

_ . ( . mkx/r- (xop)p) 
a=z-zw= (P+z (_2mH)172 

Xexp{i(- 2mH)1I2x 0 p/mk}, 

_ . I rp2 - mk . ) 
(In=zn- tWn= \(_ 2mH)1I2 +zx·p 

p 

Xexp{i (- 2mH)1!2 xop/ m k}, 

p2X_ (x. p)p-mkx/r 
(- 2mH)172 (Runge-Lenz vector). 

(6) 

Let us briefly comment on these formulas. The rela­
tion between sand H is such that the rotation angle T in 
(1,2)-plane coincides with 2rrt/T, where t is the time 
in Hamilton's equations and T is the period of motion. 
The expression of m .. v and p is obvious; that of z u and w" 
is not so obvious, yet well-known (Bacry-Gyorgyi 
parameters (7). A simple proof is given below. 

Let us take for granted that the expression of sand 
m". is correct. We have to determine (z,zn) and (w,w n ) 

as functions of x and p. Let us put 

z=¢lx+(hp, zn=¢, 
(7) 

W = lj!tX + lj!2P, Wn = lj!, 

where the ¢'s and lj!'s may depend only on r, p and x-po 
Let us fix these unknown functions by requiring that 
(s, m"v, z IJ,' w .. ) belong to OWO' i. e. , 

z·w +znwn=O 

Z2+Z~=S2 

=* ¢ir2 + 2¢1 ¢2 x. p + ¢~p2 + ¢2 =S2, (8) 

W2 +W~=s2 

=* lj!ir2+2lj!1lj!2X.P+lj!~p2+lj!2 =S2, 

¢1lj!2-lj!1¢2=S, 

lj!¢1- ¢lj!I=~(p2_ mk) 
mk r' 

S2 
lj!¢2- ¢lj!2=- mk x.p. 
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It follows that 

1>=/:k [x oP 1>I+(PZ- r;k)1>2] 

:= Al1>1 + A21>Z' 
(9) 

and 

(~1~2) (~~) (~~) =s2, 

(10) 

(1)11>2) (~ ~) (~:) =0, 

(1)11>2) COl ~) (~:) =s, 

where A = r2 + Ai, B = p2 + A ~, C =: X 0 P + AI A2' AB - c2 = S2. 

If we have a solution of Eq. (10), then we can obtain 
another solution by applying a transformation T of the 
form 

T= (COSO-(C/S)SinO -(B/s)sina ). 

(A/s) sina cosa + (C/s) sino (11) 

Let us determine a particular solution by imposing <PI 
=0. Then we have <P2=s/B1I2 =r, ~1=-s/r, ~2=CS/ 
Br=[(xop)/ml<]s. The general solution is then 

s . 
¢1 = - r smo, 

¢2=rcoso+~k x.p sino, 
m 

s 
!/i1 =- r coso, 

x·p 
1/!2 = - r Sino + mk s coso, 

and from Eq. (9) 

<P=~k (rp2-mk)cosa-xop sino, 
n! 

S 2 . I/!=-Xop cosa- mk (rp -mk)smo. 

We can now impose the condition that x and p be 
canonical and we obtain, as a particular solution, 

Ii=- x. p/s. 

(12) 

(13) 

(14) 

The solution corresponding to 0 = 0, still noncanonical, 
is interesting, since it provides the variables which 
regularize the Hamiltonian flow, namely 

2: := (..J- 2mH rp/mk, rp2/m k - 1 he: sn-l, 
(15) 

r ~ (x. p)p-mkx/r , ) - - x.p E TZ S"-I . 
..J- 2mH 
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It is a nice feature of this group-theoretical approach 
that the explicit form of these variables is straight­
forwardly obtained by simple algebraic considerations. 

2. THE QUANTIZATION OF 0"'1 
The homogeneous complex structure of OWl (1)0) 

provides an invariant complex polarization for the 
prequantized OWl. We shall then construct a unitary ir­
reducible representation of SO(n, 2) in a Hilbert space 
HI of holomorphic functions on 0",/. The exposition will 
be rather sketchy, since the general theory of quantiza­
tion is well-known for the homogeneous Kaehler case. 14 

A premise is necessary, however, on the "quantization 
rule" WI 1- A which provides the representation e~ of the 
stability subgroup. According to the original Kostant­
Souriau theory, the prescription is simply A = iw/ which 
gives, in our case, 

e{exp~+~ CPl'vMI'v)] 

:= exp[i(Wz, (cps + ~ CP"uMI'v))] 

=: exp(- ilcp). (16) 

It has been pointed out by several authors that this 
choice for A does not always lead to reasonable re­
sults. 6.14 In particular, let W be an element in the Weyl 
group W K of 80(2)* 63 so(n)* With respect to a fixed Car­
tan subalgebra h. Then W(WI) E OWl but the representa­
tions induced by exp(iwl) and exp[iw(w l )] are not equi­
valent, in general. A W K-invariant quantization rule is 
given by 

WI ~ A=iwl- p, (17) 

P being half the sum of positive roots (this fact follows 
from results of Schmid on Langland's conjecture 18). Any 
other rule, such as 

(18) 

is again W K-invariant, provided that W E W [Weyl group 
of so(n, 2)cl is such that w(iw z) + Pc belongs to the highest 
Weyl chamber and WKAO =AO; here Pc is half the sum of 
positive compact roots. We prefer Eq. (18) to the 
former one for the following reason, if the group under 
conSideration is compact, then AO:= 0, Pc'" P and we have 
A=iw - p +w-1(p), which is the correct quantization rule 
in the compact case. In our specific problem we obtain 

A=i(Z+n/2+Z o)SI7, (19) 

where 10 is still to be fixed [see the appendix for the 
proof of Eq. (19)]. We make the choice Zo=- 1 (inde­
pendent of n); whether the introduction of symplectic 
spinors or some other geometric structure 3. 6.13 could 
account for this is still unknown. It must also be 
stressed that we are also going to consider noninteger 
values for 1 + in - 1; this means that we shall obtain a 
proj ective representation of SO(n, 2), in general. 

Let us now exhibit the homogeneous complex struc­
ture of OWl. Let 1; E Cn be represented by a one-row 
matrix (1;1, .•• , 1;n); let 1;' be its transpose, so that 1;1;' 

== L I' t~. In the following we shall adhere to the notation 
of Ref. (16) as closely as possible. Let a = (a l' 0 •• ,an) 
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be defined as in Sec. 1 by u,. =z,. - iw". The map 
J.L I: OWl - Cn

, defined by 

I;=:s (u+2S(s:~'-aa' a} (20) 

is differentiable and nonsingular everywhere (s is a 
well-defined function of a, on OWl)' The following holds: 

-, 2l(s +l) 
1;1; =1- 2Zs+[4Z2S2+ laa'1 2]1l2' 

12)--' 1 '12 412 
- b I; + I; I; = 2-l-s-+"""'["-4--'Z2'-s"""2 -+-I-a-a-' 1 .... 2]~1...,,/ 2~ 

(21) 

The range of J.L I is then the homogeneous bounded domain 
of type IV 16 (Cartan domain), 

OWl inherits from f)Cn) the structure of a SO(n, 2)­
homogeneous Kaehler manifold. The inverse mapping 
J.L i 1 : f)Cn) - so(n, 2)* is given by 

. 1;- sl;'f 
a=-2zl 1 _21;I;'+ 11;1;'12 

1-11;1;'12 
s=ll_2a'+ 11;1;'1 2 ' 

(23) 

J.L i 1 is precisely the "moment" of the symplectic action 
of SO(n, 2) on f)Cn) which is given by 

(1, - i)C' + nn' + (1, i)C'l;s' 
gl;= A(A')+2I;B'n)+Ac(A'),,' ' 

(24) 

where 

A(A') '= (1, - i)A 'n), AC(A ') '= (1, i)A 'n ). 
By holomorphic induction from exp[i(l +n/2 - l)S~], 

we obtain the following representation of SO(n, 2), 

(25) 

(Ug'llm) = (j g -U+n 12-1> 1 n 'lI) (g-1 1;) '= J.L (g, 1;) 'lI(g-1 1;). (26) 

where 

(27) 

[the proof of Eq. (27) is given in the appendix]. The in­
variant inner product is given by 
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(WI 1 'lI2) = N Incn ) WI (1;)'lI2 (1;) 

X(I- 21;E' + 1I;I;'12)I-n/ 2-1 e 
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with 

N is a normalization factor which can be chosen in such 
a way that the constant function 'lI0(1;) '= 1 has norm 1, 
i. e. , 

N= [iD(n) (1- 21;f' + 1I;I;'12)I-n / 2-1?,-]-1 

2n (l- 1) r(l + n/2 -0 
= 11

n r(l- n/2) 
(29) 

It follows from a theorem of Harish-Chandra 20 that the 
Hilbert space H I of holomorphic functions 'lI(I;) such that 
I/'ltl/ < "", is nontrivial if and only if l >in. The repre­
sentation of SO(n, 2) in HI is unitary and irreducible; it 
is the quantization of OWl' Since we are interested in the 
limit z- 0, we shall need a definition of HI which make 
sense also for l..; in; this will be done in Sec. 3. For 
the moment, let us examine some properties of the 
representation for l > in. 

As is well-known, there exists an overcomplete basis 
{II;) E HJ in a one-to-one correspondence with the 
points of f)(n). The vectors II;) are usually called "co­
herent states" or "principal vectors,,4.14.21.22 and provide 
the most simple way of taking the "classical limit" of 
expectation values and probability distributions. 23.24 
The properties of coherent states in HI can be sum­
marized as follows: 

(i) (I; 1 'It) = N I Cn) fffi'ltW 
D 

X(I- 2~~'+ 1~~'12)I-n/2-1 €'='It(I;), 

(ii) I;W = (~I 1;) = (1 - 2~~' + ~e ft'tl-n/2+1, 

(reproducing kernel), 

(iiUN f Cn) II;) (1;1/(1;11;) t=JI., (completeness), 
D 

(iv) Ug 1 1;) = J.L (g-I, 1;) 1 gS) [transformation 
property under SO(n, 2)]. 

It follows from Eq. 30 (ii) and (iv) that 

1 
~IO) 

goO)= (OIUgIO) ' 

(30) 

(31) 

which shows the connection with the general definition 
of coherent states given in Ref. 22 [see also Ref. (25)]. 

The state II;) corresponds to a probability distribution 
P~ on OWl given by Pc=Po(g-l a), with !;=g,O and 

( ) N( 412 ) l+n/2-1 
Po a = 2s (s + l) - aa' 

~ 
412 ) l+nI2-1 

'= N 2 2 
(s +Z) - 'j,,,<vm,,v 

(32) 

Let us note that in our units n= 1; Planck's constant 
would appear at the exponent in Eq. (32) in such a way 
that in the limit n- 0, Pc would converge to a Dirac dis­
tribution centered on (s, 111,. v , z,,' w ,,). 

The reproducing kernel contains all the properties of 

Enrico Onofri 404 



                                                                                                                                    

the representation. Let {'Pi(t) liE I} be a sequence of 
linearly independent holomorphic functions in j)(n) such 
that 

Then it follows that the set {'Pi liE I} is orthonormal 
and complete. This fact will be used in Sec. 30 

The representation X I--X of the Lie algebra so(n, 2) 
is easily obtained by differentiating Eq. (26), 

S = (t + ~ - 1) + ~ [;"a", 

i,,=i~+~-I)[;,,+i2?([;,,[;v_l~[;1:' 1),. v) 0.' 

W,,=- ~+~ -1)[;,,-~ ([;1-' tv + 1~[;[;' Ol-'v)ov' 

(au=a~J· 
We know that in general ([; IX It)/([; It) coincides with 
the classical generating function x(t,"[) '\ this can be 
easily verified here, except for a factor (t + in - 1)/Z 
due to the new quantization rule Eq. (19). 

The representation of so(n, 2) is found to be identical 
to that of Ref. 26 if we are allowed to take l = ° and 
real t! 

3. THE QUANTIZATION OF THE KEPLER 
MANIFOLD 

We now come to the main result of this paper, namely 
that it is possible to take the continuation of the rep­
resentation of SO(n, 2) for l ~ ~ and the limit l- 0 yields 
the quantization of the Kepler manifold. We shall study 
the limit l-O of OWl' of iJ.1, and finally of the 
representation. 

It is clear from the definition that 00 = liml_O OWl con­
tains 0., . What happens is that 00 is not homogeneous; 
it splits °into {o}= {a= O}, Owo = {aa' = O} and a 2n-di­
mension~l orbit Oa={aa'*O}. Let us note that for any 
point in 00 , the following holds, 

2~1" 2 2 / ,/ )1/ ~2LJml-'v=s - aa . (35) 
"V 

Ow is then the homogeneous component of 00 where m2 
o . 

[the canonical invariant of SO(n)] is a function of salone. 
This corresponds to the fact that the sub manifolds Z; s 

={s=constant} are SO(n)-homogeneous. A similar 
property will hold for the quantization of SO(n, 2). 

When [- ° the map iJ.1 becomes singular. From Eq. 
(21) it follows that: 

(i) a=O",*[;=O, 

(ii) !aa'!-L*O",*a'-I, 1-2a'+ /[;t,/2_0, 

(iii) aa' - 0"'* 1 - 2t"f' + 1 [;[;' 12 - 0, (36) 

but a' has no limit. 

Eq. (36 (ii» means that a limit map can be defined on 
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Oa and its range is the Bergman-Silov (B-S) boundary 
of j)Cn), 

. (- ') z aa - n-l 1 t=- 0'+ -- a ES XS 
2s 10'0"1 ' 

i. e. , 

[;=xexp(iw), W=t arg{aa'}+~' 

x = me {exp[- (i/2)arg{aa'}] ~}. 

(37) 

In case (iii) all that we can define is a map 1/0: aj)cn) - Z;s 

(the energy surface). From Eq. (23) we obtain 

r:J 1 t-(?;t')'f 
vo(l;)= 2s =i 1-/i:t,,/2' (38) 

where t now belongs to the boundary aj)(n). Let Co 
:= {t E aj)(n) 1 !;!;' = O}, then all points t = [;0 + A I"o with 
toE CO, IAI <1 belong to oj)(n) and are mapped into the 
same point 110 (t) = a/2s = - ito. The boundary a j)(n) (sub­
tracted from the B-~ boundary) is fibered with base 
space Co and fiber j)(1). Co is diffeomorphic to Z;s' By 
restricting to Co, we can associate a function on Owo to 
any function on j)(n) which extends to the boundary; the 
converse is not true, however, since there does not 
exist any Cauchy formula for Co, analogous to that for 
the B-S boundary. 

Let us now consider the limit of the representation. 
We know that H, is nontrivial only for l>tn. But HI 
can be equivalently defined in a way that preserves its 
meaning also for l < tn. This can be done as follows: HI 
is a space of holomorphic functions on [)(n); it is the 
linear span of {UgiltolgE SO(n, 2), ilto(t) = I} (completed 
according to the topology given by uniform convergence), 
explicitly, 

(39) 

The norm is implicitly defined by requiring that the 
kernel K(!;, ~) = (1 - 2t of + [;t,[[,)-(l·nl 2-1) be repro­
ducing, i.e., K{([;)=K(i:,~kHI and (K{I'*?=ilt(~). The 

action of SO(n, 2) is unchanged. The point is that this 
new definition is equivalent to the previous one for 
1 >tn but makes sense also for 1 ~ in (the difference 
being that the representation is square-integrable for 
1 > in while it is not for l ~ ~n). 27 

Now, let uS examine the case l=O, 

K(i;, 0 = (I - 2t"[' + [;[; 'IT'rn/2
+

1 

(40) 

The holomorphic functions <Pi(t) are uniquely charac­
terized by their values on the B-S boundary; then it is 
sufficient to consider the following expansion, 2& 

K(xexp(i{l), y exp(- iw» 

= (1 - 2xy' exp[i(,9 - w)] + exp[2i({l- w) ]tn/2+1 

41Tnf2 00 exp[is(,9- w)] ~ --
=r(n/2-I)li 2s+n-2 ~Ysa(x)Ys .. (Y). (41) 
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{Y s" (x)} is an orthonormal set of spherical harmonics 
of degree s on S"-I, ex = (k l , ... , k"_2) with s ~ kl ~ k2 ~ """ 
~ Ik"_21 ~ 0 (see Ref. 29, Sec. 3.6); the number of 
linearly independent Y.a is 

N(n, s) = (2s +n - 2)r(s +n - 2)/r(n - l)r(s + 1). (42) 

By analytic continuation we find an orthonormal basis in 

Ho, 

[ 
211" 12 J 112 

c,os,,(1;)= r(tn-l)(s+tn-l) 

x (1:1:,)s/2 Y (---L.\. 
'''\.fff'J 

The functions c,oSet are homogeneous polynomials of 
degree s; then 

(43) 

Sc,osO!. =(in-l)+sc,os,,' (44) 

For a fixed value s, we have aN(n,s)-dimensional sub­
space where an irreducible representation of SO(n) is 
defined; the Casimir invariant M2 = 1 L:"v M~v is simply 
related to the Laplace operator on S"-I and 

M2c,oS" (1:) =s(s +n - 2)c,os,,' (45) 

We find that § has the same spectrum and multiplicity 
as the operator mk/(- 2mH)t!2, where H is the usual 
quantum-mechanical Hamiltonian jor the (n - I)-dimen­
sional Hydrogen atom (negative energy only). 

The explicit form of c,osa shows that a particular 
realization of our Hilbert space Ho is the following. 
Ho is given by functions defined on S"-I such that 

xJ \{II (x) [_.6.+(in_l)2)1/2\{12(x)X. 
s"-1 

Given such a \{I(x), a holomorphic function on [)(") is 
constructed as follows, 

\{I (x) = B \{IsO!. Ys,,(x) 
sa 

The reproduCing property of K(1:, 0 is then 

I r(in-l) 
\{I(x) = \Kx \{I) = 211"/2 

f 
l_.6.+(in_l)2]1/2\{1(y) " 

x Ilx _ 11"-2 y . 
s"-1 y 

(46) 

(47) 

where Ilx - y /I = Y(x - y)(x - y)' • In particular for any 
eigenfunction of S belonging to the eigenvalue s + in - 1 
it holds that 

r(in - 1) 1 ) 

\{Is(x)= 211"/2 (S+2n - 1 

(48) 
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which is exactly the SO (n)-invariant integral equation 
discovered by Fock for n = 4 (see Ref. 12 for the general 
case). 

The realization of Ho on the sphere is not the only one 
at our disposal. We can represent our functions c,oSet by 
means of their restriction :P.a to Co, tbat is to say to 
the energy surface L" through Vo [Eq. (38)]. The func­
tions CPsO!. are simply related to the,matrix elements of 
the representation DIn) of SO(n). Since Co is SO(n)­
homogeneous, we have 

CpsO!. (R1:o) = (U R-I c,os,,)(1;o) 

=6 c,osa.(1;o)D~~)a(Wl), 
a' 

(49) 

1. 1 0 
where 1:0 = (21,2,0, ... ,0). Now c,osa(1;o) = 0 unless O! 
= (s, s, .•. , s) (highest weight). Then CPs", (1;) is propor­
tional to the "first column" of the representation D(s): 

CPsa(1;)ex:D~~)(R~~_~)=(ss lU1.e -elsO!), (50) 
o 

which shows that the realization on Co is "coherent" with 
respect to SO(n). 22.25 As a matter of fact, the realizatiop 
on 5"-1 is coherent too, in the generalized sense of 
Ref. 22, 

(51) 

0=(0,0, ... ,0)andxo=(o,0, ... ,I)E5n
-

1 (see Ref. 29). 
The stability subgroups of the rays Iso) and Iss) are 
SO(n - 1) and SO(n - 2) respectively, and correspondingly 
we have functions on Sn-l and Co, respectively. 

Let us note that, as a by-product, we obtain that the 
two columns" 0" and "s" of the representation are 
connected by an analytic continuation! Explicitly we 
have (by Cauchy's formula), 

x (" d Ys,,(x) exp(isw) 
In w [1-2x1;'exp(-iw)+1:1:'exp(-2iw)]n72 

o 

ex: (1;1:,)s/2 f x Ys,,(x) C~/2 
sn-l 

x1;' 

ffF 

Taking into account the explicit form of Gegenbauer 
polynomials and restricting to Co (1:1;' = 0) we have 30 

~s",(1;) ex: i
s

"-1 ;; Ys",(x) (x1;')S 

(a similar formula can be found in Ref. 31). 
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APPENDIX TO SEC. 2 

A. Root spaces for SO (n,2) = quantization rule 

(i) n=2r-1, so(n,2)zB" iWI=Zel=ilS~. 

1 
±ek (k=1,2, ... ,r), 

Roots: 
±ek±eh (l<sk<h<sr), 

Positive noncompact roots: 

- el, - el ±eh, 

P-Pc=- (r-i)et> 

iwz - P + Pc = (Z +r - i)el = (l +n/2)el' 

(ii)n=2r-2, so(n,2)zDr • 

Roots: ±ek± eh (1 <S k <h <sr). 

Positive roots: - ek ± eh • 

Positive noncompact roots: 

- el ± eh, P- Pc=- (r- l)el' 

iw z- P + Pc= (l +r- 1) el = (l +n/2)el' 

B. The multiplier J.l (g, V 
The most convenient method to calculate Il (g, n 

=jg(g-l?;)",/n is the following, based on the existence of 
the basis I?;), 

(i) (?;IUg IO)=Il(g,?;) (g-l?;IO)=Il(g-l,O) (?;lgoO), 

(ii) (OIUg IO)=Il(g,O)=Il(g-I,O), 

(i) + (ii) Il (g, ?;) = Il (g, 0) (s 1 goO) 

=jg-l(O) (I+n/2-1)/n (?; 1 goO) 

We are left to calculate jg-l(O). From Eq. (24), 

a (g ?;)/+ 1 _ 2D /+"A(A ') - 2(C /+1 - iC d(B 1" + iB2") 

a?;" I~=o - A(A')2 

_ 2D/+ a fa _ D~!(Cpl- iCp2 )(B1" + iB2") ] 
- A(A') La" A(A') , 

. (A(A'») -n (A[(BD-1C)']) 
Jg(O)= -2- deW 1- A(A') . 

Taking into account that BD-1C =BB' A ,-1 =A -A ,-1 and 
that deW = detA, we obtain 

. (A(A'») -n A(A'-l) (A(A'») -n 
.7g(0)= -2- detA A(A') = -2- . 

Finally 

(
A (A») -(l+n /2-1) 

Il(g,?;)= -2-

" (C + iC )2 ] -Z-n/2+1 + ,.,., f.- /+1 /+2 
S s A(A)2 

f A(A) AC(A)] -1-n/2+1 
= [-2- - ?;C( j) + -2 - ?;?;' • 
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FIG. 1. The level structure 
(weight diagram) for n = 3, 
l> O. 

APPENDIX TO SEC. 3: DETAILS ON THE CASE n = 3 

Let us examine the representation corresponding to 
Z>-oO, n=3. We have 

(1 - 2?;F' + I?;?;' 12)"(1+1/2) =.t t 6' 1 CfJsmJ?;) 12, 
8=0 m=-s k 

where 

22Z
+

k
-

1 
1 (S - k)! 2(l +}?) )112 

CfJsmk(?;)= ,j'l1T(l) r(l+2+k) r(s+k+2l+1) 

x r[l + (k + m)/2] r[z + (k - m)/2] 
[(k +m)/2]! «k- m)/2]! 

X(?;l +i?;2)(k+m)/2 (?;1- i?;2)(k-m)/2 

(54) 

(55) 

k takes on only the values such that (k - I m 1)/2 
=0,1,2, ... , [(s-lml)/2] an~C~(x)areGegenbauer 
polynomials. 

CfJsmk are eigenfunctions of Sand M 12 ; k labels the vec­
tors belonging to the same weight. This means that the 
subspace corresponding to a fixed value s is reducible 
under the action of SO(3) as follows (see Fig. 1), 

(56) 

At this point we take the limit l- 0. We find that all 
normalization factors vanish except for I? = I nI I; cor­
respondingly, 

(57) 

and we are left with simple weights (s, 111) and irre­
ducible energy levels [with respect to SO(3)]. The rep­
resentation of SO(3, 2) that we obtain is well-known as 
one of the "Majorana" representations. 

The explicit form of CfJ5m when restricted to the sub­
manifold Co, is the following, 

0(,.)_ (2s)! 
CfJ Sm S - :::--:-;:;==~::;==~ 

25 s ! ,j (s - m) ! (s + m) ! 
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Since Co"'SO(3);;eSU(2)/Z2' we can introduce complex 
coordinates ai' a2 defined by 

-1;1 +ib2 =aL (a l ,a2)= (- ai' - a2), 

b3=ala2' 

In terms of ai we have the more familiar formulas: 

(59) 

c (2s)! 
m (al a2) - as

l +m aS2-m. (60) 
'+"Sm , - 2Ss!v'(s-m)1(s +m)! 

We can easily check Eq. (50) in this particular case: 

o (R'") _ I(2s)T is D(S)(R- l ) 
CPsm ~o - 2Ss! sm • (61) 

The expansion of the kernel 

(1 - n~' + bb'U'tl/ 2 = [1- (a(b l + a 2[)2)2]-l/2 

'" 0 0 = Llsm CPsm (ai, a2) CPsm(b l , b2) 

is simply given by the binomial theorem. 
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On the equality of S operators corresponding to unitarily 
equivalent Hamiltonians in single channel scattering 

A. w. Saenz and W. W. Zachary 

Naval Research Laboratory. Washington. D.C. 20375 
(Received 12 September 1975) 

Some years ago. conditions in order that unitarily equivalent Hamiltonians H and W· H W yield the same 
S operator were investigated by Ekstein and by Coester and his collaborators in the framework of 
nonrelativistic time-dependent single-channel quantum scattering theory. This subject has turned out to be 
of considerable importance for nuclear physics. since it constitutes the foundation of a widely used method 
for constr acting phase-equivalent nucleon-nucleon potentials. In the present paper we derive a rigorous 
and concise necessary and sufficient condition for a pair of unitarily equivalent Hamiltonians. governing the 
dynamics of a pair of nonrelativistic particles in the center-of-mass system. to yield the same S operator. 
Our theory, based on a time-dependent approach, applies to very general types of short-range potentials, 
with or without hard cores, and to an extensive class of long-range potentials. Our necessary and sufficient 
condition simplifies when certain strong limits W •• related to W, are unitary and when W+ = W_. 
Requirements sufficient for each of these properties to hold are determined. Various examples of operators 
W such that Hand W· H W have the same S operator are discussed. 

1. INTRODUCTION 

USing time-dependent methods, Ekstein1 and Coester 
and his collaborators2 determined, some years ago, 
conditions sufficient to guarantee that unitarily equiva­
lent Hamiltonians lead to the same S operator in the con­
text of nonrelativistic single-channel scattering. This 
type of transformation of the Hamiltonian has recently 
been employed in many nuclear physics investigations, 
in particular, for generating phase-equivalent poten­
tials to study off-shell effects in nuclear few-body prob­
lems and nuclear matter. 2,3 However, as of this writing, 
a systematic study of this transformation method was 
not available in the literature. 

We propose to initiate such a study in the present 
paper by a rigorous time-dependent scattering theory 
approach. The Hamiltonians dealt with here are non­
relativistic ones governing the behavior of a pair of 
interacting particles in the center-of-mass frame. Our 
methods can also be used in the case of multichannel 
scattering, as we shall show in a separate publication. 

In Sec. 2, we consider a pair of unitarily equivalent 
Hamiltonians Hand W* HW, supposing that H contains 
only a short-range potential, which is allowed to be of 
a very general kind. Some of the topics discussed in 
this section are as follows. We prove a concise neces­
sary and sufficient condition for the above two Hamil­
tonians to yield the same S operator. A special version 
of the sufficiency aspect of this condition was given pre­
viously. 1,2 Our necessary and sufficient condition in­
volves certain strong limits W., related to W, which 
are shown to exist under very general circumstances. 
The condition Simplifies if W. are unitary and if W. = W.' 
Sufficient conditions for these two properties to hold are 
obtained. It is found that, when they exist, W. are uni­
tary if W has a gap in its spectrum or if W. commute 
with appropriate observables. The relation W. = W~ is 
shown to follow if W is assumed to be rotationally and 
time-reversal invariant. It is proved that W. = W. is a 
necessary and sufficient condition for the equality of 
the S operators pertaining to Hand W* HW, provided, 
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in particular, that the appropriate operators commute 
with suitable observables and that the former S operator 
is unitary. 

In Secs. 3 and 4, we generalize most of the theoretical 
developments of Sec. 2 to apply to Hamiltonians with 
long-range potentials without hard cores and short­
range potentials with hard cores, respectively, under 
very weak conditions on these two types of potentials. 
The Coulombic potentials and spherically symmetric 
hard-core potentials included in this generalization 
have special relevance for nuclear physics applications. 
The pertinent results in Sec. 3, when specialized to 
the former potentials, provide a rigorous foundation for 
the procedure employed recently by Sauer3 to construct 
phase-equivalent potentials for proton-proton 
scattering. 

In Sec. 5, we discuss examples of unitary operators 
W which are such that the S operators corresponding to 
a pair of Hamiltonians Hand W* HW of suitable type 
coincide. 

Appendices A and B are devoted to the proof of certain 
mathematical results connected with subjects discussed 
in Sec. 2-5. 

2. FORMULATION AND RESULTS FOR SHORT­
RANGE POTENTIALS WITHOUT HARD CORES 

In this section, we first formulate our problem in 
a time-dependent manner for a pair of nonrelativistic 
spinless particles, assuming that the pertinent poten­
tials are of the above type. We then establish a number 
of theorems concerning the scattering properties of 
two-particle systems of this kind having unitarily equi­
valent Hamiltonians. 

We will work in the center-of-mass system of the 
pair of particles of interest. All operators considered 
in this and the next section have domains dense in the 
Hilbert space H = L2(R3) and ranges in fl. Our units are 
such that the kinetic energy operator Ho of the latter 
pair is the unique self-adjoint extension of the negative 
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Laplacian - A on C;(R3
). The self-adjoint Hamiltonian 

operator governing the dynamics of the pair in the above 
system will be denoted by H. In general, we will not 
find it necessary to specify whether H is a self-adjoint 
extension of - A + V, where V denotes the potential de­
scribing the interactions of the pair, or whether it is 
to be interpreted as the sum of the quadratic forms of 
Ho and V in certain cases in which this self-adjoint ex­
tension does not exist. 4 The potential V is not required 
to be locaL 

Letting 

Ut = exp(- itH 0), V t = exp(- itH) (2,1) 

for each real t, we define the M6ller wave operators by 

st± = s-lim stt (2,2) 
t _±DO 

in the present section, whenever these strong limits 
exist. Here 

stt = VrUt (2.3) 

over the range of t just stated. 5 

There have been many inveStigations of the self­
adjointness of H, the existence of the limits (2.2), the 
unitarity of the corresponding S operator, etc. for 
"nonsingular" as well as "singular" short-range 
potentials, 6 

The work of the present section applies to short-
range potentials of nonsingular or singular type, pro­
vided that the respective requirements stated explicitly 
below are fulfilled. As was stated in the Introduction, 
generalizations to long-range potentials and to those with 
hard cores will be made in later sections, 

We now consider a "transformed" system, whose 
kinetic energy operator is again H 0 and whose Hamil­
tonian is 

H=W*HW, (2.4) 

where W denotes a unitary operator. Hence it is natural 
to set 

- -
Vt = exp(- itH) = w* Vt W 

and to define new wave operators by 

S1± = s-lim stt, 
t _±oo 

whenever these limits exisL Here 
- -
stt = VrUt = W*VrWUt • 

(2,5) 

(2.6) 

(2.7) 

We shall be mainly interested in the case when W is 
such that the scattering operators 

S = ~/,t st_, S = st:st_ 

pertaining to Hand H, respectively, are equaL 

It is convenient to define the operators 

W±=s-limWt 
t _±oo 

when these limits exist, where 

Wt =UrWUt . 

(2.9) 

(2,10) 

The special case when W± = AI, where A is a unimo­
dular complex number, and 1 the identity operator on 
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H, can evidently be reduced to the one in which W. = 1 
by considering the unitary operator 'XW instead of W. 
Only the case W± = 1 is considered in Refs. 1 and 2, 
where in the former reference W. corresponds to an 
operator Ho different from the one defined here, In or­
der for W± =1 to hold, it is clearly necessary and suffi­
cient that 

s-lim (W -f)Ut = 0, (2.11) 
t ... ±OCI 

A familiar sufficient condition for (2,11) to hold is that 
W - 1 be compact, but this condition is not necessary. 7 

One easily shows that the requirement W. = AI is suffi­
cient for the equality 

(2,12) 

to obtain when S exists. However, it is not necessary 
in order for (2,12) to hold, contrary to a statement in 
Ref. 2, In Sec. 5 we will discuss an example illustrating 
this last remark, 

Symmetry properties play an important role in the 
present paper. Thus, we shall have occasion to consi­
der the invariance of appropriate linear operators T, 
which may be either bounded or unbounded and self­
adjoint, with respect to 

(a) spatial rotations: T commutes with the three self­
adj oint operators Li (i = 1, 2, 3) corresponding to the 
angular momentum components, 

(b) time reversal: T commutes with the operator e 
defined by 

(ej)(x) = f(x) , f Eft, 

where the bar denotes complex conjugation. 6,9 

It is not necessary to invoke translational invariance 
explicitly because the pertinent operators act in the 
center-of-mass frame of the two-particle system. 
Furthermore, we do not gain anything by postulating 
invariance under spatial inversion because we impose 
rotational invariance and consider only spinless par­
ticles, Similarly, in the case of time-reversal invari­
ance, because all particles are spinless, we need only 
consider the case in which e is a conjugation. 

Our first result provides a simple criterion for the 
equality of Sand S. 

Theorem 2.1: If rt+ and W+ (S1_ and WJ exist, then 
a+ (nJ exists. Moreover, if all four operators n., W± 
exist, then S = S if and only if 

(2,13) 

Pmof: By virtue of (2,3), (2,7), (2.10), and the uni­
tarity of Ut , one concludes that 

(2.14) 

From this result, together with (2.2), (2,6), (2,9), and 
the familiar theorem that the strong limit of an operator 
product is the product of the strong limits of its factors 
when all the latter limits exist, we obtain 

- -
rl+=W*st+W+ (S1_=W*st_WJ (2.15) 

if st+ and W+ (n_ and WJ exist. 
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If aU the operators n± and W± exist, we infer that 

(2. 16) 

by invoking (2.8), (2.15), and the unitarity of W. The 
last assertion of the theorem follows directly from 
(2.16). 

This theorem ~akes it plain that W. = I is sufficient 
to guarantee that S = S. 

It is natural to ask under what circumstances W. are 
unitary and when do W. and W_ coincide, since these 
two properties involve obvious and desirable simpli­
fications of the necessary and sufficient condition 
(2.13). 

As to the first question, W. are isometric when they 
exist, since they are then strong limits of unitary oper­
ators. However, it is not known whether the mere exis­
tence of W± guarantees their unitarity in general. On 
the other hand, the following example (due to Ekstein1

) 

shows that it is possible to have W. '* W_. Suppose that 
n± exist and are unitary. Then W.=I, W_=S* for W 
=n., and W.=S, W_=Ifor w=n_. Hence W.,*W_for 
the nontrivial case S =1= I in this example. 

We mention the following desirable, easily derivable, 
consequences of the unitarity of W. and of the equality 
of W. and W_, similar remarks applying in Sec. 3 and 4. 
If W± are unitary, then S is unitary if and only if S is 
unitary. Furthermore, if n± exist and W± are _unitary, 
then a necessary and sufficient condition for n± to have 
the property of strong asymptotic completenesslO is 
that n± have this property. The following simple result 
impliCitly specifies a class of operators W which are 
such that the corresponding transformed syste!?s yield 
no scattering: If S=I and W± are unitary, then S=I if 
and only if W. = W_. A more general result of this last 
type is stated in Theorem 2.4. 

A sufficient condition for the unitarity of W± is given 
by the following theorem, which is a special case of 
Theorem A. 1 of Appendix A. 

Theorem 2.2: Let the spectrum of W be a proper sub­
set of the unit circle. Then W± are unitary whenever 
they exist. 

We have already mentioned a class of unitary oper­
ators W which satisfy the spectral condition of Theorem 
2.2 and are also such that W. exist, viz., those for 
which W - I is compact. In Sec. 5 we will discuss ex­
amples of unitary operators W which do not satisfy the 
spectral requirement in question, but nevertheless have 
the property that the corresponding W. exist and are 
unitary. 

The next theorem furnishes further sufficient condi­
tions for the unitarity of W.. It will be convenient to use 
the terminology of von Neumann algebrasll ,12 in its 
proof. Thus, if!i'i denotes a set of closed linear opera­
tors (not neceSSlJ rily bounded) with domains dense in 
H and ranges in H, In ' will denote the collection of all 
bounded operators from H to H which commute with 
each operator in!)'! , IY} "= V'YJ ')', etc. 

Theorem 2.3: When W.(WJ exists, the following state­
ments hold: (i) If W commutes with L2 and L s, then 
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W.(WJ is unitary. (ii) If W is invariant under spatial 
rotations and time reversal, then W. and W_ are unitary 
operators such that 

Remark s: Part (i) of this theorem can be immediately 
generalized as follows. Suppose that {T j , i E 7}, where 
T is an arbitrary index set, is a set of self-adjoint op­
erators such that each T j commutes with Ho and W, and 
that {Ho, Tit i E T}' is Abelian. Then W.(WJ is unitary 
whenever it exists. Theorem 2.4 and the pertinent por­
tions of Theorems 3.1 and 4.1 can be analogously 
generalized. 

Proof of Theorem 2.3: We first note that the exis­
tence of W. or W_ entails its commutativity with HQ• 

This follows from (2.9), (2.10), and the fact that 
{Ut , - "" < t < oo} is a unitary group. 

As before, we shall only prove the theorem for W., 
whose existence is henceforth assumed in this proof. 

Proof of (i): It is well-known thatA ={Ho, L2, L 3}' is 
a maximal Abelian von Neumann algebra fII' =A). This 
is a consequence of the fact that the von Neumann alge­
bra {(Ho)rm}" generated by the restriction (Ho)rm of Ho to 
any given Ii r m is maximal Abelian. Here H r m is the sub­
space of H spanned by the simultaneous eigenfunctions 
of L2 and Ls of given land m. Now, W. EA if W com­
mutes with L Z and L 3 • On the other hand, sinceA is an 
Abelian von Neumann algebra, all of its operators are 
normal. Because W. is isometric, we therefore infer 
that it is unitary when W commutes with L2 and L 3 • 

Proof of (ii); Let us confine our attention to a fixed 
land m. From the maximal Abelian property of {(Ho),J", 
in particular, one deduces that the restriction (W.)r m of 
W. toli 'm is in {(Ho),J" and, therefore, is a function 
(in the sense of the usual functional calculus) 
Frm(HO)'m) of (HO)'m whenever W commutes with L2 and 

L 3 • 

Let W, and hence W., possess the stronger property 
of rotational invariance. Denote by {E(A), _ 00 < A < oo} 
the spectral family of H o, take arbitrary f, gEIi 1m, and 
let L±=L1±iLz• There existfQ, goEH'f such thatfo 
= L~f and g= L".go, where l = -l and k = I + m, and we 
have 

= J.:F,r(A)d(fo, E(X).go) = L:F,f(A)d(f, E(A)g), 

(2.17) 

where we have used the commutativity of W+ and of each 
E(A) with L±. In other words, the function F1m(A) cor­
responding to (W.)'m is independent of m in the present 
case. 

If W is time-reversal invariant, then (2.9), (2.10), 
the existence of W., and the antiunitarity of e jointly 
entail that W_ exists and is given by 

(2.18) 

When W is rotationally and time-reversal invariant, 
we have for arbitrary f, gEIi ,m, making use of (2.17) 
and (2.18), and of the antiunitarity of e, its commuta-
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tivity with E{;\.), and the fact that it leaves Et;~ =.zhzIJ. in­
variant, 

(j, W..g) = (ef, w.eg) = J.:Fzf{;\.)d{ef, E{;\.)eJ;) 

= J.:Fzf{;\.)d(j, E{;\.)g) = (j, W!'g). (2,19) 

The assumed rotational invariance of W. implies that 
of W.*, and hence W. and W!' leave each Hz m invariant 
when W. has this property, whence (2, 19) and the ro­
tational invariance of W. yield (2, 18), 

A necessary and sufficient condition for the equality 
of Sand 5 when S is unitary is a particular case of the 
following theorem. 

Theorern 2,4: Let Hand W commute with L2 and L 3, 
and, in addition, let S, W., and W. exist, Then we have: 

W.=W., (2,20) 

then 5=S, 

(ii) If S is unitary and 5=S, then (2, 20) holds, 

Proof: When ~. exist, the commutativity of H with 
L2 and L3 implies that S also has these commutation 
properties, Since S commutes with Ho when it exists, 
the assumptions in the first sentence of the theorem 
therefore imply that SEA, If these assumptions are 
made, Theorem 2.3 guarantees the unitarity of W. and 
an argument in the proof of part (ii) of that theorem en­
tails that W. EA. It follows that 

[S, W.J = 0 (2.21) 

under the latter hypotheses, 

Suppose now that the conditions in (ii) are also satis­
fied. Then (2, 13) and the unitarity of W. imply 

From (2, 21), (2,22), and the unitarity of S, (2.20) 
follows, and therefore (ii) has been established, 

To prove that (i) obtains, we observe that (2, 22) fol­
lows from (2, 20) and (2. 21) and that (2, 16), (2,22), and 
the isometry of W. imply (2, 12), 

An immediate consequence of Theorems 2.3 and 2,4 
is stated in the following corollary, 

Corollary 2.1: Let H be rotationally invariant and W 
rotationally and time-reversal invariant, let W. and S 
exist, and let S be unitary, Then a necessary and suffi­
cient condition for the equality of 5 and S is that 

W.=W.=I-2P, 

where P is a projection, 

Proof: Notice, particularly, that it follows from the 
hypotheses of the corollary that W. are both unitary and 
self-adjoint. 

To arrive at the previous results of this section, we 
have assumed that W. or W. exists, The next theorem 
entails that the existence of W. and W. is necessary for 
S to equal S for a very large class of scattering systems. 
In that theorem, R.{RJ denotes the range of ~.(ru, It 
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is obvious that a necessary condition for the validity of 
either of the inequalities dim(H e R.) < 00 pertinent in 
Theorem 2.5 is that H should possess at most a finite 
number of linearly independent bound states and that 
this condition is also sufficient when strong asymptotic 
completeness obtains for ~ •. 

Theorern 2.5: Let ~. and ~. (~. and rU exist, and 
let dim(H e R.) < 00 [dim(H e RJ < 00 J, Then W.{WJ exists. 

Proof: We limit ourselves to the case of W •. 

Using (2. 7) and the unitarity of Wand Vt, we find 

Wt =~tW~t, 

which we write in the form 

Wt =~tP.Wnt + ~tQ.Ws1t, 

Here Q.=I-P •. 

(2.23) 

We proceed to prove that each term on the right-hand 
side of (2. 23) approaches a strong limit as t - 00 if the 
conditions that ~. and ~. exist and that dim(H e R.) < 00 

are all fulfilled. 

That this statement is true for the first such term 
follows by combining the theorem concerning strong 
limits of operator products already invoked in the proof 
of Theorem 2.1, with the circumstance that the exis­
tence of ~. implies that of s-limt_.",~tP •. 

As for the second of these terms, the identity 

(2.24) 

holds when ~. exists, as can be shown by invoking, in 
particular, the commutativity of Q. with V t , Now, the 
requirement that dim(H e R.) < 00 entails the compactness 
of Q. and therefore that of Q.W. Since Ut is unitary and 
converges weakly to zero as t - 00, we infer that 
Ut*Q.WUt converges strongly to zero in this limit when 
this finite dimensionality requirement is satisfied. This 
completes the proof of the theorem. 

3. GENERALIZATION TO INCLUDE LONG-RANGE 
POTENTIALS WITHOUT HARD CORES 

It is well known that the M611er wave operators (2.2) 
fail to exist for local potentials which are O{ I x l-ct) for 
some 0 < Q! ""- 1 as I x I - 00. F or appropriate Coulomb-like 
potentials13 and for much wider classes of long-range 
potentials, 6,14 it has been shown that the modified wave 
operators 

(3.1) 
t .. ± ao 

exist if the operator Gt mentioned below is appropriately 
selected. Here, 

(3.2) 

In (3, 2), Vt is given by (2. 1) in terms of a self-adj oint 
extension H of - tl. + Von C;'{R3

), where V denotes a 
suitable long-range potential. For the class of such 
potentials considered by Alsholm, 14 such a self-adjoint 
extension always exists. The operator U; in (3. 2) is 
defined by 

(3.3) 
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where Gt is a self-adjoint operator of multiplication by 
a real-valued Lebesgue-measurable function Gt(k) on 
the momentum-space representation of R3. A definition 
of Gt(k) is given in Appendix B. If Gt(k) is defined in 
this manner, and as discussed more precisely in the 
latter appendix, the pertinent results of Ref. 14 entail 
that G t possesses the following two properties for a 
large class of long-range potentials and that, in addition, 
the n. in (3.1) exist for such potentials: 

s-limexp[i(G t .s-Gt )],==1, _oo<s<oo, (3.4) 

w-lim U: = O. 
t -:.0 

Whenever (3.4) or (3.5) is assumed to obtain in sub­
sequent discussions, this hypothesis will be mentioned 
explicitly. 

When the present n. exist, (3.4) is a necessary and 
sufficient condition for them to have the intertwining 
property 

(3.6) 

as follows by a trivial generalization of a theorem of 
Prugovecki. 15 

We again consider a unitary operator Wand define 
Ii and Vt by (2.4) and (2.5), respectively, in terms of 
this Wand the operator H mentioned in the sentence 
following (3.2). The wave operators pertaining to this 
Ii are given by 

- -, n. = s-lim nt, 
t"i;OO 

where 

nt = VtU: = W*vtWU:. 
In this section, the notation W. will refer to the 

operators 

W. = s-lim W; 
t .. ±oc 

when these limits exist, where 

W; = U:*WU;. 

(3.8) 

It is thus clear that the existence of any of the opera­
tors n., ~., or W. introduced in this section implies 
its isometry. 

In the next theorem, we shall understand R., 5, and 
S to be defined in the same way as in Sec. 2, but with 
~1. and ~. specified by (3.1) and (3.7), respectively. 

Theorem 3.1: In Theorems 2.1-2.5 and Corollary 
2.1, let H, n., R., W., n., 5, and S be understood in 
the generalized sense of the present section. Then these 
theorems and corollary are true, provided that in the 
cases of the generalized Theorems 2.3 and 2.4 the addi­
tional condition (3.4) holds and that in the case of The­
orem 2.5 the conditions (3.4) and (3.5) obtain. 16 

Proof: The generalizations of Theorems 2.1-2.5 can 
be proved by steps analogous to those followed in estab­
lishing the original versions of those theorems. As far 
as the generalizations of Theorems 2.3 and 2.4 are 
concerned, these steps include the fact that W., when 
they exist, commute with Ho. This commutativity fol-
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lows from (3.3), together with the definition of Gt , (3.4), 
(3.8), (3.9), and obvious arguments. Naturally, (3.5) 
plays a role in our proof of the generalization of Theo­
rem 2.5 parallel to that played by the corresponding 
property of Ut in the earlier proof of that theorem. 

Assuming that 5 exists in the sense of the present 
section, the generalized Theorem 2.1 referred to in 
Theorem 3.1 entails that W. '==1 is a sufficient condition 
for S'== 5 to be true in the present sense, a result pre­
cisely analogous to one in Sec. 2. This sufficient condi­
tion is fulfilled when W - 1 is compact, if (3.5) obtains 
in addition. 

4. GENERALIZATION TO INCLUDE SHORT·RANGE 
POTENTIALS WITH HARD CORES 

In this section we shall deal only with short-range po­
tentials whose hard cores, if any, are velocity indepen­
dent. This restriction is made in the present treatment 
to avoid cumbersome complications which would obscure 
the ensuing theoretical developments. Certain short­
range potentials with velocity-dependent, or more prop­
erlyangular-momentum-dependent, hard cores17 can be 
treated by a straightforward extension of the formalism 
of this section. 

This formalism can also be generalized to apply to a 
wide class of long-range potentials with hard cores by 
defining n. as in (4.1) and (4.2) below, but with Ut in 
the latter equation replaced by an operator analogous 
to the "renormalized" operator U; of Sec. 3. As we 
shall show in a separate paper, these n. exist for a 
large family of local hard-core potentials of long range. 
With this result and the definitions just sketched, the 
theorems of the present section can be readily extended 
to potentials of this family satisfying suitable conditions. 

Let r denote an open subset of R3 whose complement 
y is compact and may be empty. IT y is of positive mea­
sure, we interpret it as that part of R3 occupied by the 
velocity-independent hard core of interest. In this case, 
we assume that the boundary ill' or r is a closed sur­
face of class C 2

• The Hilbert space of relative motion 
of the two interacting particles is K =L 2(r), where, 
given any measurable subset M of R3 , L 2(M) is defined 
as that subspace of H = L2(R3) whose elements vanish 
a. e. on the complement of M. In the generalization of 
the theory of Sec. 2 developed in this section, it is con­
venient to employ suitable spaces L 2(M), rather than the 
customary spaces L2(M). 

Ikebe18 and Hunziker19 have developed time-dependent 
scattering theories for local short-range hard-core po­
tentials for Single channel and multichannel scattering 
systems, respectively. We have found the former for­
mulation to be particularly convenient as a base for 
our discussion. Thus, for the case when y is nonempty 
and or is of the above mentioned type, Ikebe20 has 
proved that there exists a self-adjoint extension hG 

(called H in Ref. 20) of - ~ appropriate to the exterior 
domain l' when hard-core boundary conditions are im­
posed on ill'. This extension has domain dense in L 2(r) 
and range in L2(r) and is explicitly characterized in 
Ref. 20. We define the self-adjoint operator H O = U*hoU 
with domain dense in L 2(1') and range in L 2(1'), where 
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U is a unitary operator mapping of L Z(r) onto L2(r) such 
that (Uj)(x) =/(x) a. e. on f' for eachjr:::[2(r). Similarly, 
in the present section, H will denote a self-adjoint op­
erator HO + V whose domain and range have the proper­
ties just mentioned, V being an appropriate potential. 

To allow for the presence of hard cores, we define 
wave operators O± for the system with Hamiltonian H 
in the same way as proposed in Ref. 18, except that we 
permit y to be empty and for trivial modifications occa­
sioned by our use of K. When they exist, these O± lead to 
the same S operator as do the corresponding wave opera­
tors defined in the sense of the latter reference, We set 

0. = s-lim ~Gt 
t .. ±oo 

whenever these limits exist, where 

0t = V:PUt • 

(4.1) 

Here and for the remainder of this section, the opera­
tor Vt : /\ - k is defined by 

Vt = exp(- itH), 

and P is a projection operator with domain fI and range 
Ie 

USing, in particular, results and methods in Refs. 
18 and 20, known results on self-adjointness and on the 
existence of wave operators for appropriate short-range 
potentials without hard cores, and straightforward argu­
ments, one readily arrives at the following conclusions. 
Let V be a multiplication operator by a real-valued func­
tion in some class L Z(r) + L P(r) n L ~(R3) [L P(r) is de­
fined analogously to L Z(r) 1 or let V be a self-adj oint op­
erator of finite rank. Define H as HO + V, Then H is 
self-adjoint and the wave operators (4.1) exist for this 
H. Local potentials similar to the first class mentioned 
above are considered in Ref. 19 for multichannel 
scattering. 

Let f denote a subset of R3 whose complement Y is 
con;:fact and may be void. We set f( = L z(.f) and denote 
by! the proj ection with domain H and range f( We let 
W stand for a unitary operator from f{ onto k and, of 
course, define the Hamiltonian ii of the transformed 
system by 

if=W*HW. 

In analogy with the case of Y, Y is to be interpreted as 
the region occupied by the hard core of if if Y has posi­
tive measure. Notice that the elements of the domain of 
if do not generally obey the usual hard-core boundary 
conditions. Specifically, and contrary to the case of the 
elements of the domain of the operator H in the last 
paragraph, they need not be equivalent to continuous 
functions on R3 tending to zero when x r::: R3 tends to an 
arbitrary point of ar. 

If they exist, the wave operators for the transformed 
system are 

~1. = s-lim Itt, (4.2) 
t .. ±«> 

where 

Ot = VrPUt. 
The operator Vt : A -iZ is defined by 
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Vt = exp(- itif) = W*Vt W. 

Provided that the limits exist, we set 

W. = s-lim WI> 
t .. ±oo 

with 

Wt=utWPUt . 

By means of an argument in Ref. 18 which exploits, 
in particular, the compactnes~ of y and:Y, one easily 
shows that the operators 0., 0., and W. of this section 
are isometric when they exist. 

We shall now generalize the results of Sec. 2, with 
the exception of Theorem 2.2, to apply to the type of 
hard core under discussion. Naturally, in the remainder 
of this section R. will stand for the ranges of the oper­
ators 0. in (4.1) and the scattering operators Sand S 
will be defined by (2.8) in terms of the 0. and 0. in 
(4.1) and (4.2), respectively. 

Theorem 4.1: In Theorems 2,1, 2,3-2" 5, and Corol­
lary 2.1, let H, 0., R., W., ~., S, and S be givenby 
the generalized definitions of the present section, Then 
these theorems and corollary hold, if in the case of 
Theorems 2.3 and 2.4 and Corollarv 2. 1 the operators 
Hand Ware replaced by HP and WI], respectively, and 
in that of Theorem 2,5 the conditions dimVi' e R.) < <X; 

are changed to dimG/< e R±) < co. 

Proof: The generalizations of Theorems 2,1 and 2.3-
2.5 can be proved similarly to the way in which these 
theorems were established earlier. In particular, com­
ments analogous to those in the second and fourth sen­
tences of the proof of Theorem 3.1 apply here. 

The conditions that H commute with L2 and L 3 , im­
posed in Theorem 4. 1, are both fulfilled if each of the 
following requirements is satsified: (i) y is a finite 
closed sphere of positive radius centered at the origin; 
(ii) H is a self-adjoint operator H U + V, where ~1 is a 
potential of one of the two types mentioned in the para­
graph immediately after the one containing (4,1) and, 
moreover, commutes with L Z and [3. Examples of op­
erators W having the properties assumed in Theorem 
4.1 will be given in Sec. 5. 

5. EXAMPLES 

All of the examples of operators W considered in this 
section are such that the S operators corresponding to 
the Hamiltonians H and if of the relevant original and 
transformed scattering systems are equaL In subsec­
tion A we discuss a W for which the operators W. de­
fined in Sec. 2 are not equal to 1. In subsection B we 
deal with two cases in which W is a Bohm-Gross-Baker 
transformation, a name chosen to honor three pioneers 
in the study of such transformations. 21 In these two 
cases, which include the possibility of velocity-indepen­
dent hard cores, we show that the pertinent operators 
W., understood in the sense of Sec. 4, are equal to 1. 
It is an easy matter to generalize the second of these 
transformations (Wz) so that it also applies in suitable 
cases involving angular- momentum-dependent hard 
cores, while preserving the last mentioned property of 
the pertinent W •• 
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A. Example for which W ± of I 

In the absence of an explicit indication to the con­
trary, all operators occurring in this subsection have 
domains dense in H = L 2(R3

) and ranges in H. 

The following statements hold: 

1. Let H be a self-adjoint operator and let S, the 
scattering operator pertaining to H in the sense of Sec. 
2, exist. Denote by Wo a unitary oper~tor commuting 
with H o and S and different from I. If S is the scattering 
operator pertaining to the transformed Hamiltonian 
wt HWo in the sense just specified, then 5 = S. 

2. Suppose that Sand S are defined as indicated in 
Sec. 3, but that all of the remaining definitions and as­
sumptions in Statement 1 are made and that the U; con­
sidered is a function of Ho' Then 5=S. 

Statement 1 follows immediately by using the assumed 
properties of W 0' the commutativity of S with H 0, and 
Theorem 2.1, and Statement 2 follows by similar argu­
ments, including the use of Theorem 3.1. In connection 
with the latter statement, notice that U: can be chosen 
as a function of H o for local potentials V for which 
(B1)-(B3) of Appendix B obtain and which, moreover, 
are such that VL (x) in (B2b) is spherically symmetric. 

Clearly, one has W. = Wo *1 for the operators W. cor­
responding to W= Wo in the sense of Secs. 2 or 3, pro­
vided that the U: involved is a function of Ho when these 
W± are understood in the sense of this last section. 

Let S be as prescribed in Statements 1 or 2. Then an 
obvious example of such a Wo is a unitary operator W~ 
which is a function of Ho and S, i. e., Wo E{Ho, S}", and 
which differs from I. If, in addition, the S in question 
commutes with L2 and L3 and W~ is also required to be 
rotationally invariant, then W~ reduces to the form 

~ 

W;=LJzP z, 
z =0 

as can be seen by using arguments similar to ones in­
voked in the proof of Theorem 2.3. For each i, F z is 
a unitary operator which is a function of Hz, and P z is 
the projection ontofi z =f±J~=_zHzm' 

Notice that W~ is time-reversal invariant if and only 
if each FI is of the form 

F z =1 - 2G I , 

where, for every i, Gz is a projection operator which 
is a function of Ho, whence, by a theorem of Stone22 and 
straightforward reasoning, we may write for each i 
without loss of generality 

(GJ)~(k) =Xz( I k I )j(k), 

for fEHz, where if is the Fourier transform of gEH and 
xz the characteristic function of some measurable sub­
set of [0, co). 

B. Bohm-Gross-Baker transformations 

These are the operators W1 and Wz which we proceed 
to specify. The first applies to spherical and large 
classes of nonspherical hard cores of the original and 
transformed systems, while the second applies only 
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when the hard cores, if any, of both of these systems 
are spheres centered at the origin. However, W2 is a 
sub case of W1 if and only if all the functions gl defined 
below are the same. 

To define W1, we consider a pair of open sets r 1 and 
f1 whose complements are compact and we introduce 
the following function: 

1. h is a function from r 1 into 1"1 which maps in a 
Q.,ne-;:one manner an open subset () c r 1 onto'!. subset 
() cr1, where the complement of ()(O) in r 1(r1) has mea­
sure zero. Furthermore, for each x E(), all the carte­
sian components of h(x) are continuously differentiable 
with respect to each cartesian component of x and the 
Jacobian J(x) of the mapping x t- h(x) is nonzero. 

Let K1 =L 2(r1), 1<1 =L 2(£\), and define W1 :1<1 -K1 by 

{
a(x)f(h(X) a. e. on r 1 , 

(WJ)(x) = ° a. e. (5.1) on rL 

for eachfEK 1 , where a(x) = IJ(x) 1112 on () and, for any 
subset A of R3, A C signifies the complement of A. 

To define Wz, let l' z denote either the set 
{xER3: Ixl>a} for some O<a<oo or R 3

, and let f2 de­
note either {XE R3: Ixl > b} for some 0< b < 00 or R3. For 
every l, hz is a radially symmetric transformation sat­
isfying the conditions which we now state: 

II. hI is a one- one transformation from r z onto 1'2 of 
the form 

{
a, x=o, 

hz (x) = [gz ( I x I ) / I x I lx, x E r 2 {o}, 
(5.2) 

where 

gz(r) =(3 + far PIW d~, r '" a. 

Here a=a(a=O) when r z*R3 (r2 =R3), {3=b ((3=0) 
when r 2 *R3 (r 2 =R3

), pz E L1([a, 00), and Pl(r) > ° a. e. 
on [a,oo), 

LetK 2=L 2(1'2), ;<2=L 2(i\), and define K Z1 (;<2Z) as the 
subset of Hz whose elements f have the property fix) = ° 
a. e. on r~(r~). It is clear that the subspaces K21 i zz) 
are pairwise orthogonal and that 

For each r= 1.2..2, we denote by Pr(Pr) the projections 
fromli onto KrV\r) and, for every i, P2Z(l'21) signify the 
proj ections from It onto I< 2Z (/(Zl)' 

The operator Wz : I< - K 2 is now defined by 

W2 = ttl W2Z , 
z=o 

where the W21 :I<.zz -K2Z are given by 

{
az(X)g(hz(X)) a. e. on 1'2' 

(w zg)(x) = 
2 ° a. e. on r~, 

for each gE1<.21' Here a1(x) = IJ1(x) 11/2 a. e. on r z, 
J1(x) being the Jacobian of the transformation x- hz(x}, 
One has 
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Ur(x) = p} 12( Ix I )gr( Ix 1)/ Ix I (5.4) 

a.e. on 1'2. 

It follows directly from the definitions that 
~ 

wi52=~ W2r P2!. (5.5) 
I ~O 

The operators WI and W2 can be shown to be unitary 
by invoking standard theorems on changes of variables 
in Lebesgue integrals and other equally familiar theo­
rems ot integration theory. It is easily seen that iflPl 
and W2P2 are time-reversal invariant and that W2P2 is 
rotationally invariant. 

The principal objective of this subsection is to show 
that 

s-lim urW,p,Ut =f (5.6) 
t":i: OO 

for r= 1,2, provided that certain conditions which are 
physically very natural are satisfied. In general, these 
conditions do not entail that WrPr -f is compact for 
these r. 

Theorem 5.1: Let h satisfy f and also each of the fol­
lowing requirements: 

sup 1 hex) - xl < 00, 

xErl 

lim I hex) - xl = 0, 
Ixl -.00 

sup a(x) < 00, 

xE:rt 

lim a(x) = 1. 
Ixl .. 00 

Then (5.6) holds for r= 1. 

(5,7a) 

(5.7b) 

(5,7c) 

(5.7d) 

Moreover, if each of the hi fulfills II and also each of 
the conditions (5.7) with hex), U(X) , and 1'1 replaced by 
hl(x), al(x), and 1'2' respectively, then (5.6) obtains 
for r= 2. 

Remarks; Suppose that h fulfills the conditions of the 
first paragraph of the theorem and that, in addition, 
h(x) :f x only when x lies in a bounded subset of (), Then 
the first assertion of the theorem follows in a substan­
tially Simpler fashion than in the proof below, by argu­
ments which include exploiting the unitarity of WI and 
the familiar fact that limt _±~II1\Utfli = ° for each f in a 
suitable dense subset of H when 1\ is a projection from 
H onto L 2(N), N being a bounded and measurable subset 
of R3. 

It is easily shown from (5.2) and (5.4) that the con­
ditions (5.7) imposed on the hI in the second paragraph 
of Theorem 5.1 are obeyed if each of the requirements 

lim{gl(r) - r}= 0, 

lim PI(r) = 1, 

sup p, (r) < 00, 
rEJi 

is satisfied for every l, whereJi denotes [a,oo) ([0,00)) 
when l' 2 :j: R3 (1'2 = R 3), 

ing to r= 1 it is sufficient to show that 

s-lim II (W)\ - I)Ut<Pall = 0, a E R3, 
t -i 00 

where 

<Pa(X) =:= exp(- t 1 x- a 1
2
), 

Indeed, (5.8) is equivalent to 

s-lim (W1P1 -f)Ut = 0, 
t _±eo 

(5.8) 

(5.9) 

by virtue of the unyorm boundedness of the operators 
of the family {(W1P1 -f)Ut, - 00 < t < oo} and of the known 
fact that the set {<p a, a E R3} is dense in L2(R3). In turn, 
(5.9) is clearly equivalent to (5.6) in the case when r 
=1. 

To derive (5.8), we first observe that a straightfor­
ward computation, USing, in particular, (5.1) and a 
familiar formula for (Ut<Pa)(x), yields 

II (W1P1 -I)Ut <PaIl 2 

= ( exp(- lyl2) {if.(y, t) exp [- ~'iY4:i] JR3 (5,10) 

2 ( t) [ 
A.(y, t) J [fAa(Y, t) J } 

- ua y, exp - 2(1 + 4t2) cos 2(1 + 4t2) + 1 , 

where we have introduced the change in variables 

y = (1 + 4t2)"1/2(X - a) (5, 11) 

and have set 

a.(y, t) = a(x) , 

Aa(Y, t) = I hex) - x 12 + 2(x - a) ,[h(x) - xl' : x E 1'1, (5,12) 

a.(y,t)= Aa(y,t) =0, XEq:, 

Invoking (5. 7b), (5.7d), (5.11), and (5,12), we con­
clude that aa(y, t) -1 and A.(y, t)/(1 + 4t2

) - ° for given 
y,aER3 as t-±oo, Hence it only remains to show that 
it is permissible to interchange limt _±'" with the inte­
gration in (5.10) in order to complete the proof of (5,8). 

Now, M = sUPXc:rl a(x) and N = SUPXc:rll hex) - x 1 are 
finite by hypothesis, From (5,11), (5,12), and obvious 
estimates, we therefore conclude that the integrand of 
(5,10) is bounded in absolute value on R3 by the t-inde­
pendent, R3 - summable function {M exp[ N(N + 21 \' I) 1 + IF 
x exp(- 1 y 12) for - 00 < t < 00. The legitimacy of the inter­
change of the limits in question now follows from the 
bounded convergence theorem. 

F or our proof of the assertion pertaining to r = 2 we 
consider, for each l, the operator W, :f(z -1<2 defined by 

_ {al (x)g(hl (x), a, e. on 1'2' 
(W1f;)(X) = 

0, a. e. on 1'~, 
(5.13) 

for each gC:!<2' From (5.3), (5.5), and (5.13), it is 
clear that WZI is the restriction of W, to f(21 for any 
given t. 

From arguments essentially identical to previous ones 
in this proof, we infer that our hypotheses for r = 2 en­
tail that 

s-lim (WrP2 -f)U t = ° (5.14) 
t ... ±oo 

Proof of Theorem 5.1: To prove the assertion pertain- for every l. Using, among other facts, the ones that 
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the HI reduce Ut and that K2Z cHI for each I, the rela­
tion between Wz and W 2Z , and (5.5), one concludes that 
(5.14) implies that 

s-lim (W)3'2 - [JUt = O. 
t":l:1IO 

The truth of our assertion for r= 2 immediately follows 
from this result. 
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APPENDIX A: THEOREM ON STRONG LIMITS OF 
SEQUENCES OF CERTAIN UNITARY OPERATORS 

Let W:.p - .p and each U":.p - .p be unitary operators, 
where n runs over the positive integers and .p is an 
arbitrary separable Hilbert space. Define 

W =s-lim Wn 

whenever this limit exists, where 

W"=U~WU" 

for each n. 

(A1) 

(A2) 

For an arbitrary operator B: .p - .p let arB) be its 
spectrum and N(B) the closure of its numerical range. 23 

Then we have 

Theorem A. 1: Let a(W) be a proper subset of the unit 
circle. Then W is unitary whenever it exists. 

Prooj: Since a(W) is a closed subset of the unit circle 
C, we may suppose that a(W) lacks some closed arc of 
positive length. In particular, it will be sufficient to 
prove the theorem under the assumption that a(W) lacks 
an arc of the form 

{z ECC: largz I~ eo for some 0< eo <1T}, (A3) 

since all other cases in which a closed arc of positive 
length is missing from a(W) can be reduced to the case 
(A3) by multiplying W by an appropriate unimodular 
complex number. 

If U; exists, it is isometric. We shall prove that aew) 

does not coincide with the closed unit disc i z I ~ 1. This 
will show that U; is unitary by virtue of a theorem24 on 
the spectra of isometric operators. 

Take z 0 EC N(jJ;). The existence of W is easily seen to 
entail the existence of a positive integer N o((.) such that 
the distance between z 0 and N(Wn) is less than (. for all 
n?· N o((.). Now, it follows from the fact that the numeri­
cal range of an operator is a unitary invarianf5 that 
N(Wn) =N(W) for each n. Hence, the distance between 
Zo and N(W) is zero. This and the fact that N(W) is 
closed imply that z 0 EC N(W) and therefore that 

New) CN(W). 
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(A4) 

Consider the closed, convex, proper subset) of the 
disc I z I ~ 1 which is the intersection of this disc with 
the half-plane Rez ,,; coseo < L Since W is normal, N(W) 

is the smallest closed convex set containing a(W), 26 so 
that 

N(W) c) 

because J .:J a(W), 

(A 5) 

The isometry of W implies a(JJ;) c N(JJ;)27 and we there­
fore infer that a(JJ;) c) from (A4) and (A5). Hence, aew) 

does not coincide with the disc 1 z I,,; 1, and the proof is 
complete. 

APPENDIX B: WAVE OPERATORS AND RELATED 
OPERATORSFORLOCALLON~RANGE 
POTENTIALS 

In this appendix, we summarize for the reader's con­
venience some results concerning modified wave oper­
ators and other operators for a wide class of long-range 
potentials. Most of these results are simplifications of 
conclusions of Alsholm. 14 

We shall be concerned with a local potential V such 
that 

V=VS+VL • (B1) 

Vs and VL being multiplication operators in L2(R3) by 
real-valued functions Vs( 0) and VL (.), respectively, 
where 

(1 + I x 1)1+, Vs(X)E L2(R3) + L ~(R3), 

I 'VP VL (x) I ~ c(1 + I x I )-P-'" , 

p=o, 0.', 2m, 

for some (., m, and Q! such that 

(.>0, n1'?1, (m+1)"1<Q!~1. 

(B2a) 

(B2b) 

(B3) 

Here m is an integer and c a constant independent of the 
other constants. It is clear that if the decomposition 
(B1) of a given V into short-range and long-range parts 
Vs and VL satisfying (B2a) and (B2b) for values of the 
constants mentioned above is possible it is not unique. 
This fact leads to nonunique wave operators and is a 
well-recognized property of long-range potentials. 28 

Hereafter in this appendix, until further notice, V, V s, 
and VL will denote arbitrary fixed operators fulfilling 
all the requirements stated above. 

Since V s( . ) + VL ( .) is a real-valued function in 
L 2(R3) + L ~(R3), it follows that the operator H =Ho + V 
is self-adjoint. 29 We define V t just as before in terms 
of this H and also define self-adjoint operators C t by 

(C?)jnk) = Cij)(k)]{k), 

at eachjECfi in their respective domains. The functions 
Cfi)(k) exist and are specified by the recursive formulas 

CjO)(k) = ° 
CF)(k) = lot VL (sk+'Vk cF-1)(k)ds, 

for j = 0, 0 •• , 2m, in particular, if nz is a positive in­
teger such that (B2b) is satisfied. 

From the next two theorems, it follows that for the 
pertinent class of long-range potentials there exist op-
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erators Gt satisfying (304) and (3.5) and that, in addition, 
the modified wave operators (3. 1) pertaining to these 
Gt exist. 

Theorem B. 1. 30: Let m and O! be such that (B2b) and 
(B3) obtain. Then 

s-lim exp{i[ Gf:'; - Gfm
)]} = I, _ 00 < S < 00, 

t .. ± 00 

and 

w-lim Ut exp(- iGim
» = o. 

t "%00 

Theorem B. 2 31: Let E, m, and ex be such that (B2a) 
- (B3) hold. Then the modified wave operators 

a!m) = s-lim VrUt exp(- iGfm» 
t .. too 

exist. 

To apply these theorems in the important special case 
when V is an operator of multiplication in L2(R3) by a 
real-valued function 

- -
V(,)=VS(')+VL (,) 

where V s( .) satisfies (B2a) for some E > 0 and 

ttL (x) = e I x [-'" 

for some 0 < o!":; 1, we write 

V(.) = V s (') + VL (.), 

with 

Vs(x) = Vs(x) + e[(x)"'" - (1 + Ixl)""'}, 

VL (x) = e(l + Ixl)-". (B4) 

Plainly, V s ( .) and VL ( .) in (B4) are such that V s obeys 
(B2a) and VL ( .) satisfies the inequality (B2b) at all non­
negative integers p for the present E, e, and O!. 
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Upper and lower bounds are proved for the static admittance of observables in a KMS state on a von 
Neumann algebra. As an application some exact results for the transverse Ising model are derived. 

I. INTRODUCTION 

Recently Roepstorff1 derived a new upper and lower 
bound for the state admittance of observables in a Gibbs 
state. They are given in the case of a finite lattice 
system. 

As is well-known the states of infinite systems (i. e. , 
in the thermodynamic limit) are no longer of Gibbs' type, 
and it is now widely accepted that an equilibrium state 
of an infinite system should be described by a state 
satisfying the KMS condition. 2 

In this paper we give rigorous proofs of the upper and 
lower bounds given in Ref. 1, and derive new bounds 
for KMS states on a von Neumann algebra of observables. 
Hence the results are valid not only for infinite lattice 
systems but also for continuous systems. 

In Sec. II we introduce the necessary mathematical 
material and prove some more properties of the 
Bogoliubov or Kubo-Mori scalar product, which was 
studied in Ref. 3. In Sec. III two upper bounds and es­
sentially two lower bounds of the static admittance are 
derived. Finally in Sec. IV we apply the inequalities to 
prove some exact results for the transverse Ising model. 

II. MATHEMATICAL FRAMEWORK 

Let /J1 be a von Neumann algebra on a Hilbert space H. 
Let t - Ut be a strongly continuous map from the real 
numbers IR into the group of unitaries on H, then there 
exists a self-adjoint operator H on H such that Ut 

==expitH, and letxt==Utxut. Furthermore let w be any 
vectorstateon/J1, i.e., w(x)==(n,xn)forallxE/J1, with 
with n a cyclic element of H. The state w is called an' 
equilibrium state if it satisfies the following definition. 

Definition II. 1: The state w on /J1 satisfies the KMS 
condition at inverse temperature {3 == l/kT, if for any 
pair X,Y of observables in;}J, there exists a complex 
function Fx,y(z), defined, bounded and continuous on the 
strip - {3 ~ Imz ~ 0, and analytic inside, with boundary 
values F X,y(t) == w(xty), F Xy(t - i(3) == w(yXt). 

Without restriction of generality, let {3 == 1 in the 
sequel. Any state w satisfying the KMS condition has the 
following properties 4 : 

(i) the vector n is separating; 

(ii) for all t, utn==n; 

(iii) there exists an operator ~ == exp(- H) on H, such 
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that ~ ==FS where S is the closure of the map xn - x*n, 
XE /J1, F is the adjoint of S; furthermore, S==J~1/2 is 
the polar decomposition of S and J~it == ~itJ, ~it == Ut> 
In==n, ~n==n; 

(iv) there exists a subset B of elements of /J1 such that 
B is invariant under left multiplication with ~"', Q' E C 
(complex numbers), and such that B is dense in the 
Hilbert space L)(~Q!) (domain of ~"'). B is generally 
called the set of analytic elements. 

In Ref. 3 we defined the Hilbert space H, as the 
closure of /J1 with respect to the scalar product (x, y)~ 
== (Txn, Tyn); X,y E /J1, T ==[(~ - 1)/ln~]1I2. 

Furthermore the following results were proved: 

(i) there exists a unitary operator U from 11 onto H, 
defined by Ux==Txn, XE /J1; 

(ii) let 

Xx y(O) == lim i (" dt exp{=fizt) w([xt,y]) 
• z .. o± Jo 

be the static admittance of the pair of observables 

X,y E /J1, then 

(x*,Y)~==XX,y(O) + (n,xEoYn), (1) 

where Eo is the orthogonal projection on the set of Ut-in­
variant vectors of H. 

If Eo is one-dimensional then 

(x*,Y)~==XX,y(O) + w(x) w(y). 

In the following we derive bounds for the scalar pro­
duct (x, y )~; the implications for the static admittance 
are given by formula (1). 

(iii) for each pair x, y of elements in /J1, 

o 
(x,y)~== 11 dt Fx,y(it), 

1/2 

== ~ dt{(xn, ~tyn) + (y*n, ~tx*n)}. (2) 

Now we prove some more properties of this scalar 
product. 

Proposition 11.2: For all X,y E /J1, we have 

1 
(x,Y)~==i J dt (~(1+t)/4xn, ~(1+tl/4yn). (3) 

-1 

Proof: Starting from formula (2), after a few sub­
stitutions for the integration variable one gets 
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o 
(x,y)~=J J dt (~(I+t)/2XO, yO)dt 

-I 

But 

I 
+J J dt(~(j-t)/2y*0,X*0). 

o 

(~(I /2)(I-t)y *0, X*O)= (~(I-t) 1 4 J~ I 12yO, ~ (I-t) 14 J~ 1I2XO) 

= (J~(t-1)/4 ~1I2yO, J~(t-I)/4 ~1/2XO) 

= (J~(1+t)/4yO, J~{j+t)14XO) 

=(~(j+t)/4XO, ~(I+t)14yO), 

and the result follows. 

For any x E /11, denote 

fx(t) = logll~ (I+t) 14 x011 2. 

As is easily checked: 

fx(-I) = logw(x*x), 

f,(I) = logw(xx*). 

Furthermore 

2 exp[fx(t)] :t fx(t) =- (~(j+t)14XO, H~(I+t)/4XO) 
for tE(-I,I). 

Hence, if x*O E f)(H) 

f:(l) = w(xHx*)/2w(xx*) , 

and if xO E f)(H) 

f;(- 1) =- w(x*Hx)/2w(x*x). 

Proposition II. 3: 

QED 

(4) 

(5) 

(6) 

(7) 

(8) 

(i) for all x E /11, the function t ..... fx(t) is convex on the 
interval [- 1, + 1]; 

(ii) for all x = x* E /11, the function satisfies fx(t) 
=fx(- t). 

Proof: For any x E B (analytic elements), the function 
t - fx(t) is analytic, hence it is sufficient to prove 
fx((t + s )/2) ,,: t[ fx(t) + fx(s) J. But this follows from 
Schwartz's inequality, 

11~[1+(t+S) 12J 14 xOl1 2 = (~(I+t) 14 xO, ~ (I+s) 14 xO) 

,,: 11~(1I4)(1+t)xOIlII~(1I4)(I+S)xOIi. 

Let now x be any element of /11, from definition II. 1 
(iv), there exists a sequence of elements hn} in B, such 
that xnO tends to xO and ~1I2xnO tends to ~1I2XO. 

III. BOUNDS 

Theorem III. 1 (Roepstorff): For all x E /11, we have 

(x,x)~": w([x,x*])/log w((xx**)). 
. w x x 

Proof: From formula (4) for all x E/I1, 

1 JI (X,X)~=2 -I dt expfx(t). 

From Proposition II. 3 (i), tE[-I,l]' 

fx(l) - fx(- 1) t + f (1) + f (- 1) ? f(t) [see Fig. 1, 
2 2 

curve (1)], 

hence 

( ) 
expfx(l)-expfx(-l) 

x,x~,,: fx(I)-fx(-l) 

and by (5) and (6), 

(x, xt,,: w([x,x*])/log[w(xx*)/w(x*x)]. QED 

Corollary III. 2. (Bogoliubov-Roepstorff): For all y 
of /11 and elements of x of /11 such that xO and x*O belong 
to the domain f)(H) of H we have, 

1 w([y *, x]) 12 ,,: iw({y, y* })w([[x. H], x*]) g(r), 

where 

2r 
g(r)= 10g(1+r/l-r) ":1, 

r= w([y,y*])/w({v,y*}). 

Proof: Under the conditions of the corollary, as in 
Ref. 3, Theorem III. 8, one gets 

Using Theorem III. 1 to majorize (y,y)~, the corollary 
follows. QED 

Remark: g(r = 0) = 1, so that the inequality above is 
not stronger than the original Bogoliubov inequality in 
the case w(yy *) = w (y *y), in particular if y = y * or if w is 

f (t) 

Hence fx (t) tends to fx(t) , and fx(t) is also a convex -1 
function as

n 
the limit of convex functions. This proves (i). 

Now, if x=x*, then 

II~ (114 )(1+t)xOI1 2 = II J ~ (1+014 xOl1 2 

= II J ~ (1-1) 14~ 1I2xOl12 

= II ~ (I !4)<1-t)x*0112 = II~ (1I4)(I-Ox OIl2, 

and (ii) follows. QED FIG. 1. 
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a central state. On the other hand limr~lg(r) = O. Hence 
the interest of the stronger version lies in the region 
r'" 1. A stronger upper bound is obtained in the following 
theorem. 

Theorem III. 3: For all x E !h 

1 ( w(x*[exp(- H/2) - l]x) 
(x, x)~ """2 log[w(x* exp(- H/2)x)/ w(x*x)] 

w(x[exp(-H/2)-I]x*) ) 
+ log[w(x exp(- H/2)x*)/w(xx*)] . 

Proof: From Proposition II. 3 (i) [see Fig. 1, curve 
(2)], 

(j x(O) - fx(- 1» t + f)O) >-- fAt), t E [- 1, oJ, 

Ux(l) - fx(O»t + fx(O) >-- fx(t), tdO,I]. 

Hence 

1 JI (x, x)~ ="2 dt exp fx(t) 
~I 

"'.!. (exP[fAO)]- exp[fx(-I)] 
~ 2 fx(O) - fx(- 1) 

exp[fx(I)] - exp[fx(O)] ) 
+ fJl) - fx(O) . 

Using formulas (5) and (6), and the fact that 

fx(O) = logw(x* exp(- H/2)x) = logw(x exp(- H/2)x*), 

one gets the result. QED 

Remark: In any case, the inequality of Theorem III. 3 
is a much stronger inequality than the one of Theorem 
III. 1. The associated Bogoliubov inequality will also be 
much better. We do not elaborate on this point here. 

Now we turn to the lower bounds. 

Theorem 111.4: For all x E !h, 

(x,x)~>-- sup exp{fx(s) - sf:(s)} sinh[fi(s)]/f~(s). 
.. 1:ESE1 

In particular, 

(i) if xn E f) (H) , 

W(X*X)2 
(x,xk>-- 2w(x*Hx) 

;e W(xX*)2 
(x, x)~ ~ 2w (xHx*) 

(iii) if x =x*, 

[1- (_ 2 W(X*HX»)] 
exp w(x*x) 

[
1- (_ 2 W(XHX*))] . 

exp w(xx*) , 

(x, xt >-- w(x exp(- H/2)x). 

Proof: From PropOSition II. 3 (i), for all s E (-1, 1), 

fx(t) >-- fx(s) + (t - s) f;(s) [see Fig. 1, curve (3)], 

hence 
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I 
(x,x) >--~ J dt exp[f(s)+(t-s)f'(s)]. 

~ ~I 

After integration one gets 

(x, x)~ >-- exp[f (s) - sf '(s)] sinh[f'(s) V f'(s), 

yielding the first part of the theorem. 

If XnE f)(H) , then using (5) and (8) One gets (i) by 
taking s = - 1. 

If x*n E f)(H) , put s = 1 and use (7) and (8) to get (ii). 

If x = x*, then by Proposition II. 3 (ii) the function fx(t) 
is symmetric around t = 0 and f;(t = 0) = 0, hence 

(x, x)~ >-- exp fx(O) = w(x exp(- H/2)x). QED 

Finally we derive another lower bound, which was 
first derived in Ref. 1 for finite lattice systems. We 
prove it only in the case of elements x = x* E !h. 

Using the same proof it may be derived in the general 
case. 

Theorem III. 5: For all elements x =x* of!h such that 
xn Ef)(H) , 

(x, x)~ >-- w(x2) e ~ e~c ) 
where 

c = ~ w(xHx)/ w(x2). 

Proof: From PropOSition II. 3 (i) and (ii) it follows that 
[see Fig. 1, curve (4)], 

fx(t) >-- f:(- 1)(t + 1) + fx(- 1) if - 1 ~ t ~ 0, 

Hence 

o 
(x,x)~>-- ~ I dt exp[t;(- l)t + fx(-I) + f;(- 1)] 

~1 

I 
+~ J dt exp[f;(I)t + fx(I)- f;(I)] 

o 

Using (5), (6), (7), and (8) and the fact thatfx(I)=fx(-I); 

f: (- 1) = - f;(1) , and one gets the proof. QED 

Remark: There is no strict relation between the two 
lower bounds which we proved. However the last in­
equality is stronger than the particular cases (i) or (ii) 
of Theorem Ill. 4. The essential difference consists in 
minorizing the convex function respectively by one or by 
two straight lines. 

IV. APPLICATION 

As an application we derive some exact results on the 
transverse ISing model, 5 sometimes called the Blinc 
model or Tunnel model, 6 described by the following 
Hamiltonian. Let ZV be a lJ~dimensional lattice, A any 
finite subset of ZV, then the local Hamiltonian is given by 

where nand J( I k I) are real numbers and we take J(O) 
=0. Furthermore, a~;O!=x,y,z; PEZv are the Pauli 
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matrices, satisfying [<1 , ~] = 2i€"'llYa~ OM' The local 
algebra of observables for the volume A is the completed 
tensor product of the 2 x 2 matrices M z, 

~A= ® M z• kEA 

The C*-algebra of observables ~ is then the norm 
closure of UAEZ"~A' 

We suppose that 2:k EZ" I J(k) I < 00, such that the map 

t E R - at(x) = lim exp(itHA ) x exp(- itHA ) , x E ~ 
A-ro 

exists and yields a strongly continuous group of *-auto­
morphisms of~. 7 

As is easily checked, the following limits exist, and 
define a not necessarily bounded derivation H of the C*­
algebra, 

H(a;) = lim [HA,a;]=2iTpa~ (9) 
A-ro 

where 

(10) 

H(a;) = lim [HA, a;] = - 2iOa~. 
A-ro 

(11) 

Let w be a time-invariant state on R, and let (1T, R, Ut ) 

be its GNS representation, i. e. , 

w(x) = (R,1T(X)R), XE~, 

where R is a cyclic vector of H for 1T(~), 

1T(a t (x))=U t 1T(X) ut 

M = 1T(~)". 

Consider the extension of w to M; we denote it by the 
same symbol w. From now on we drop the notation 1T. 
Finally let us suppose that w is a KMS state of M for the 
time evolution x t = UtxUr. Now we are in a position to 
apply the inequalities. 

Using (11) and Ref. 3, Theorem III. 2 we get 

(a~, a~t = - (l/R) w(a;) 0 O. (12) 

FIG. 2. 
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Let us first apply Corollary III. 2 with Y = a~ and x = 0-;. 
Using Eqs. (9)-(12) one gets immediately 

o ~ - w(a;)/R ~ 1. (13) 

This means that for any fixed temperature w(a;) tends 
to zero, if the frequency n tends to zero. Or in other 
words the phase transition in the Ising models (i. e. , 
R = 0) is not due to a breaking of the symmetry along 
the x direction, which makes the model a quantum­
mechanical one. 

A lower bound for the spin polarization in the x direc­
tion at fixed temperature and fixed frequency R, can be 
found by applying the inequality of Theorem III. 5. Take 
x = a~, then again using (9) 

- (lln)w(a;) ? 1 - e- c /C, 

where C =R2[_ w(a;)/n +A], 

A =- w(Tpa~)/n. 

As now 

(Ha;,Ha~) =-4w(Tpa~)00, 

it follows that A ;:,. O. 

Denote 

P x = - w(a;)/n, 

then (14) becomes 

P~ +APx 0 -b{1- exp[- RZ(Px +A)]}, 

(14) 

yielding a minimum value (Px!min for the polarization P x 
as is shown in Fig. 2. 

It is easy to reintroduce the inverse temperature {3 in 
the formulas and then Fig. 3 represents a numerical 
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calculation of the bounds (13) and (14) as a function of 
the temperature. The quantity A in (14) has been 
majorized as follows: 
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Conformal algebra in superspace and supergauge theory· 
Peter G. O. Freund 

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 
(Received 6 October 1975) 

The conformal algebra in a superspace with orthosymp1ectic metric is found to be an orthosymplectic 
algebra with two extra Bose dimensions. It is argued that all supergauge fields are also Nambu-Goldstone 
fields. In supergauge theory the nature of the gauged internal symmetry is found to be severely restricted: 
It must be 0(2 N), where N is the number of fundamental Dirac fermions or alternatively one-eightth of 
the number of Fermi dimensions of superspace. 

1. INTRODUCTION 

Of the classical graded Lie algebras (GLA's)1 the or­
thosymplectic algebras are characteristic of graded 
vector spaces endowed with a metric. They are the 
graded version of the ordinary (ungraded) orthogonal 
algebras. 

In particle physics an important role is played by the 
conformal algebra2 which supplements the orthogonal (or 
pseudo-orthgonal) algebras by the translations PI"' dila­
tation D, and conformal boosts KI"' If the metric of the 
underlying space is pseudo-Euclidean with m plus signs 
and n minus signs then the pseudo-orthogonal algebra is 
O(m, n). The corresponding "Poincar~" algebra IO(m, n) 
['" O(m, n) + translations J is embedded in the conformal 
algebra C (m, n) '" O(m + 1 ,n + 1). The nonlinear action of 
the group C (m, n) on the m + n-dimensional pseudo­
Euclidean space is that on the homogeneous space O(m + 
+ l,n+ l)/IO(m,n)0D !/J '" Abelian group of dilatations). 
Here we generalize these concepts to the graded case. 
Specifically the inhomogeneous orthosymplectic algebra 
IOSp(2r! S10 S2) (of a pseudo-Euclidean superspace3 with 
2r Fermi dimensions and S1 + S2 Bose dimensions with 
Bose sector metric with S1 plus signs and S2 minus 
signs1 can be again embedded into a conformal GLA 
C (2r! S10 S2) '" OSp(2r! S1 + 1, S2 + 1) with a nonlinear re­
alization over the 2r+ S1 + s2-dimensional superspace. 
One can then generalize to the graded case the argu­
ments4 that show the gravitational field in Einstein's 
theory to be simultaneously a gauge field (of the Poin­
car~ group) and a Nambu-Goldstone field associated 
with the spontaneous breaking of general covariance. 
All fields (Bose and Fermi) in supergauge theories5

,6 are 
thus simultaneously gauge and Nambu-Goldstone fields. 
They are gauge fields of the inhomogeneous orthosym­
plectic "group" and Nambu-Goldstone fields correspond­
ing to the spontaneous breaking of the general covariance 
in superspace. In fact supergauge theories are the only 
theories involving Fermi fields where every field 
appearing in the Lagrangian is both a gauge and a 
Nambu-Goldstone field. The remarkable thing is that in 
super gauge theories even the nature of the admissible 
gauged internal symmetry (i. e., symmetry with 
Lorentz-scalar generators) is severely restricted. As 
we shall see, it must be of the form O(2N) with N the 
number of "fundamental" Dirac fermions (quarks + 
leptons). 

2. A CANONICAL BASIS FOR AN 
ORTHOSYMPLECTIC ALGEBRA 

Consider the operators x" and Ga (a= 1, ... , N= 2r 
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+ S1 + S2)' Let the first 2r (last S = S1 + S2)x"'S and Ga ' s 
be Fermi (Bose). The bracketing rules are 

[x",xbJ=[Ga,Gb]=O, [Ga,xbJ=5~, (2.1a) 

where as in Ref. 1 the bracket [ J stands for commuta­
tor except when both bracketed operators are fermionic 
in which case it is an anticommutator, The (pseudo -) 
orthosymplectic metric 

can be used to raise or lower indices, L e. , 

Va=Vbgba , V"=Vbgba , 

where we defined gab by 

The alternative definition Va = gab Vb only gives Va 

(2.1b) 

(2.Ic) 

(2.Id) 

= (- l)"Va where a is the grade of Va (+ 1 for Fermi,O 
for Bose in a mod 2 grading). 

Next we define the operators 

M~=x"ab-(-1)a"F;;bxbaa (2.2) 

of grade a + b (mod 2). They obey the structure relations 

[1va wc] = 5C Ai". _ (_ 1 )ii>~1i"6c>ca5a M C 

b" d b d d b 
+ (_I)ii>ill>+lia,.,ac(J" 1'vf'!' _ (_l)b+C>bCg gmcMa (2 3) 

.5 bmd b bd m'· 

so that they span a GLA. This GLA is precisely 
OSp(2r!s1Os2) as can be seen from 

(2.4) 

which means that the metric form x 2 
'" xcxc '" ga~xb is 

left invariant by the M~. The canonical basis (2.2) will 
be extensively used below. 

3. GRADED CONFORMAL LIE ALGEBRAS 

Consider the canonical basis of Eq, (2,2) of the GLA 
OSp(2r! S1> S2)' To these r(2r+ 1) + (S1 + S2)(S1 + S2 - 1)/ 
2 + 2r(s1 + S2) generators M~ add the 2(2r+ S1 + S2) + 1 
generators 

D=xaiJ a' 

Copyright © 1976 American I nstitute of Physics 
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K =X YCil -(-l)"xxCil, a C". a a C 

for a total of r(2r + 1) + (Sl + S2 + 2)(Sl + S2 + 1 )/2 + 2r(sl 
+ S2 + 2) generators, i. e. , the right number for 
OSp(2rl Sl + 1, S2 + 1). By direct computation it is readily 
checked that the generators (2.2) and (3.1) do indeed 
span OSp(2rl Sl + 1, S2 + 1). The Pa's are obviously 
translations, the K;s conformal boosts, and D a dilata­
tion. We thus see that the graded conformal algebra is 
C(2rl Sl1 S2) '" OSp(2rl Sl + 1, S2 + 1), and in Eqs. (2.2) 
and (3. 1) we possess the nonlinear action of this algebra 
on (2r+ Sl + S2}-dimensional superspace. 

4. SUPERGAUGE FIELDS AS NAMBU­
GOLDSTONE FIELDS 

It has been shown by Cho and Freund6 that non-Abelian 
gauge fields can simultaneously be Nambu-Goldstone 
fields corresponding to the spontaneous breaking of 
general covariance in a higher-dimensional space. As 
long as these higher dimensions are bosonic, just as in 
Kaluza-Klein theory, one has a hard time avoiding their 
observability. It was therefore suggestedB that all 
dimensions in excess of the four basic dimensions of 
space-time are fermionic. They are then trivially un­
observable, as fields depend only polinomially on them, 
Gauge invariance of the second kind for internal sym­
metries emerges just as in the case of extra Bose 
dimensions treated in Ref. 6. We are now dealing with 
a supergauge theory and are gauging the "graded 
Poincare' group" IOSp( 8Nl1 , 3) where N is the number of 
Dirac fermions among the superspace dimensions (four 
Fermi dimensions build a Majorana spinor, eight a 
Dirac spinor). Just as in the ungraded case this cor­
responds to the spontaneous breaking of general covari­
ance in superspace. We do not wish to reproduce here 
the details of the generalizations of the arguments of 
Refs. 4 and 6 to this case. Rather we briefly note some 
of the novel features of such a generalization. 

First of all the general coordinate transformations in 
superspace have a simple finite dimensional graded Lie 
subalgebra that is not classical (in the sense of Ref. 1) 
i. e., a hyper exceptional GL subalgebra. Indeed, the 
general coordinate transformations on the Fermi part 
of superspace have generators 

and in virtue of the exclusion principle (Xl, ••• ,XSN are 
Fermi dimensions) the n i here can only take the values 
o and 1 so that there are only a finite number, to wit 
8N{2 SN ) such generators. This is preCisely one of the 
hyperexceptional simple GLA's mentioned in Ref. 1. Its 
representations are not fully reducible and this algebra 
does not lead to a classification of fields into multiplets, 
a feature not unexpected for a nonlinearly realized 
symmetry. 

Finally, just as in the purely bosonic case, in the 
course of the spontaneous breaking of general covariance 
one breaks the conformal invariance (of superspaceL 
In the four-dimensional ungraded case this leads to the 
appearance of five Nambu-Goldstone fields, a scalar 
(dilaton) and a vector field corresponding to the breaking 
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of dilatations and conformal transformations. The vector 
field can be set equal to the gradient of the dilaton field. 
Were one, however, to keep this vector field as an ind 
independent field, it would play the role of a gauge field 
of dilatations as in Weyl's unified field theory. 7 Similar­
ly in the graded case one picks up one scalar and one 
"(4 + 8N)-vector" Nambu-Goldstone fields. The latter 
is the analog of the Weyl field but now along with the 
4-vector field it also has N Dirac fermion supersym­
metry partners. Again these correspond to the breaking 
of conformal transformations generated by the Ka's of 
Eq. (3.1). 

These arguments will be more fully presented 
elsewhere. 

5. PHYSICAL ASPECTS OF SUPERGAUGE THEORIES 

In the absence of matter (or matter fields), Einstein's 
theory of gravitation has the feature that all fields (i. e. , 
the graVitational field) appearing in the Lagrangian are 
simultaneously gauge fields and Nambu-Goldstone 
fields. Supergauge theories share this property with 
Einstein's theory with the additional virtue that Dirac 
fields are present and can provide a realistic description 
of matter. If the vector fie Ids appearing in the super­
gauge Lagrangian are to have a Yang-Mills part, then 
the supergauge Lagrangian is fixed to be the scalar 
curvature density (in superspace) and not one of the 
scalars quadratic in the Riemann-Christoffel super­
tensor. Such terms are induced upon renormalization 
but at the classical level the theory is essentially un­
ambiguous (modulo a cosmological term). It unifies 
fields of spins 0, t, 1, ~, and 2 all of which are gauge 
ami Nambu-Goldstone fields. It is a very tight and well­
defined structure. At this point we wish to note that this 
structure even restricts the nature of the gauged internal 
symmetry group. As we now show, not any compact Lie 
group but only certain orthogonal groups are candidates 
for internal symmetries compatible with super gauge 
theories. To see this recall that supergauge theories 
gauge OSp( 8Nl1 , 3), the Bose sector of which is Sp( 8N) 
® 0(3, 1). 0(3,1) is the Lorentz group and Sp(8N) the 
group that shuffles all components of 2N Majorana 
spinors. Therefore, not all generators of Sp(8N) are 
Lorentz scalars. The Lorentz scalars are only those 
that shuffle corresponding components (ith component 
with ith component, i = 1, ... ,4) of the 2N Majorana 
spinors. These span the subgroup 0(2N) of Sp(8N). It is 
this 0(2N) which isS the maximal internal symmetry 
contained in OSp(8Nll,3). It thus follows that only 0(2N) 
internal symmetries are gauged in supergauge theories. 
This by no means implies that the 0(2N) symmetry is 
to be exact. There are sufficient scalar fields around to 
spontaneously break 0(2N). But for N Dirac-fermions it 
is 0(2N) and not SU(N) which is the internal symmetry 
of the super gauge theories. Thus, e. g. , for the anti­
quated but familiar case of three quarks one would ex­
pect 0(6) and not SU(3). 0(2H) contains SU(N) and as a 
result of the spontaneous breaking chain suCH) is an ob­
vious intermediate step. The important feature is that 
the Fermi dimensionality of superspace (8N) uniquely 
determines the nature of the internal symmetry group 
[0(2N)]. This makes it all the more interesting to work 
out such theories in full detail. 
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It is proved that whenever two probability distributions, on a finite set, p and p' are given such that p' 

has a bigger mixing character than p, it is possible to find a unitary matrix U, such that p', = Ij UJ 2pj . 

This theorem ensures that Ruch's principle of increasing mixing character provides the strongest assertion 
to be made upon the diagonal of the density matrix of some quantum mechanical system at time t> 0, 
without one's knowing the Hamiltonian operator but given that the density matrix was initially diagonal 
with a known but arbitrary diagonal. 

INTRODUCTION 

As the notions Ruch has introduced into statistical 
mechanics to formulate his principle of increasing mix­
ing character are very new and thus not commonly 
known, some ideas are briefly recalled here: 

Let S (N) be a finite set with N?- 2 elements. If con­
venient, S (N) will be tacitly identified with the set 
{1, 2, ... ,N}. To each element iE SeN) let a number 
Pi be attached such that Pi?- ° for all iE SeN) and 
L;iE.5(N) Pi = 1. Such a function P :S(N) - [0, 1] is called 
a probability distribution on S (N). Let the set of all 
probability distributions on S (N) be denoted by V 5 

(N) • 

Now, one defines the following. 

Definition 1: Two probability distributions p,p' E VS (N) 

are called mixing equivalent, if there exists a permu­
tation S E 5 N such that 

pi=PS(il' 

As SN is a group this defines an equivalence relation. 

Definition 2: The class of probability distributions 
that are mixing equivalent to P E V 5 (N) is called the mix­
ing character of P and is written [p]. 

Definition 3: P' E V5 
(N) is said to be more mixed than 

P E V 5 (N) if there exists a probability distribution c on 
SN such that 

pi = Ps csPs\i)' 
Sec N 

Obviously, definition 3 provides a relation on the set 
of mixing characters. If P' is more mixed than P the 
mixing character [p'] is said to be bigger than [p]; 
[p'] t- [pl. 

One can prove that [p'] t [p] is equivalent to the exis­
tence of a bistochastic matrix M such that pi = L;jMij p j' 
Note that there may exist several ones. A matrix M is 
called bistochastic, if the following conditions hold 

Mij?- 0, 
N 

6 Mu= 1, 
j=1 

N 

6 MiJ=1. 
i=1 

Another equivalent way to define the relation" t " is 
the following: Let P E [p] and P' E [p'] be class-repre­
sentatives in decreasing order, i. e., i > j =*( Pi ~ Pj 
"P~~Pj). 
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Then the assertion [p'] t [p] is equivalent to 

V~ E S(N))(E pi ~E Pi) 

From this one concludes that" t" is a partial order­
relation on the set of mixing characters. Finally, we 
mention that [p'] t [p] is equivalent to 2 

V([Em) ( 6 IPi-ll~ 6 IPi-ll) 
iE5 (N) iE5 (N) 

Let U be the set of all unitary NXN matrices. The 
assertion '3 (U E U) (pi = L;j I U iJ 12 p j) will be abbreviated 
p' I> p. As the matrix (I Vij 12) is bistochastic if V E U 
we have 

V(N?-2)V(p,p'E V5(N»)(p'l>p~[p'] t [p]) 

Our theorem is exactly the reverse implication. 

Theorem 1: 

V(N?- 2) yep, p' E V 5 (N»)([p'] ([p] ~p' I> pl. 

First, we shall prove this theorem, and then illustrate 
its physical meaning. 

THE PROOF OF THE THEOREM 
Before proving the theorem we shall state some lem­

mas which provide us with knowledge necessary to ad­
vance a concise proof. 

Lemma 1: Let P,P' be any permutation matrices. 
Then 

VP VP' (p' I> P Ir=4P'p' I> Pp). 

Proof of Lemma 1: Lemma 1 can easily be inferred 
from the fact that permutation matrices in each row and 
column have the number ° exactly (N - 1) times and the 
number 1 only once. 

Lemma 2: Let M be a bistochastic 2x2 matrix. Then 
it is possible to find a unitary 2 x 2 matrix V such that 
Mij = I Vi} 12. 

Proof of Lemma 2: M can be written as 

(~ ~), 
where (l', {3?- ° and (l' + {3 = 1. A suitable V for instance 
is 

( va v(3) 
-v73 va . 
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l(ij) E· . 

(iLl '2JJ 

l(ihl 
E· . 

l:2J2 
E· . 

!iiI 
1112 

l!ii,1 E' . I.J, 

iE!i+ jEO_ 

FIG. 1. 

It is remarkable that bistochastic NXN matrices 
(N ;., 3) do not have this property. Note however that this 
does not contradict our theorem. 

The next lemma tells us something about two prob­
ability distributions, p and p', which are in decreasing 
order. The differences pi - Pi will be denoted by OJ. 
Two subsets of 5 (N) are needed, 

0. = {i I icc S(N), 0; > O}, o_={i liE S(N), 0i < O}. 

We shall assume p1op', so that 0. and 0_ are not empty. 
Supposing all this, we state Lemma 3. 

Lemma 3: If [pI] ~ [p], there exists a mapping 
E: o.x 0_ - [0,1] such that 

(Independent variables are written as indices. ) 

Proof of Lel1llJla 3: As p and p' are both probability 
distributions, we have LiC: 5 (N) 0; == 0, or to put it differ­
ently, :::ico.Oi == LjEo_1 OJ I. Thus, we have two partitions 
of the intervallO,LiEotO;J namely, 

0< 1\1':: Oil + 0;2':: 0;1 + 0;2 + 0i3 < .••. ~ 0;, 
t c::.. 6 ... 

0< (OJ 1<IOj 1+ 10j i<'" :0 iOil. 
1 1 2 jE 0_ 

The sequences of indices iv'c. 0. and j"E 0_ are nothing 
but the elements of 0. and 0_ in their natural order, 
i. e. , 

v < jJ. =* i" < i", v < jJ. =* j" < j" . 

Now, we construct the product (intersection of intervals) 
of these partitions, as shown in Fig. 1. 

If the interval iv with the length OJ,, has a nonempty 
intersection with the interval j", with the length 1 ° i" I we 
determine Eivj" to be equal to the length of the interval 
of intersection. Otherwise, Ei"j" is determined to be O. 
Obviously, this construction ensures the conditions 

:0 Ejj = 0; 
F~(j_ 

to be valid. We still have to prove Eij * 0 -i', j. As p' 
is more mixed than p and both are in decreasing order, 
one has VlQ;:~1P;"" Z:i=1Pi). This can be expressed by 
using the quantities OJ as 

V[z ~ S(N)] (.J; 0i ~ .~ 10j I). 
1.'--- 5+ J,=- 0_ 
i,f, 1 jtS.l 

Suppose that i:=: 0. is given. Specializing the latter 
assertion, we get 
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:0 01 ~ :0 10h I . 
tEo+ kEo ... 
t~i h:!Si-l 

To give an idea of what the meaning of this inequality 
is, we sketch an example given by Fig. 2. 

On the right of the interval i only intervals with 
indices j < i can be found. This concludes the proof of 
Lemma 3. 

Let us now assume that p and p' are given as in 
Lemma 3 and the mapping E whose existence has just 
been ensured, has already been chosen. Let 
{(i, j) 1 (i, j) ~=: 0+ x OJ'Eij * O} be denoted by M. Then we 
have Lemma 4. 

Lemma 4: Let (n, III)CC M be given. The probability 
distribution 

P; if i*nl\i1om, 

Jii= I);-Enm if i=n, 

P;+Enm if i='}I, 

is more mixed than j), i. e., [Ji] ( [p]. 

Proof of Lemma 4: We can assume that ,'V/\{(n, m)} 
is not empty, otherwise we would have p = Ji and thus 
[JiJ ~ [pl. Now, choose a pair (i,}) E ivl"'{(n, m)} and de­
note the permutation matrix which permutes just i and 

j by Qj. With the aid of Q1 we define the probability 
distribution, 

/)1 = all) + Ci 1Qj/J, 

where 

01 j = Ei / (j) j - J) i), Ci 1 = 1 - Ci l' 

On the other hand, pi can be written as 

if l * i /\ Z* 1}1 , 

if l = i, 

if l = j. 

As (i, j)c: ;U we have i:>} and thus P; '" pj. Using 
p~ = j); + 2:ccc 0_ fie and Il} = j) j - Lk: 6. E/j we infer 

Pi + Eij ~ P j - Eij' 

This entails of course a1 > 0 and Ci 2 > O. Thus pi is a 
convex linear combination of p and Q1P, Therefore, pl 
is more mixed than p, If pj = p the lemma has already 
been provedo If pi * Ji we can choose another pair of in­
dices (i*,j*) c:: M\{(n, In), (i,j)} and define a new probabil­
ity distribution with the aid of Q2 permuting just the new 
pair and using 1)1 instead of p, i. e. , 

6, 

1: lit 1:16, I , : h ~ 5_ 
~ h", 1-1 

FIG. 3. 
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pZ = 01 2 pi + O!zQz pi 

where 

Continuing in this way, one obtains P by a finite 
number of steps. With the same argument which has 
been used to show [pi] ~ [p] one can easily prove that 
[pk+l] }- [pk] holds for any step. As r is transitive, this 
provides the desired assertion. 

Proof of the theorem: Let the assertion 

V(p,p' E V S (N»)([pl] r [p]=> p't> p) 

be denoted by G(N). The desired assertion V(N?; 2) G(N) 
will be proved by induction on N. Lemma 2 ensures that 
G(2) is true, It remains to show that V(N?; 2) [G(N) 
= G(N + 1)]. Suppose N?; 2 is given. Lemma 1 tells us 
that it is sufficient to deal with probability distributions 
in decreasing order. Let p,p' E V S(N+l) be given such 
that both are in decreasing order and [pI] r [p]. If 
[pI] = [p] we have p' = p because they are both in de­
creasing order, and then p' t> P is true. If [pIli' [p] we 
construct the map E using the method which was success­
ful in proving Lemma 3 (see Fig. 1). If 5il "" 15jt I we 
denote the index il by n and the index it by m, other­
wise, we label il as m and it as n. After doing this, we 
construct the probability distribution 

PI+ 6 E/j if 1 E 5+ '\ {n}, 
i E 6_ 

FFn 

PI= 
PI- 6 Eil if lE 5_"\{n}, 

iE6+ 

i*n 

PI if lES(N+1),\(5+U 5J, 

Pn if l=n. 

P can be expressed by means of p', i. e. , 

p; if 1 i{n, m}, 

PI = p~ - Enm if 1 = n, 

P:"+Enm if l=m, 

if 1 i {n, m}, 

PI = p~ + Emn if 1 = n, 

p:" - Emn if 1 = m. 

ifnE5_ 

According to Lemma 4, this entails [p] ~ [p]. Because 
Pn = Pn> the distributions p and P can only differ in the 
remaining N elements. n is defined in such a way that 
Pn* 1. Let us denote the restriction of p and P to 
S (N + 1)'\ {n} by q and q. The probability distribution 
(on S(N + 1)'\. {n}) [1/(1 - Pn)] q is more mixed than 
[1/(1- Pn)]qo This can easily be inferred from [p] }-[p] 
by using Vp, p' {[p'] }- [p] - V(l E JR) (L;j IP: -11 
"" 2:i I Pi - 11 n. Thus, aC.Eording to G(N), there exists 
a unitary N x N matrix V such that 

- "1-1 2 qi=L; V ij qj. 
J 
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U can be enlarged in such a way as to obtain a unitary 
(N + 1) x (N + 1) matrix V such that Pi = 2:j I Vii IZ Pi' i. e. , 

1 

U£J if i,j*n, 

V/j= 0 ~f ~i=.nl\j*n)V(i*nl\j=n), 

1 If t=J=n. 

To give an idea of what V looks like, we write it 
schematically in its explicit form, i. eo , 

Vtt 
V12 ••• 0 Vln+1 ••• 

V21 V22 " • 0 

0 0 1 0 0" • 

Vn+!,1 0 Vn+ 1,n+1 ••• 

0 

If we denote the permutation matrix which permutes 
just nand m by P and the unit matrix by 1, we can write 
p' as 

p' = (011 + flP) p, 
where 01 and fl are defined by 

fl= Enm/(Pm - Pn), 

01 = 1 - fl, 

fl=Emn/(Pn- Pm), 

01 = 1 - fl, 

ifnE5_. 

We have 01 ?; 0 and fl?; 0, because 

p~""p:", 

Pn+ Enm ""Pm - Enm, 

0< 2Enm ~ Pm - Pn> 

if nE 5., 

p:,,~p~, 

Pm + Emn ~ Pn - Em", 

0< 2Emn ~ Pn - Pm' 

ifnE5_. 

Let us now have a look at the unitary matrix V defined 
by 

1 if i=jl\i*nl\i*m, 

..f(i if i = j 1\ (i = n Vi = m), 

Y73 ifi=nl\j=m, 

-Y73 if i=ml\j=n, 

o elsewhere. 

It looks schematically like 

1 0'" 
o 1· 

1· 

Obviously we have (a1+flP\j= IVijlz, 
with the previous result, we get 

P: =y (if 1 vilizi V/j 12) Pj • 

Combining this 
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As both U and V are unitary, Lz VifUlj is unitary too. 
If we can show that ILl VilUIi (2 = Lz I VB Ulj 1

2, 
the proof will be complete. By using the definition of 
V and U it can easily be shown that the sum Lz I V;rUlj 12 

consists of one term at the most, This ensures that 
Ll I VilUlj 12 = I LZ Vi1Ulj 12 for any i and j and concludes 
the proof of the theorem. 

THE PHYSICAL MEANING OF THE THEOREM 

Let us consider a quantum-mechanical system whose 
density operator initially (t = 0) has a finite (N) dimen­
sional range HN, where HN is an eigenspace of some 
invariant of the motion. The density operator pet) will 
then have this range for all times t>- O. Thus HN can be 
regarded as the space of states. Let {II), ... , IN)} be 
an orthonormal basis of HN and suppose that the density 
operator initially has the form 

N 

p(O) =6 (i) jJi(i (. 
i=l 

Let I > 0 be given. The density operator at time t is 

p(t) = exp[ - (i/tf) f/t] p(O) exp[ (i/If) f/t], 

where f/ is the Hamiltonian operator of the system, We 
are interested in assertions concerning the diagonal of 
p(l), i. e., p;(t) = (i I p(t) I i). The number Pi and Pi (t) can 
be lumped into probability distributions p and jJ(t) so that 
that the notion of mixing character applies. We call an 
assertion concerning p and p(t) general if it is indepen­
dent of the special properties of the system (represented 
by the Hamiltonian operator) and if it does not refer to 
special initial distributions only. Or to put it different­
ly, a general assertion can always be written in the 
form 

'rI(H E !-fam) 'rI(p) F(p,p(t)), 

where f/ am is the set of all operators which can possi­
bly be the Hamiltonian operator of the system. As HN 
is finite dimensional, f/ am is nothing but the set of all 
Hermitian operators, F(p, p') is an assertion that de­
pends on the probability distributions p and jJ' but it 
must not explicitly depend on fl. We call the general 
assertion 'rI(f/Ef/am) 'rIPS{p,p(t)) better than 
'rI(f/cf/am) 'rIpF(p,p(L)) if the condition 

'rI(jJ) 'rI( p')(S(jJ, p') ~F(jJ, p')) 

holds. Now let us look at p (I): 

/)i(l) = (i i exp[- (i/lf)f/t]p(O) exp[(i/tf)f/t] (i) 

=.0(i I exp[- (i/tf)f/t](j) (2 Pj' 
j 

As exp[- (i/tf)f/t] is a unitary operator, this entails 
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Thus p' [> P provides a true general assertion. As 
every unitary operator can be written as exp(iA) where 
A is Hermitian, we have 

'rI(p) 'rI(p') {p' [> p ==) 3(f/ c f/amHp' = pet) ]}. 

Let F(',') be given such that 'rI(f/Ef/am) 'rI(p) F(p,p(t)) 
is true. We then infer from the latter assertion that 

'rI(p) 'rI(p')[p' [> p ==) F(p, p')]. 

Thus 'rI(f/Ef/am) 'rI(p) (p(t) [> p) is better than an arbi­
trary true general assertion and therefore it is the best 
true general assertion. Our theorem tells us that this 
best assertion is equivalent to 'rI(f/cf/am) 'rI{p)([p(t)] 
1- [p]). Ruch's principle of increasing mixing character1,2 

is therefore distinguished. 

The assertion [pet)] >-[p] can be interpreted very in­
tuitively. Let us assume that, referring to a certain set 
of instruments, the diagonal of pet) is the only part of 
p(t) that is experimentally relevant at time t. The knowl­
edge which is represented by the off-diagonal elements 
has then lost its relevance (later it may of course be­
come relevant again). In the course of time a part of 
the knowledge which was initially located in the diagonal 
of p(O) flows into the off-diagonal elements and loses 
its relevance thereby. This phenomenon of relevancy­
loss is described by the assertion [p(l)]i-[p] and our 
theorem ensures that this is the best and hence a com­
plete description. For many reasons it will be sensible 
to require that any principle of statistical physics which 
describes the knowledge-decay that occurs if an iso­
lated system approaches to equilibrium provides a de­
scription of the phenomenon of relevancy-loss as well. 
(The entropy principle, for example, provides a 
description of the phenomenon of relevancy loss. ) As 
according to our theorem the assertion [pU)] ~ lJ)] is 
the best description of this phenomenon, we are justi­
fied in calling Ruch's principle of increasing mixing 
character the strongest principle of statistical physics, 
that means, any other principle can be inferred from 
this one. 
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A general formula for such matrix elements is obtained. in terms of a sum of terms each proportional to 
the square root of a product of eight binomial coefficients. 

1. INTRODUCTION 

Consider a wavefunction CfJn.(Xi ••• xN) describing the 
N electrons in an unfilled atomic shell. Here Xj = (r j , aj ) 

with rj the position vector and aj = ± t the spin Z com­
ponent variable of the jth electron. We assume that CfJ ns 
is an eigenstate of the N-electron spin with eigenvalue 
S, and of the N-electron spin z component with eigen­
value S = - S, - S + 1, 0 • " S; the label S is suppressed 
since it will be assumed to have the same fixed value 
for all wavefunctions CfJns involved. The label n stands 
for all other quantum numbers necessary to specify the 
state. If direct spin-spin (dipole-dipole) and spin-orbit 
interactions are negligible and the shell is not more than 
half-filled, then those CfJ ns describing the (2S+ 1)-fold de­
generate ground state are expressible according to 
Hund's rule in the form 

(1) 

where the spatial function un is completely antisym­
metric, the spin function Xs is completely symmetric, 
and the total spin S = tN. In a case in which the shell is 
more than half-filled, CfJns must be expressed not as a 
single product (1), but as a sum of such products in 
which the spatial factor is not completely antisymmetric 
and the spin factor not completely symmetric. Such 
more general cases will not be considered in this paper, 
although the spin parts of exchange matrix elements be­
tween such wavefunctions might be derivable by a gen­
eralization of the method used here. 

A product wavefunction CfJns(x l " 'XN)CfJms'(X~" ox~) is 
not completely antisymmetric under all permutations of 
the 2N electrons (Xl' o. xNxi ••• x~) but can be made anti­
symmetric by premultiplication by the 2N-electron anti­
symmetrizer A 2N' Let A be a permutation-invariant 
operator representing any physical observable indepen­
dent of the spin variables (al

o 
'0 aNa!'" a"N)' The matrix 

element of A between two wavefunctions of the form 
A 2!i/ <P ns CfJ ms' is 

(nls ll n2s 2 1
A I n3s 3 , n4s 4 ) 

= j' CfJ *(x"'x )CfJ* (x'" ·x') 
, "1 sl 1 N "2 S2 1 N 

XAA 2N CfJn s (Xl" 'XN)CfJn s (xi" 'X~) 
3 3 4 4 

Xdxl " 'dXNdx~" 'dx~, (2) 

where each f dx stands for an integration over r and a 
summation over a=± t; the projection property A;N 
=A 2N of the antisymmetrizer has already been used in 
eliminating one factor of A 2N from the matrix element. 
Upon writing A 2N as a sum' of terms involving all possi-
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ble permutations of the 2N variables (Xl 0 
00 X Nxi 00 0 x~) 

and noting that the product CfJns(xl o• oXN)CfJms/(x~ •• 'x~) is 
already antisymmetric under intra-atomic permutations. 
i. e. , those involving only permutations within the set 
(Xl' • °xN ) and/or within (x~·· 'x~), one can write (2) as 
a sum of terms involving j-fold interatomic exchange, 
with j running from 0 (no exchange) to N. The term in­
volving j-fold interatomic exchange is found from (1) to 
be proportional 1 to 

(3) 

where M j is the matrix element representing the cou­
pling between the observable A and j-fold spatial inter­
atomic electron exchange, 

A1)nl •.• n4 ) 

= J u* (r ••• r )u* (r' •.• r' ) 
nl I N n2 1 N 

xAU (r ''''r'r "'r)u (r .. 'r r ""r I) n3 I J J+l N n4 I j j+1 N 

Xd3rl"'d3rNd3rl" "d3 r N', (4) 

and I j is the matrix element of j-fold interatomic elec­
tron spin exchange, 

Ij(sl '''S4) 

xx (a'···a'a "'a)x (a '''aa '''' a ,) (5) 83 1 j j+ 1 N s4 1 J j + 1 N c 

Note that M j carries all the dependence on the observ­
able A and on the spatial quantum numbers (nl ••• n4 ) but 
is independent of the spin z-component quantum numbers 
(Sl ••• S4)' whereas IJ carries all the dependence on 
(SI' •• S4) but in independent of the observable A and of 
the spatial quantum numbers (nl ••• n4 ). The phases of 
the Xs can be chosen so that they are all real and posi­
tive; reality has already been assumed in (5). Since the 
Xs are also assumed to be normalized, one has 

O",Ij (sl'''s4)",1 (6) 

by the Schwartz inequality. 

In the investigations of the magnetic effects of many­
electron exchange 2

-
4 which served as motivation5 for the 

calculation reported here, the relevant observables A 
were the interatomic Coulomb interaction and the total 
intra-atomic Hamiltonians. However, since the I

j 
are 

independent of A, they are of more general significance. 
In Sec. 3 we shall sketch the derivation of the general 
formula for the Ij as a function of (Sl" 'S4)' j, and N. 
Before doing so, in Sec. 2 we shall point out some rather 
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obvious selection rules which severely restrict the com­
binations of spin quantum numbers for which the matrix 
elements I j are nonvanishing. 

2. SELECTION RULES 

In the first place, since electron exchange between 
two atoms does not change the sum of the spin z com­
ponents of the two atoms, we have the selection rule 

(7) 

or 

l1s = -l1s' (8) 

where l1s and l1s' are the changes in spin z components 
of the two atoms whose spin wavefunctions are involved 
in (5), 

(9) 

In addition, since each electron has total spin t, the 
maximal change of spin z component of each atom as a 
result of j-fold electron exchange is equal to j, 

The I j necessarily vanish for any combination of 
(SI" 'S4) violating (8) and/or (10). 

3. EVALUATION OF Ij 

(10) 

Expressions for II and 12 for certain values of N have 
been worked out by Popovi<!-BoziC'l; the calculation de­
scribed here leads to a general expression for all values 
of N and all j, 1 ~ j ~ N, by a different method based on 
combinatorial analysis. 

According to Hund's rule, the Xs in (5) are totally 
symmetric and belong to total spin S=tN. Recalling that 
we have assumed a choice of phase such that they are 
real and positive, the normalized Xs of maximal spin z 

component s = S = tN is 

N 

XO/ 2)N(a1 ••• aN)=0"1(1/2)" '0"NO / 2 ) = IT 1\ (l/2)' 
1=1 I 

(11) 

where 6,,0/2) is the usual Kronecker delta, equal to unity 
if a= t and zero if a= - t. The other Xs can be generated 
by repeated application of the spin lowering operator S-, 
defined implicitly by 

(s'IS-ls)=[(tN+s) (tN-s+1)]1/2 as',S_1 (12) 

and explicitly by 

(13) 

This iterates to 

(14) 

where 5 N is the N -spin symmetrizer. B For the special 
case (11) this reduces to 

(S')PX1/2N(a1'" aN) 
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(15) 

By iteration of the standard expression7 relating X and 
Xs_1 [cf. (12)] one has S 

x(a "'a )=[(tN + S )! J 1/2 (S-)O/2)N-S 
• 1 N N!(tN-s)! 

Then by (15) 

xo ".6) 
o(1/2)N+s+1'-1/2 rJN ,-1/2 • 

(17) 

It f"l.lows that X. is only nonzero if (tN+s) of the a i are 
equal to t and the remaining (tN - s) are equal to -.L 
and that this nonzero value is the same for every set of 
a l satisfying this criterion. The constant value is easily 
found by normalization, noting that there are [N!/(tN+s)! 
x (tN - s)!] terms in the sum over a1 ••• aN satisfying 
the aforementioned criterion. Thus 

x.(a1 • •• aNl= [(tN + s)! (tN - s)! /N!]1 /2 0.(a1 ••• aN) 

with 

(18) . 

° (a ... a )= {
I, if (tN+s) ai are t and (~N -s) are - L 

• 1 N 0 , otherwise. (19) 

The same result can be found by using the definitionB of 
5 N in (17) and counting the number of permutations 
giving rise to the same combination of values of a1 0 0 0 aN' 

Upon substituting (18) into (5) and noting the selection 
rules (7)-(10), one can write the matrix element I j in 
the form 

j 

= (N! )_2 L: [ (t N + s 1)! (t N + s 1 - k) ! (~N - s 1 ) ! (~N - s 1 + 1< ) ! 
k=-j 

(20) 

with 

where use has been made of the fact that with the indi­
cated restrictions on the summations, 6. -k is nonzero 

1 
if and only if 6 is, and similarly for 0, +k and 0, . 

51 '2' 2 
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To evaluate this combinatorial factor, note first that 
Os (aI'" aN) is nonzero if and only if (~N+sJ of the a! 
a~e+~, and (~N-s) are -~. Let n be the number of 
the set (aI' •• aj ) which are + t: then (j - n) of the same 
set are - t, (~N + Sl - n) of (aj + l • •• aN) are + t, and (~N 
- Sl - j + n) of (aj +l ••• aN) are -to Furthermore, be­
cause of the constraint on the summation in (21), (n - k) 
of the set (aI' ••• a/) are + t, (j - n + k) of the same set 
are - ~, (tN + S2 - n + k) of the set (aj+l' ••• aN') are + ~, 
and (tN -S2 -j + n -k) of (O"j+l"" aN') are - t. For each 
possible value of n [the number of the set (al 0 0 • a) 
equal to + t 1. the contribution to c is the number of 
choices of the set (al ' , • aNal' ••• O"N') consistent with 
these constraints. Consider any choice of (al '" aj ) 

such that n are + t and hence (N - j) are - t. There are 
j! possible permutations of these j quantities, but the 
corresponding combinatorial factor is only [j! In! (j 
-n)!], since the permutations of the n + t's among 
themselves or of the (j - n) - t's among themselves do 
not correspond to distinct choices of the summation 
indices (0"1'" 0"). Determining the combinatorial fac­
tors for (aj +! 0" aN), (aI' ••• 0"/), and (aj+r"" a/) simi­
larly, one finds 

C(j,k;SlS2) 

=6 [ j! J 
n n!(j-n)! 

r. (N-j)! ] 
L(tN + Sl - n) !(tN - Sl - j + n)! 

x J. [ ., J 
(n - k)! (j - n + k)! 

(22) 

To make this expression more explicit it is necessary 
to determine the possible values of the summation index 
n. Note that j can take on all integral values from 1 
(exchange of a single electron) to N (exchange of all N 
electrons), whereas k can take on all integral values 
from -j to j. Both Sl and S2 can take on the (N+ 1) 
values -tN, -tN+1,' ",tN, where Nis an integer 
;;, 2. The summation index n then ranges over all integer 
values such that the quantities n, (j - n), (tN + SI - n), 
(tN-sl-j+n), (n-k), (j-n+k), (tN+s 2 -n+k), and 
(~N - S2 - j + n - k) are all nonnegative. These restric­
tions are all incorporated if one rewrites (22) in the 
form 

(23) 

and notes that the binomial coefficient (~~) vanishes if 
either n2 or (nl - n2 ) is a negative integer. 8 
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The desired expression for Ij' found by substitution 
of (23) into (20) and use of appropriate identities for 
binomial coefficients (or their definition), is 

I(SlOOOS4)=(!:;.)-2 tt [(tN+Sl) 
J J k--j n~k n 

(24) 

The desired constraints on the range of the summation 
over n again follow from the vanishing of (~l) when 
either ~ or (nl - n2 ) is negative. 8 2 
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Multipole expansion of the density of states about a 
crystal cell* 
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We construct the expansion of a Bloch wave with energy E into a complete set of multipole waves around 
a "center" of a crystal as an analog of the expansion in spherical waves in free space. Crystal point group 
symmetry is used to classify the set. The density of states in a cell is then analyzed into multipole 
components whose magnitude depends on the cell's distance from the "center." 

1. INTRODUCTION 

The band theory of crystalline solids considers a 
single expression for the electronic density of states of 
each band, states which are regarded as fully de­
localized with periodic probability over the whole crys­
tal. Emphasis on delocalized states becomes, however, 
inappropriate when treating phenomena which select a 
particular lattice site, as, for example, in the presence 
of an isolated impurity or in photoabsorption from inner 
shells which leaves a localized hole. Experimental evi­
dence of the nonuniqueness of the relevant density of 
final states can be seen, for example, in the difference 
between K and L spectra of solid AI, 1 which has been 
accounted for recently in a qualitative way by Hayes and 
Sen. 2 In effect, the introduction of a "center" spoils the 
translational invariance of the lattice and shifts the 
analYSis toward a local point of view. 

Central symmetry is, of course, essential to the 
states of isolated atoms. Here, orbital momentum eigen­
states represent a very natural basis for analysis. In­
deed one can resolve the density of states into contri­
butions from separate orbital momenta. In crystals, 
however, anisotropy spoils the conservation of angular 
momentum and a corresponding analysis of the density 
of states requires the construction of a new suitable 
basis. Orbital momentum eigenstates are replaced in a 
crystalline medium by states that transform according 
to the irreducible representations of the appropriate 
crystal group. However, the number of representations 
of finite groups and their dimenSionality are finite in 
contrast to the infinity of angular momentum eigenvalues. 
In a crystal, therefore, a complete basis must include 
an infinity of states which transform according to the 
same row of the same irreducible representation. What 
we need, then, is a systematic classification of such 
states. The "appropriate" crystal groups we consider 
in this paper for the classification of the new set of 
states are the isogonal point groups of th€; space groups, 
whose elements, together with the inversion, transform 
the constant energy surface onto itself. 

A solution to this problem has been sketched in a 
brief communication. 3 In this paper we develop the 
solution in some detail, with explicit application of the 
point group symmetry, and with the specific aim of re­
solving the density of states in a cell into contributions 
from different multipole waves. Further applications 
remain to be developed. 
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2. MUL TIPOLE WAVE EXPANSION OF THE 
DENSITY OF STATES 

In accordance with the local character of impurity ef­
fects and related phenomena, we consider a set of 
localized Wannier wavefunctions {r I tn) of an electron, 
where t is a band index and n is a lattice vector. We 
shall drop the band index throughout since all our con­
siderations will refer to a simple bando A Bloch wave, 
eigenfunction of the perfect lattice Hamiltonian corre­
sponding to the energy E, can be expressed as a super­
pOSition of Wannier functions: 

(2.1) 

The wave vector k is restricted to the first Brillouin 
zone and ranges over the constant energy surface de­
fined by the dispersion relation 

D(E; k) =0, (2.2) 

which we assume to be known and which incorporates 
the crystal field properties relevant to our problem. 
The amplitude {nlk)E includes both the phase factor ap­
propriate to the nth lattice point and a normalization co­
efficient. The definition (2.1) sets the phase of the 
Bloch wave at zero in the central cell, n = 0, in ac­
cordance with the recent work of Kohn. 4 Since we will 
work at a fixed energy E, the Bloch wave (2.1) will be 
normalized per unit range of energy and of the solid 
angle centered around the wave vector's direction k. 
The density of states is thus incorporated in the nor­
malization of the wavefunctions, by identifying the co­
efficient of (2.1) as: 

nc k 2 

= (27T)3 Ik'V'kE(k)I ' 
(2.3) 

where nc is the volume of the unit cell (which we take as 
the symmetrical Wigner-Seitz cell) and the last factor 
takes into account the obliquity of the constant energy 
surface. The Jacobian of the transformation is evaluated 
from the dispersion relation (2.2). 

The points of the constant energy surface are in one 
to one correspondence with two continuous parameters 
(the polar angles of k). Our goal is to replace the two-
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parameter set of Bloch waves (2. 1) of given energy by a 
new set, whose elements will be called multi pole waves 
because of their analogy to the orbital momentum eigen­
states of free space. These waves will be labeled by in­
dices which are discrete but must run over an infinite 
range of values. Their construction by a unitary trans­
formation of the set (2.1) will preserve the normaliza­
tion per unit energy. 

The space variables of the new set of muliipole waves 
are the coordinates n of the Bravais lattice nodes, 
whose point-symmetry elements form the holosymmetric 
point group of the crystal system. This group always 
includes the space inversion. However, since we are 
constructing the multipole waves at fixed energy E, we 
will classify them according to the irreducible rep­
resentations of the symmetry group of the constant 
energy surface E(k) = E which is a subgroup of the holo­
symmetric group. We call r an irreducible representa­
tion and i one of its rows. As previously noted, the set 
of rand i is finite and, therefore, insufficient to clas­
sify a complete set. Thus, jor each rand i, we re­
quire a further set of two discrete indices Land q which 
can run over an infinite range of values and whose 
meaning remains to be determined. 

The matrix elements <riLq Ik)E of the unitary trans­
formation, which we seek to construct, constitute the 
coefficients of the expansion of the Bloch wave am­
plitudes, 

(2.4) 

into multipole waves (n I riLq)E; each of these waves will 
in fact be constructed by working out the inverse ex­
pansion: 

(2.5) 

The integration extends over the solid angle subtended 
by the constant energy surface. Both the varying radius 
of this surface and its obliquity are taken into account 
in the integrand of Eq. (2.5), in particular through the 
factor wE(k) which appears in the expression (2.1) of 
(n Ik)E and will also appear in (k I riLq)E' 

The role of these multipole waves in the analysis of 
the density of states can be described even before their 
actual construction. The translational invariance of the 
crystal ensures that the total density of states N(E) is a 
sum of equal contribution N(E; n) from the various cells 
of the crystal, where 

= f dk<nlk>E(kln)E' (2.6) 

If we substitute here the expansion (2.4) of (n Ik)E into 
multipole waves, 

(2.7) 
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the unitarity of the transformation 

(2.8) 

reduces N(E; n) to the form: 

(2.9) 

This expression subdivides the density of states per cell 
into contributions from the various multipoles. The 
squared magnitude of the multipole wave (n I riLq)E thus 
represents the density of states belonging to the riLq­
multipole at the n cell. The expression (2.6) of N(E; n) 
can also be interpreted as a "sum rule" for the set of 
multipoles waves. 

The "local" density of states-as defined, e. g., by 
Heine and Weaire 5_is similarly subdivided by trans­
forming the multipole waves and (2.9) itself to the posi­
tion representation by means of the Wannier functions, 

n(E'r)=L;L; l(rlriLq)EI2, 
, ri Lq 

where 

(r I riLq)E == L; (r In) (n I riLqh· 
n 

3. CONSTRUCTION OF THE TRANSFORMATION 
<k IfiLq)E 

(2.10) 

(2.11) 

The set of Bloch waves with energy E reduces to plane 
waves with the same energy when the crystal becomes 
isotropic (empty lattice). In this limit the constant ener­
gy surface is a sphere of radius I k I == ..J2mE/ff whose 
symmetry group is the full rotation group so that the in­
dices rand i coincide with the indices Land m of the 
angular momentum theory. The transformation (k I riLq)E 
consists then simply of the spherical harmonics Y Lm (k) 
which indeed form a complete set of orthonormal func­
tions with weight factor lover a sphere of arbitrary 
radius. What we want now is to construct a generaliza­
tion of the set of spherical harmonics for a nonspherical 
surface with the symmetry discussed above. The func­
tions of the new set must, however, depend both on the 
direction and the magnitude of k because this magnitude 
varies over the surface. 

(a) To allow for the variation of I k I explicitly, we 
rewrite the condition of unitarity, Eq. (2.8), by ex­
tending the integration formally over the whole Brillouin 
zone and then restricting it to the constant energy sur­
face by insertion of a factor 6[E - E(k)] which represents 
the surface equation E(k) =E. Indicating the analogs of 
the spherical harmonics by pi~i)(k), we write then the 
orthonormality condition in the form 

(3.1) 

Comparison with Eq. (2.8) shows that the nonspherical 
shape of the surface requires the unitary transformation 
to include a weight factor w1/2(k): 
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while the remaining factor Pl:qi)(k) may reduce to a 
polynomial as it does for a spherical surface. 

(3.2) 

(b) Following a general procedure of mathematical 
physics, we determine the pi~i)(k) as orthogonal poly­
nomials belonging to the weight junction wE(k) which is 
positive over the constant energy surface. The proce­
dure starts from any convenient set of linearly inde­
pendent homogeneous polynomials in the components of 

.k. In our case we want the polynomials to be symmetry­
adapted, that is, each of them should transform ac­
cording to a row i of an irreducible representation r of 
the point group. We make explicit the symmetry of the 
polynomial by factoring out its angular part as a sym­
metry-adapted spherical harmonic X~?~ (k), which is 
the Ath linear combination of spherical harmonics of 
degree 1 that transforms according to the ri irreduCible 
representation of the point group (see, e. g., Bradley 
and Cracknell 1972 6). Symmetry-adapted homogeneous 
polynomials in k are then obtained by multiplying the 
X~li~ (k) with the invariant quantity 1 k! I and any additional 
power of 1 k 12, which is itself an invariant polynomial 
in l?x, k y , k z . 

Proceeding now to regroup all the polynomials which 
are homogeneous of degree l in k, we identify 
~(l + 1) (l + 2) symmetry-adapted polynomials for each 1 
which we write as: 

v< ri ) (k) -A (l s) I k II X U.-2S ) (k) Is>.. -, r,x, 
(3.3) 

A (l, s) = {47T/[2(l- s) + 1]! ! (s! )2s}1I2, 

where s = 0, 1, ... ,[tl] (integer part of ~l). The co­
efficients A (l, s) are so chosen that the expansion of the 
plane wave exp(ir • k) has the form 

exp(ir.k)=.0 i l l 1- 1 (r·k)l- 2:; 2:; ilv<ri )(r)v<ri )(k) 
I' - ri ls~ Is~ ls~ , 

(3.4) 
with each term factored into identical polynomials in r 
and k. The series (3.4) represents a rearrangement of 
the usual expansion of a plane wave into spherical waves, 
designed for easy adaptation to nonspherical sym­
metries. Successive terms of the power expansion of 
each spherical Bessel function jl' have been incorpo­
rated, in Eq. (3.4), into the various polynomials v~,;/) 
with equal l' = l- 2s and different l. This parcelling out 
of the Bessel series was made necessary by the fact that 
each factor 1 k 12 is no longer independent of Ii in a 
crystal. 

It is emphasized that for nonspherical surfaces over 
which 1 k 1 is not constant there are 

[!A2l 
6 [2(l-2s)+1]=~(Z+1) (l+2) (3.5) 
s=o 

linearly independent polynomials v~,;:) homogeneous in k 
with degree l, in contrast to the familiar number 
2l + 1 of harmonic polynomials Ik 11Ylm(k) for the case of 
a spherical surface. In the spherical case the or­
thogonalization problem requires no special attention 
because different 1 values correspond to different group 
representations. 
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(c) The determination of the orthogonal polynomials 
pi~i)(k) is worked out separately for each r and for each 
i because both the constant energy surface and the weight 
function wE(k) are group-invariant. Moreover, each of 
the irreducible representations r is even (+) or odd (-) 
under inversion since the groups we deal with include 
this operation. The degree l of the symmetry-adapted 
polynomials v~,;:)(k) is Similarly even or odd for each r. 

The orthogonalization of the pi~i) (k) will be carried 
out, as usual, by recursion, starting with the lowest 
degree, lo, that occurs for the given r in the process of 
symmetry-adapting the spherical harmonics. This value 
is given in the compatibility tables for the representa­
tions of the full orthogonal group and the representations 
of the point group (e. g., Bradley and Cracknell 6). Gen­
erally, there is a single symmetry-adapted polynomial 
of degree lo, v~~ol)(k), for each rand i, and we can set 

p(ri>(k) -duo)v(ri>(k) (3.6) 
10 - 1

0
0 , 

where the indices q and A, which distinguish polynomials 
of the same degree, have been dropped as superfluous 
in this particular case. (For the cases when the irre­
ducible representation r occurs more than once at lo, 
orthogonalization of the corresponding pl~; )(k) should 
present no difficulty.) The normalization coefficient 
dUo) is determined by (3. 1) as 

d(IO)=(V Iw (ri) Iv >-112. 100 E 100 , (3.7) 

the matrix elements 

(3.8) 

constitute the essential structural parameters for our 
problem. 

For each L > lo, we set up the orthogonalization pro­
cedure by representing each polynomial pi~i)(k) as the 
sum of one group of terms homogeneous of degree Land 
of a second group of terms of lower degree designed to 
insure the orthogonalization to all pi~!l (k) with L' < L. 
Thus we set: 

L' <L 
p(ri>(k)-6v(ro(k)d(Lq)+ .0 p(ri>(k)g(Lq) (3.9) 

Lq - s;\ Ls'A s}" L' ql L' q' L' q' , 

where the coefficients gif~) will be determined by 
Schmidt orthogonalization and the d;~·) by a separate 
procedure. The orthogonality condition for L' < L reads: 

Owing to the previous orthonormalization of the prjj, (k) 
with L' < L, this condition gives simply 

(Lq) ~ In I W ( .) I > (Lq) gL'q' =-L./ V- L'ql E rz VLs~ ds~ . 
s~ 

(3.11) 
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Substitution of this result in (3. g) reduces the ortho­
normalization condition on the pl~i) (k) with equal degree 
L to the form: 

(PLq I WE(ri) IpLq ) 
1 2 

=:0 :0 d;fql
) { (vLs~lwE(ri)lvLs'~'> 

s.\ s' 'A' 

(3. 12) 

The construction of the polynomials of each degree L 
thus reduces to the determination of the eigenvectors 
d(Lq) of the symmetric and real matrix 

(v Ls~ I W E(ri) Iv Ls'~,) 

The order of this matrix equals the number of sym­
metry-adapted polynomials vl~{)(k) of degree L. The 
normalization of the eigenvectors d<Lq), implied by 
(3. 12), coincides with that given by (3. 7) for the special 
case L = 10 , Examples of the construction of the pl~i ) (k) 
are shown in the Appendix. 

4. PROPERTIES OF THE MULTIPOLE WAVES 

Entering the symmetry-adapted expansion of the plane 
wave (3.4) into the expression (2.5) of the multipole 
wave (nlriLq)E, yields 

<n I riLq)E = J dk exp(in c k)w E(k)pl~l) (k) 

(4.1) 

Because of the orthogonality of pl~n(k) to the entire 
space of polynomials of degree lower than L, the ex­
pansion (4.1) starts with terms of degree I =L. This 
property was introduced by Fano 3 as the characteristic 
of the dependence of each multipole wave on the dis­
tance from the "center". 

This result permits us now to specify that the first 
term of the series expansion of the multi pole wave 
(n I riLq)E is 

·L>: >: (ril() -W (r') I )d(Lq) z ~ £r{1 vLs.>.. n E 1 VLs'X' s~'. (4.2) 

Recalling that d<Lq) is eigenvector of the matrix 
<VLs~ I WE (ri) IVLs'~') corresponding to the eigenvalue 
WrLq , we obtain that the first term of the series ex­
pansion of the density of states l(nlriLq)EI 2 belonging 
to the riLq-multipole is of degree 2L and is given by 

{w Z; v<rn(n)d<Lq)}2 (4 3) r Lq s>.. Ls'A s .\ • • 

Since the eigenvectors d(Lq) are normalized in accor­
dance with (3.12), we conclude that (4.2) is linear, 
rather than quadratic, in the eigenvalue W r Lq of the 
matrix (3.13). 
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This conclusion represents the central result of the 
paper; we have shown how the density of states around a 
center cell in a crystalline medium can be characterized 
in practice by a few parameters only of the constant en­
ergy surface, namely the eigenvalues W rLq for rather 
low L. More specifically, the structural similarity of 
the polynomials vi~f) (n) and of the Bessel functions 
iL(lnl) shows thatvl~{)(n)«1 whenever In/«L. How­
ever, we regard this result as the first step of a broader 
investigation of physical parameters appropriate to the 
study of phenomena with local character. 

This point of view is close to that which motivated 
Kohn4 and collaborators to express energy band prop­
erties of solids directly in terms of Wannier functions 
and of such local quantities as the matrix elements 
(0 IHe In), where He is the I-electron Hamiltonian of the 
crystal. As an example of the connection of the two ap­
proaches, the equation of the constant energy surface, 
which is given by Kohn as a Fourier series with co­
efficients <0 IHe In), can be expressed in terms of the 
symmetry-adapted polynomials belonging to r 1+: 

<r +) 

E(k)=:0 EIS).VIs~1 (k), (4.3) 
Is). 

where 

(4.4) 

Owing to the localization of the Wannier functions, the 
sum over n extends in effect only to a limited number 
of cells around the center. OWing, once again, to the 
properties of the polynomials VIs)', the sum in (4.3) also 
converges rapidly with increasing 1. 

APPENDIX: EXAMPLES OF ORTHOGONAL 
POL YNOMIALS FOR THE GROUP Oh 

We use the notation of Bradley and Crackne1l6: 

Y'F,e = (2t1l2(yl
m + Y I ~m), ylm,S = _ i(2tt/Z(Ylm _ y 1-m). 

Case 1: r t + 

(a) [=0, voo(k)=I, Po(k)=(vooIWElvoot1lz. 

(b) l=2, V21(k)=(6t1l2 IkI 2, 

P 2(k) = (V21 I WE I v Z1t 1lZ
[V21 (k) - Po (k)(Po I WE I VZ1) J. 

(c) l= 4 

v4o(k)=(47T/945)IIZlkI 4[(-bV 12 

P 4.(k) = W4± -tl2[ (W4• - (v40 I WE I v40»2 

where 

+ (v40 IWE l v42)2]-1I2 [(V40 IWE I V4Z)u40(k) 

+ (W4• - (v40 I WE I V40»U42 (k)], 
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and W4~ are the roots of the quadratic equation 

(i) - -1/2[ - ( 1- . 1 »2 P3~ (k) = W3~ (W3~ - V30 W E(l) V30 

+ (V 30 1 W E(i) 1 V31)2]-1/2 

X [(V30 1 WE (i) I V31)u30(i)(k) 

+ (W3~ - (v 30 1 W E(i) 1 V30»U31 (0 (k) 1 

(i=1,2,3), 

where 

U3/ 0 (k) =V3/0 (k) - PI (0 (k) (p I 1 W E(i) [V35) (5 = 0,1), 

and W3~ are the roots of the quadratic equation 

(V30 1 W E(i) [v 30) - W 3q)( (V 31 1 W E(i) 1 V31) - W 3q ) 

= (V30 1 W E(i) 1 V31?' 
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(0 - -1/2[- (-'1 2 P4~ (k)=W4• (W4.- (V40 WE(l) V40» 

+ (V40 IW E(i) IV41)2]-1I2 

X[(V40 1 WE (i) [V41)u40(;)(k) 

+ (W4.- (V40 [WE(i) Iv4o»u4/i)(k)] (i= 1, 2), 

where 

and W4• are the roots of the quadratic equation 

(V 40 1 W E(i) I V40) - W 4q)(V41 1 W E(i) 1 V41 ) - Wlq ) 

= (V40 (WE(i) IV41)2. 

*Work supported by the U. S. Energy Research and Develop­
ment Administration, Contract No. COO-1G74-10B. 
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Duality transformation in a many-component spin model 
F. Y. Wu* and Y. K. Wang 

Department of Physics, Northeastern University, Boston, Massachusetts 02115 
(Received 6 October 1975) 

It is shown that the duality transformation relates a spin model to its dual whose Boltzmann factors are 
the eigenvalues of the matrix formed by the Boltzmann factors of the original spin model. The duality 
relation valid for finite lattices is obtained, and applications are given. 

The duality relation for two-dimensional spin models 
can be considered both from a topological and an alge­
braic point of view. A comprehensive discussion of 
these aspects for the Potts and the Ashkin-Teller (AT) 
models has been given by Mittag and Stephen. 1 More 
recently, Wegner2 has reformulated the duality relation 
as an instance of a more general transformation. In this 
note we point out one further aspect of the duality trans­
formations, Our result helps to clarify the reasoning 
in Wegner's formulation and also provides straightfor­
ward extensions of duality to other spin models, 

Consider a q component spin model on a two-dimen­
sional lattice L which has N sites, Let ~i = 1,2, ... ,q 
denote the spin state of the ith site, The Hamiltonian 
can be generally written as 

(1) 

where - J(~, e) is the interaction between the spin 
states ~ and e. The summation in (1) is over all inter­
acting pairs (ij) which we assume to be noncrossing. 
The partition function is 

with 

u(~, e) = exp[J(~, e)/kT]. 

We shall restrict our attention to the case that 

U(~i' ~j) =U(~i - p, (mod q), 

(2) 

(3) 

(4) 

Thus the matrix U whose elements are u(~, ~') is cyclic. 
It is not necessary for our discussion to further assume 
that U is symmetric, although in most applications this 
will be the case, In order to distinguish ~i from ~j for 
a given edge connecting sites i and j, we place an arrow 
on it pointing from ito j, Thus the lattice is directed, 
We shall also have occasion to consider the situation, 
such as for the AT model, that U is block-cyclic. 
These cases will be explored in later discussions. 

We can rewrite the partition function in two different 
ways, First, instead of specifying the spin states by 
~i' we may label the edge in (4) by the difference ~ij 
= ~i - ~j' However, to ensure that each set of ~ij will 
correspond to some spin states, it is necessary (and 
sufficient) to require 

:0 ~ij= ,0 ~ij 
cw ccw 

around each face of L. Here the summation cw (ccw) 
is over the edges carrying clockwise (counterclock-

(5) 
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wise) arrows around the face, Clearly, the ~i ~ ~jj 
mapping is q to 1. Denoting the restriction (5) by a 
prime over the summation sign, we can now rewrite 
the partition sum (2) as 

q 

Z(u) = q :0' n U(~ij)' 
~jj=l (ij) 

(6) 

To make connection with the partition function on the 
dual of L, or L D

, we now cast Z into another form. Di­
rect the edges of L D such that the arrows on L D coin­
cide with those on L if each edge of L D is rotated 900 

clockwise. The situation around a site on L is shown 
in Fig. 1. Now the eigenvalues of the q x q cyclic matrix 
U are 

q 

>"(1])=,0 exp(21Ti~17/q)u(~), 17=1"" ,q, 
{=1 

(7) 

or, conversely, 
q 

u(~ij) = :0 T(~i' 17) >"(1]) T*(~j' TI), 
"=1 

(8) 

where 

T(~, 1]) =q-1/2 exp(21Ti~1]/q). (9) 

We substitute (8) into (2) and carry out the sums over 
~j. At each site of L, we have for each outgOing (in­
coming) arrow a factor T(~, 1]) [T* (~, 1])], Denote the 
spin states of the spin model on LD by TI" and identify 
the TI in (8) as TI"e =1]", - TIe' where the arrow runs from 
site CI' to site i3 on the corresponding edge of L D , Then 
the summation over ~i (cf. Fig. 1) leads to a factor 

_ 1-"i /2
/j ('" ") -q Kr LJ 17,,8- LJ 17o:B , 

cw ccw 
(10) 

2 

3 

n. 
I 

FIG. 1. The directed edges around the ith site on L. The solid 
(broken) lines are the edges of L (L D). 
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where nl is the number of neighbors of the ith site. The 
restriction imposed by the Kronecker delta on the rhs 
of (10) is exactly the same as in (5) for a face of LD. 
Thus, after combining (8) with (2) and using (10), the 
partition function takes the form 

q 

Z=qN~E 6' IT A(l1(X~), 
"",~=1 ("'~) 

(11) 

where E is the number of edges of L (or L D), Finally, 
by comparing (11) with (6) and using the Euler's relation 
for a conn~cted planar graph, 3 

N+ND =E+2, 

we obtain the identity 

Z(u) =q1-ND ZW)(A). 

(12) 

(13) 

This is our main result and it is valid for any finite 
lattice, Here ZW) (A) is the partition function of the spin 
model on L D whose Boltzmann factors are given by (7), 
While this result is implicit in ReL 2, our discussion 
does bring out in a natural way the role played by the 
U matrix, thus clarifying the reasoning behind Wegner's 
formulation, 

An example is the Potts model4 with 

The eigenvalues of U are 

A1 = eK + q - 1, A2 = ... = Aq = eK 
- 1, 

so that the equivalence (13) reads 

Z(eK) = q1-N D(eK _ I)E Z\D) (e K*), 

where 

eK* = A/A2 = (e K + q _l)j(eK_ lL 

(14) 

(15) 

(16) 

(17) 

The above result is readily extended to the case 
where U is block-cyclic, An example is the AT model 
for which 

_ (U1 U2
) 

U- U U ' 
2 1 

(18) 

where U1 and U2 are themselves 2 x 2 cyclic matrices, 
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Generally we consider a matrix U which is m-fold cy­
clic. That is to say, U is composed of ql cyclic matric­
es, each of which in turn contains q2 cyclic matrices, 
etc., the dimension of U being q =qtq2" ·qm. Thus, an 
element of U, which specifies the spin states of the 
model, is described by an m component vector 
~= (~1'" . '~m) whose components can take on, respec­
tively, ql,Q2,'" ,qm different values. Treating the pre­
vious ~ and 17 as vectors, we can carry through all the 
steps and again arrive at the equivalence (13), provided 
that in place of (7) we have 

A(1}) =6 exp[27Ti(~11J/ql +", + ~m1Jmjqm)]u(~). (19) 
" ( 

For the AT model we have Ql=q2=2, ~1,1Ji=1,2, 
Equation (19) then leads to the duality relations derived 
by Ashkin and Teller, 5 As a further illustration consider 
the six-component spin model whose U matrix is 

(
U1 U2 U2) 

U = U2 U1 U2 , (20) 

U2 U2 U1 

where U1 = (g ~) and U2 = (~ ~) are 2 x 2 matrices, It is 
easily seen that the eigenvalues of U form a similar 
cyclic matrix whose elements are 

a* = A1 = a + b + 2 (O! + j3), 

b*=Az=a-b+2(0!-j3), 

ex * = A3 = A4 = a + b - (ex + j3), 

f3* = A5 = A6 = a - b - (ex - j3). 

This is the duality transformation. 

(21) 

Note added in proof: Finally we remark that our re­
sult (13) is valid even if the Boltzmann factor (3) is 
edge-dependent. In this case the eigenvalues (7) or (19) 
are introduced for each edge ij and in (13) we have 
u={ud, A={Ad· 

*Supported in part by National Science Foundation Grant No. 
DMR 72-03213AOl. 

1L. Mittag andJ. Stephen, J. Math. Phys. 12, 441 (1971l. 
2F.J. Wegner, Physica 68, 570 (1973). 
3We have used here N D= S + 1, where S is the number of inde­
pendent circuits in the graph. 

4R. B. Ratts, Proc. Cambridge Philos. Soc. 48, 106 (1952). 
5J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943). 
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ERRATA 

Erratum: Formula for the computation of the 
representation matrix elements of the group SO(n) 
[J. Math. Phys. 16, 334 (1975)] 

Takayoshi Maekawa 

Department of Physics, Kumamoto University, Kumamoto, Japan 
(Received 7 October 1975) 

(1) On p. 335, (2.7) should be changed as follows: 

D(n)( 821 , •• 0, 8n n-l) 

= D(n-1) L~~ Rk k-1 {8n n-k+l)J RSl (8n n-2)Rd 8n n-l) 

= . & [( A Rk k -1 ( 8 n-i n-i -k +1)) RSI ( 8 n-i n-i -2) 
J :::n-2 k :::n-J 

XR1Z {8 n_i n-i-l)]' 

(2) On p. 337, the last condition of (4, 2) should be 
changed to inequality: 

(3) On p. 338, the (+) sign of the second terms on the 
right-hand side of (4.6) and (4. 7) should be changed to 
a (-) sign. 

(4) On p. 338, (4.9) should be changed as follows 

D(n)=R12(821)RSl{8S1)( IT Rk k_l{8k1 ))D(n-1)'. 
k=4 

(5) On p. 339, the (+) sign of the second term on the 
right-hand side of (4. 16) should be changed to a (-) 
sign. 

Erratum: On the stationary gravitational fields [J. Math. 
Phys. 15, 1096 (1974)] 

S. Kloster, M. M. Som, and A. Das 

Department of Mathematics, Simon Fraser University, Burnaby 2, B.C., Canada 
(Received 10 October 1975) 

(1) The last sentence of the abstract land the one 
before Eq. (7.14)j should say that the class of metrics 
found is mostly outside the P. E. class. 

(2) In the fifth paragraph of the introduction, Cw 

should be replaced by C W
• 

(3) In the sixth line of Eq. (2.6), aB should be replaced 
by aB' and in the seventh line, 2 should be replaced by 
1. 

(4) The first equation in (F,) should assert that 0u-v 

=0. The zero was omitted. 

(5) The third term of the integrand in (3.2) should 
be - t exp(2w)f"'B fexB' 

(6) In the second line of Eq. (6.2), the factor (d8 2 

+r2 sin2 8 dq;2) should be replaced by r2(d8 2 +sin2 8 dq;2). 

(7) In Eq. (6.4), the signs should be as follows: 

q, = + (2kt J [(1 + m/2R)4 + (1 _m/2R)4] [dR 2 _R2(d~2 

+ sinh2~) d1}) 1- 2k(1 - m2/4R2)2 [(1 + m/2R)4 

+ (1 - m/2R)4]-1[(2m/ k) coshif dc,b + dt]2 0 

(8) The existence of conformastationary solutions 
outside of the P. E. class is still an open question. The 
coordinate conditions used form an overdetermined 
system. 

(9) In Eq. (7.1) the second dz 2 should be d8". 

(10) To be more precise, Eq. (7.13) should be written 

g(s) = res, f) +~ 

X 'f(w,f' -1/4p')f(p', z') +(w,c' -1/4p')7(p', z') dp' d?' 
J s'-s ~. 

(11) M.M. Som's address is: Centro Brasileiro de 
Pesquisas Fisicas, A. V. Wenceslau, Braz, 71-Zc-82, 
Rio de Janeiro-GB, Brasil. 
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